Creating a Lowland and Peatland Landscape Digital Terrain Model (DTM) from Interpolated Partial Coverage LiDAR Data for Central Kalimantan and East Sumatra, Indonesia
Abstract
:1. Introduction
2. Materials and Methods
2.1. LiDAR Data Acquisition
2.2. LiDAR Point Cloud Filtering
2.3. Interpolation Between LiDAR Data Strips
2.4. Validation of Interpolated DTM
3. Results
3.1. Validation of Interpolated DTM Accuracy for Central Kalimantan
3.2. Extent of the East Sumatra Lowland DTM
3.3. Referencing to Mean Sea Level
4. Discussion
4.1. Accuracy of the Interpolated Lowland DTM
4.2. Characteristics of the East Sumatra Lowland DTM
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McGranahan, G.; Balk, D.; Anderson, B. The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 2007, 19, 17–37. [Google Scholar] [CrossRef]
- Syvitski, J.P.M. Deltas at risk. Sustain. Sci. 2008, 3, 23–32. [Google Scholar] [CrossRef]
- Nicholls, R.J. Impact of and responses to sea-level rise. In Understanding Sea-Level Rise and Variability; Church, J.A., Woodworth, P.L., Aarup, I., Wilson, W.S., Eds.; John Wiley & Sons: Chichester, UK, 2010; pp. 17–44. [Google Scholar]
- Hooijer, A.; Vernimmen, R.; Visser, M.; Mawdsley, N. Flooding Projections from Elevation and Subsidence Models for Oil Palm Plantations in the Rajang Delta Peatlands, Sarawak, Malaysia. Deltares Report 1207384. 2015. Available online: https://www.deltares.nl/app/uploads/2015/06/Rajang-Delta-Peatland-Subsidence-Flooding-Deltares-2015.pdf (accessed on 9 April 2019).
- Hooijer, A.; Vernimmen, R.; Mawdsley, N.; Page, S.; Mulyadi, D.; Visser, M. Assessment of Impacts of Plantation Drainage on the Kampar Peninsula Peatland, Riau. Deltares Report 1207384 to Wetlands International, CLUA and Norad. 2015. Available online: https://www.deltares.nl/app/uploads/2015/12/Plantation-Impacts-Kampar-Peatland-DELTARES-2015.pdf (accessed on 9 April 2019).
- Minderhoud, P.S.J.; Erkens, G.; Pham, V.H.; Bui, V.T.; Erban, L.; Kooi, H.; Stouthamer, E. Impacts of 25 years of groundwater extraction on subsidence in the Mekong delta, Vietnam. Environ. Res. Lett. 2017, 12, 064006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syvitski, J.P.M.; Kettner, A.J.; Overeem, I.; Hutton, E.W.H.; Hannon, M.T.; Brakenridge, G.R.; Day, J.; Vörösmarty, C.; Saito, Y.; Giosan, L.; et al. Sinking deltas due to human activities. Nat. Geosci. 2009, 2, 681–686. [Google Scholar] [CrossRef] [Green Version]
- Sampson, C.C.; Smith, A.M.; Bates, P.D.; Neal, J.C.; Trigg, M.A. Perspectives on open access high resolution digitial elevation models to produce global flood hazard layers. Front. Earth Sci. 2016, 3, 1–6. [Google Scholar] [CrossRef]
- Hinkel, J.; Lincke, D.; Vafeidis, A.T.; Perrette, M.; Nicholls, R.J.; Tol, R.S.J.; Marzeion, B.; Fettweis, X.; Ionescu, C.; Levermann, A. Coastal flood damage and adaptation costs under 21st century sea-level rise. Proc. Natl. Acad. Sci. USA 2014, 111, 3292–3297. [Google Scholar] [CrossRef] [Green Version]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R.J. Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.E.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A high accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef]
- Ministry of Public Works, Directorate General of Water Resources Development. Sustainable Swamp Development: The Choice of Indonesia; Ministry of Public Works, Directorate General of Water Resources Development: Jakarta, Indonesia, 1996.
