A Simplified and Robust Surface Reflectance Estimation Method (SREM) for Use over Diverse Land Surfaces Using Multi-Sensor Data
Abstract
:1. Introduction
2. Datasets
2.1. Satellite Data
Landsat TM/ETM+/OLI
2.2. In Situ Surface Reflectance Data
2.3. Site Selection for Comparison Purpose
S/N | Site Name | Longitude (dd) | Latitude (dd) | Land Cover | Subtype | Path/Row |
---|---|---|---|---|---|---|
1 | Beijing a | 116.38 | 39.98 | Urban | Urban | 123/32 |
2 | CalTech a | −118.13 | 34.14 | Urban | Near Coast | 41/36 |
3 | CEILAP-BA a | −58.51 | −34.56 | Urban | Urban | 225/84 |
4 | Georgia_Tech a | −84.40 | 33.78 | Urban | Near Vegetation | 19/36, 19/37 |
5 | Hong_Kong_PolyU a | 114.18 | 22.30 | Urban | Urban | 121/45, 122/44, 122/45 |
6 | Madrid a | −3.72 | 40.45 | Urban | Urban | 201/32 |
7 | Osaka a | 135.59 | 34.65 | Urban | Urban | 109/36, 110/36 |
8 | Paris a | 2.36 | 48.85 | Urban | Urban | 199/26 |
9 | Pretoria_CSIR-DPSS a | 28.28 | −25.76 | Urban | Urban | 170/78 |
10 | UMBC a | −76.71 | 39.25 | Urban | Urban | 15/33 |
11 | Univ_of_Houston a | −95.34 | 29.72 | Urban | Urban | 25/39, 25/40, 26/39 |
12 | Carpentras a | 5.06 | 44.08 | Vegetation | Cropland | 196/29 |
13 | Chapais a | −74.98 | 49.82 | Vegetation | Forest | 16/25, 17/25 |
14 | Davos a | 9.84 | 46.81 | Vegetation | Grassland | 193/27, 193/28, 194/27 |
15 | Jabiru a | 132.89 | −12.66 | Vegetation | Savanna | 104/69, 105/69 |
16 | Kanzelhohe_Obs a | 13.90 | 46.68 | Vegetation | Forest | 191/27, 191/28 |
17 | ND_Marbel_Univ a | 124.84 | 6.50 | Vegetation | Cropland | 112/55, 112/56 |
18 | NEON_Harvard a | −72.17 | 42.54 | Vegetation | Forest | 13/30, 13/31, 12/30, 12/31 |
19 | NEON_OSBS a | −81.99 | 29.69 | Vegetation | Savanna | 16/39, 16/40, 17/39 |
20 | Rimrock a | −116.99 | 46.49 | Vegetation | Savanna | 42/28, 43/28 |
21 | Sioux_Falls a | −96.63 | 43.74 | Vegetation | Cropland | 29/29, 29/30 |
22 | Sodankyla a | 26.63 | 67.37 | Vegetation | Savanna | 191/13, 190/13, 192/12, 192/13 |
23 | Univ_of_Lethbridge a | −112.87 | 49.68 | Vegetation | Grassland | 40/25, 40/26, 41/25 |
24 | USGS_Flagstaff_ROLO a | −111.63 | 35.21 | Vegetation | Savanna | 37/35, 37/36 |
25 | Algeria 3 b | 7.66 | 30.32 | Desert | Arid | 192/39 |
26 | Algeria 5 b | 2.23 | 31.02 | Desert | Arid | 195/39 |
27 | Birdsville a | 139.35 | −25.90 | Desert | Arid | 98/78 |
28 | Capo_Verde a | −22.94 | 16.73 | Desert | Shrubland | 209/48, 209/49 |
29 | Dunhuang b | 94.34 | 40.13 | Desert | Arid | 137/32 |
30 | El_Farafra a | 27.99 | 27.06 | Desert | Barren | 178/41 |
31 | Frenchman_Flat a | −115.93 | 36.81 | Desert | Barren | 40/34, 40/35 |
32 | Ivanpah Playa b | −115.40 | 35.57 | Desert | Arid | 39/35 |
33 | Libya 1 b | 13.35 | 24.42 | Desert | Arid | 187/43 |
34 | Libya 4 b | 23.39 | 28.55 | Desert | Arid | 181/40 |
35 | Railroad Valley Playa b | −115.69 | 38.50 | Desert | Arid | 40/33 |
3. Methodology
3.1. Surface Reflectance Inversion
- = reflectance received by satellite at the top of the atmosphere,
- = atmospheric intrinsic path reflectance,
- = wavelength
- = atmospheric transmittance of sun-surface path (downward),
- = atmospheric transmittance of surface-sensor path (upward),
- = surface reflectance to be estimated,
- = atmospheric backscattering ratio to count multiple reflections between the surface and atmosphere,
- = solar zenith angle,
- = sensor zenith angle,
- = relative azimuth angle,
- = the integrated water vapor content,
- = the integrated ozone content,
- = aerosol optical depth, aerosol single scatter albedo, and aerosol phase function, respectively, and
- = gaseous transmission by water vapor, ozone, and other gases, respectively.
- = atmospheric reflectance due to Rayleigh scattering and
- = combined atmospheric reflectance due to Rayleigh and aerosols.
- = radiance received by satellite at the top of the atmosphere,
- = distance between the Earth and Sun in the astronomical unit,
- = mean solar exoatmospheric radiation,
- = cosine of solar zenith angle, and
- = wavelength.