- Handoko, E.Y.; Fernandes, M.J.; Lazaro, C. Assessment of altimetric range and geophysical corrections and mean sea surface models - impacts on Sea level variability around the Indonesian seas. Remote Sens. 2017, 9, 102. [Google Scholar] [CrossRef]
- Hooijer, A.; Page, S.; Jauhiainen, J.; Lee, W.A.; Lu, X.X.; Idris, A.; Anshari, G. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 2012, 9, 1053–1071. [Google Scholar] [CrossRef] [Green Version]
- Abidin, H.Z.; Andreas, H.; Gamal, M.; Wirakusumah, A.D.; Darmawan, D.; Deguchi, T.; Maruyama, Y. Land subsidence characteristics of the Bandung Basin, Indonesia, as estimated from GPS and InSAR. J. Appl. Geodesy 2008, 2, 167–177. [Google Scholar] [CrossRef]
- Abidin, H.Z.; Andreas, H.; Gumilar, I.; Fukuda, Y.; Pohan, Y.E.; Deguchi, T. Land subsidence of Jakarta (Indonesia) and its relation with urban development. Nat. Hazards 2011, 59, 1753–1771. [Google Scholar] [CrossRef]
- Abidin, H.Z.; Andreas, H.; Gumilar, I.; Sidiq, T.P.; Fukuda, Y. Land subsidence in coastal city of Semarang (Indonesia): Characteristics, impacts and causes. Geomat. Nat. Hazards Risk 2013, 4, 226–240. [Google Scholar] [CrossRef]
- Dahuri, R.; Rais, J.; Ginting, S.P.; Sitepu, M.J. Pengelolaan Sumber Daya Pesisir Dan Lautan Secara Terpadu, 1st ed.; Balai Pustaka: Jakarta, Indonesia, 2008. [Google Scholar]
- Zhang, K.; Chen, S.C.; Whitman, D.; Shyu, M.L.; Yan, J.; Zhang, C. A progressive morphological filter for removing nonground measurements from airborne LiDAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 872–882. [Google Scholar] [CrossRef]
- Zhang, K.; Whitman, D. Comparison of three algorithms for filtering airborne LiDAR data. Photogramm. Eng. Remote Sens. 2005, 71, 313–324. [Google Scholar] [CrossRef]
- Korzeniowska, K.; Pfeifer, N.; Mandlburger, G.; Lugmayr, A. Experimental evaluation of ALS point cloud ground extraction tools over different terrain slope and land-cover types. Int. J. Remote Sens. 2014, 35, 4673–4697. [Google Scholar] [CrossRef]
- Lampela, M.; Jauhiainen, J.; Kämäri, I.; Koskinen, M.; Tanhuanpää, T.; Valkeapää, A.; Vasander, H. Ground surface microtopography and vegetation patterns in a tropical peat swamp forest. Catena 2016, 139, 127–136. [Google Scholar] [CrossRef]
- Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A fresh approach to numerical computing. SIAM Rev. 2017, 59, 65–98. [Google Scholar] [CrossRef]
- Isenburg, M. LASzip. Photogramm. Eng. Remote Sens. 2013, 79, 209–217. [Google Scholar] [CrossRef]
- Deltares/als2dtm: Archived Version. Available online: https://zenodo.org/record/2657414#.XNqIO9IRVPY (accessed on 9 April 2019).
- Greenpeace. 2018. Available online: http://www.greenpeace.org/seasia/id/Global/seasia/Indonesia/Code/Forest-Map/en/data.html (accessed on 14 December 2018).
- Ritung, S.; Wahyunto; Nugroho, K.; Sukarman; Hikmatullah; Suparto; Tafakresnanto, C. Peta lahan gambut Indonesia. Skala 1:250.000; Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian: Bogor, Indonesia, 2011.
- Nedeco/Euroconsult and BIEC. Nationwide Study of Coastal and Near-Coastal Swamp Land in Sumatra, Kalimantan and Irian Jaya: Final Report; Nedeco/Euroconsult: Arnhem, The Netherlands, 1984. [Google Scholar]
- Konecny, K.; Ballhorn, U.; Navratil, P.; Jubanski, J.; Page, S.E.; Tansey, K.T.; Hooijer, A.; Vernimmen, R.; Siegert, F. Variable carbon losses from recurrent fires in drained tropical peatlands. Glob. Chang. Biol. 2016, 22, 1469–1480. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45. [Google Scholar] [CrossRef] [Green Version]
- Wahyunto; Ritung, S.; Subagjo, H. Peta Luas Sebaran Lahan Gambut dan Kandungan Karbon di Pulau Sumatera / Map of Area of Peatland Distribution and Carbon Content in Sumatera, 1990–2002; Wetlands International—Indonesia Programme and Wildlife Habitat Canada (WHC): Bogor, Indonesia, 2003. [Google Scholar]
- Margono, B.A.; Potapov, P.; Turubanova, S.; Stolle, F.; Hansen, M. Primary forest cover loss in Indonesia over 2000–2012. Nat. Clim. Chang. 2014, 4, 730–735. [Google Scholar] [CrossRef]
2.5 km | 5 km | 10 km | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AreaId | Area [ha] | Dominant Land Cover | Peat | Drainage Density | Avg. Difference [m] | RMSE [m] | 0–0.25 m [%] | 0–0.50 m [%] | 0–1.0 m [%] | Avg. Difference [m] | RMSE [m] | 0–0.25 m [%] | 0–0.50 m [%] | 0–1.0 m [%] | Avg. Difference [m] | RMSE [m] | 0–0.25 m [%] | 0–0.50 m [%] | 0–1.0 m [%] |
CK1 | 45626 | peat swamp forest | deep | low | −0.04 | 0.36 | 94.7 | 97.6 | 98.6 | -0.04 | 0.39 | 87.7 | 95.5 | 98.3 | 0.00 | 0.43 | 69.5 | 88.3 | 97.5 |
CK2 | 62097 | peat swamp forest | deep | moderate | −0.01 | 0.17 | 91.6 | 97.5 | 99.6 | 0.00 | 0.22 | 86.0 | 95.8 | 99.3 | 0.00 | 0.33 | 70.0 | 88.3 | 98.3 |
CK3 | 36670 | swamp shrubland | deep | high | 0.02 | 0.24 | 87.5 | 95.6 | 98.7 | 0.01 | 0.27 | 82.1 | 94.4 | 98.5 | 0.01 | 0.30 | 77.2 | 93.4 | 98.2 |
CK4 | 37239 | swamp shrubland | deep | moderate | −0.02 | 0.15 | 92.8 | 98.3 | 99.9 | −0.04 | 0.22 | 84.0 | 96.3 | 99.3 | −0.18 | 0.45 | 49.1 | 74.4 | 97.1 |
CK5 | 19254 | swamp shrubland | deep | low | −0.02 | 0.21 | 85.6 | 95.7 | 99.5 | −0.01 | 0.24 | 80.3 | 93.2 | 99.6 | 0.01 | 0.39 | 64.5 | 84.1 | 97.6 |
CK6 | 16937 | shrubland | shallow pockets | high | 0.01 | 0.19 | 87.4 | 96.7 | 99.7 | 0.00 | 0.23 | 79.1 | 95.6 | 99.6 | −0.02 | 0.30 | 63.0 | 91.8 | 99.2 |
CK7 | 55205 | swamp shrubland | deep | high | 0.00 | 0.18 | 89.9 | 97.1 | 99.5 | 0.00 | 0.23 | 84.7 | 96.3 | 99.3 | −0.12 | 0.49 | 66.5 | 84.6 | 93.2 |
CK8 | 57697 | swamp shrubland | deep | high | 0.00 | 0.22 | 84.3 | 95.5 | 99.4 | −0.01 | 0.29 | 74.1 | 91.2 | 98.9 | 0.02 | 0.41 | 56.5 | 79.5 | 97.0 |
CK9 | 29455 | rice land | shallow pockets | high | −0.02 | 0.14 | 93.2 | 98.5 | 100.0 | 0.00 | 0.18 | 88.3 | 97.5 | 99.9 | 0.02 | 0.20 | 83.8 | 96.3 | 99.9 |
CK10 | 37751 | swamp shrubland | deep+shallow pockets | high | −0.05 | 0.23 | 85.3 | 95.0 | 99.4 | 0.04 | 0.27 | 76.6 | 92.0 | 99.6 | 0.21 | 0.45 | 58.7 | 79.0 | 94.8 |
CK11 | 39050 | rice land | shallow pockets | high | 0.00 | 0.20 | 85.7 | 96.1 | 99.6 | −0.05 | 0.24 | 77.4 | 93.9 | 99.7 | −0.09 | 0.28 | 70.0 | 91.2 | 99.7 |
CK12 | 33751 | rice land | shallow pockets | high | 0.00 | 0.16 | 93.3 | 97.4 | 99.9 | 0.00 | 0.17 | 91.5 | 97.1 | 99.9 | 0.05 | 0.19 | 90.3 | 96.5 | 99.8 |
CK13 | 61033 | rice land | shallow pockets | high | −0.03 | 0.23 | 79.8 | 94.7 | 99.6 | −0.03 | 0.27 | 73.1 | 92.3 | 99.6 | −0.07 | 0.31 | 67.1 | 89.0 | 99.1 |
CK14 | 39294 | rice land | no | high | −0.03 | 0.16 | 90.3 | 98.1 | 99.9 | −0.02 | 0.17 | 89.1 | 97.9 | 99.8 | 0.03 | 0.20 | 83.0 | 96.7 | 99.8 |
CK15 | 44892 | rice land | shallow pockets | high | −0.02 | 0.25 | 81.7 | 93.9 | 99.1 | −0.01 | 0.30 | 73.8 | 91.3 | 98.6 | −0.09 | 0.32 | 71.1 | 89.3 | 98.1 |
Avg. (mostly peat, CK1-5, CK7; 100 m) | −0.01 | 0.23 | 90.9 | 97.1 | 99.3 | −0.01 | 0.27 | 84.7 | 95.5 | 99.0 | −0.05 | 0.41 | 66.7 | 85.9 | 96.8 | ||||
Avg. (mostly mineral soil, CK6, CK8-15; 100 m) | −0.02 | 0.21 | 85.8 | 95.9 | 99.6 | −0.01 | 0.25 | 79.2 | 93.8 | 99.4 | 0.00 | 0.32 | 70.4 | 89.0 | 98.5 | ||||
Avg. (all; 100 m) | −0.01 | 0.22 | 88.0 | 96.4 | 99.5 | −0.01 | 0.26 | 81.5 | 94.5 | 99.3 | −0.02 | 0.36 | 68.9 | 87.7 | 97.8 | ||||
Avg. (all; 500 m) | −0.02 | 0.29 | 79.4 | 93.5 | 98.9 | −0.01 | 0.31 | 74.1 | 92.0 | 98.8 | −0.02 | 0.40 | 63.9 | 85.7 | 97.2 | ||||
Avg. (all; 100 m; automatic interpolation with only LiDAR strip data) | −0.01 | 0.22 | 86.6 | 95.9 | 99.4 | −0.05 | 0.33 | 68.7 | 88.9 | 98.8 | −0.14 | 0.56 | 56.2 | 74.3 | 90.4 |
Area | Estimated RMSE | ||
---|---|---|---|
Interpolation Distance Class | [Mha] | [%] | [m] |
LiDAR data | 1.45 | 20.4 | 0.25 |
1 km from LiDAR data | 3.31 | 46.4 | <0.47 |
1–2.5 km from LiDAR data | 1.87 | 26.2 | <0.51 |
2.5–5 km from LiDAR data | 0.37 | 5.2 | <0.61 |
>5 km from LiDAR data | 0.13 | 1.8 | >0.61 |
Total | 7.13 | 100.0 | 0.25–0.61 |
Slope [m km−1] | |||
---|---|---|---|
0–0.5 | 0–1 | 0–2 | |
Lowland Landscape Type | [%] | [%] | [%] |
Undrained peatland (CK1-CK2, CK4-CK5) | 34.7 | 72.2 | 89.4 |
Drained peatland (CK3, CK6-CK8, CK10) | 36.2 | 65.3 | 86.4 |
Mineral soils (CK9, CK11-CK15) | 31.1 | 61.2 | 85.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vernimmen, R.; Hooijer, A.; Yuherdha, A.T.; Visser, M.; Pronk, M.; Eilander, D.; Akmalia, R.; Fitranatanegara, N.; Mulyadi, D.; Andreas, H.; et al. Creating a Lowland and Peatland Landscape Digital Terrain Model (DTM) from Interpolated Partial Coverage LiDAR Data for Central Kalimantan and East Sumatra, Indonesia. Remote Sens. 2019, 11, 1152. https://doi.org/10.3390/rs11101152
Vernimmen R, Hooijer A, Yuherdha AT, Visser M, Pronk M, Eilander D, Akmalia R, Fitranatanegara N, Mulyadi D, Andreas H, et al. Creating a Lowland and Peatland Landscape Digital Terrain Model (DTM) from Interpolated Partial Coverage LiDAR Data for Central Kalimantan and East Sumatra, Indonesia. Remote Sensing. 2019; 11(10):1152. https://doi.org/10.3390/rs11101152
Chicago/Turabian StyleVernimmen, Ronald, Aljosja Hooijer, Angga T. Yuherdha, Martijn Visser, Maarten Pronk, Dirk Eilander, Rizka Akmalia, Natan Fitranatanegara, Dedi Mulyadi, Heri Andreas, and et al. 2019. "Creating a Lowland and Peatland Landscape Digital Terrain Model (DTM) from Interpolated Partial Coverage LiDAR Data for Central Kalimantan and East Sumatra, Indonesia" Remote Sensing 11, no. 10: 1152. https://doi.org/10.3390/rs11101152