- = scattering angle, and
- A and B are coefficients that account for the molecular asymmetry.
3.2. Evaluation Process
- and = means of X and Y, respectively, and
- and = standard deviations of X and Y, respectively.
4. Results and Discussion
4.1. Cross-Comparison of ASD, LEDAPS, and SREM SR Data
4.2. Cross-Comparison between SREM and Landsat SR Retrievals
4.3. Impact of Aerosol Particles on SR Retrievals
4.4. Spatio-Temporal Cross-Comparison between SREM and LaSRC Data
4.5. Application of SREM to Derive Vegetation Indices
4.6. SREM Implementation in Sentinel-2A and MODIS Data
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Date | Image ID |
---|---|
2003-08-26 | LE07_L1TP_029029_20030826_20160927_01_T1 |
2006-06-15 | LE07_L1TP_029029_20060615_20160925_01_T1 |
2007-07-20 | LE07_L1TP_029029_20070720_20160922_01_T1 |
2008-06-12 | LT05_L1TP_029029_20080612_20160906_01_T1 |
2008-07-14 | LT05_L1TP_029029_20080714_20160906_01_T1 |
2008-08-23 | LE07_L1TP_029029_20080823_20160922_01_T1 |
2008-09-16 | LT05_L1TP_029029_20080916_20160905_01_T1 |
2009-05-30 | LT05_L1TP_029029_20090530_20160905_01_T1 |
2010-08-05 | LT05_L1TP_029029_20100805_20160831_01_T1 |
2010-08-21 | LT05_L1TP_029029_20100821_20160901_01_T1 |
References
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Peng, G.; Ruiliang, P.; Biging, G.S.; Larrieu, M.R. Estimation of forest leaf area index using vegetation indices derived from hyperion hyperspectral data. IEEE Trans. Geosci. Remote. Sens. 2003, 41, 1355–1362. [Google Scholar] [CrossRef] [Green Version]
- Zhang, R.; Qu, J.J.; Liu, Y.; Hao, X.; Huang, C.; Zhan, X. Detection of burned areas from mega-fires using daily and historical MODIS surface reflectance. Int. J. Remote Sens. 2015, 36, 1167–1187. [Google Scholar]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.E. Evaluation of MODIS aerosol retrieval algorithms over the Beijing-Tianjin-Hebei region during low to very high pollution events. J. Geophys. Res. Atmos. 2015, 120, 7941–7957. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.E.; Chan, P.W. Validation and accuracy assessment of a Simplified Aerosol Retrieval Algorithm (SARA) over Beijing under low and high aerosol loadings and dust storms. Remote Sens. Environ. 2014, 153, 50–60. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.E.; Bleiweiss, M.P.; Dubois, D. A Simplified high resolution MODIS Aerosol Retrieval Algorithm (SARA) for use over mixed surfaces. Remote Sens. Environ. 2013, 136, 135–145. [Google Scholar] [CrossRef]
- Nazeer, M.; Wong, M.S.; Nichol, J.E. A new approach for the estimation of phytoplankton cell counts associated with algal blooms. Sci. Total Environ. 2017, 590, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Chavez, P.S. An improved dark-object subtraction technique for atmospheric scattering correction of multispectral data. Remote Sens. Environ. 1988, 24, 459–479. [Google Scholar] [CrossRef]
- Smith, G.M.; Milton, E.J. The use of the empirical line method to calibrate remotely sensed data to reflectance. Int. J. Remote Sens. 1999, 20, 2653–2662. [Google Scholar] [CrossRef]
- Richter, R. A spatially adaptive fast atmospheric correction algorithm. Int. J. Remote Sens. 1996, 17, 1201–1214. [Google Scholar] [CrossRef]
- Nazeer, M.; Nichol, J.E.; Yung, Y.K. Evaluation of atmospheric correction models and Landsat surface reflectance product in an urban coastal environment. Int. J. Remote Sens. 2014, 35, 6271–6291. [Google Scholar] [CrossRef]
- Matthew, M.W.; Adler-Golden, S.M.; Berk, A.; Richtsmeier, S.C.; Levine, R.Y.; Bernstein, L.S.; Acharya, P.K.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; et al. Status of atmospheric correction using a MODTRAN4-based algorithm. In Algorithms for Multispectral, Hyperspectral, and Ultraspectral Imagery VI; International Society for Optics and Photonics: Bellingham, WA, USA, 2000; Volume 4049, p. 199. [Google Scholar]
- Sterckx, S.; Knaeps, E.; Adriaensen, S.; Reusen, I.; De Keukelaere, L.; Hunter, P.; Giardino, C.; Odermatt, D. OPERA: An atmospheric correction for land and water. In Proceedings of the Sentinel-3 for Science Workshop, Venice, Italy, 2–5 June 2015. [Google Scholar]
- Frantz, D.; Roder, A.; Stellmes, M.; Hill, J. An operational radiometric landsat preprocessing framework for large-area time series applications. IEEE Trans. Geosci. Remote. Sens. 2016, 54, 3928–3943. [Google Scholar] [CrossRef]
- Masek, J.G.; Vermote, E.F.; Saleous, N.E.; Wolfe, R.; Hall, F.G.; Huemmrich, K.F.; Gao, F.; Kutler, J.; Lim, T.-K. A Landsat surface reflectance dataset for North America, 1990-2000—IEEE Xplore Document. IEEE Geosci. Remote Sens. Lett. 2006, 3, 68–72. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef]
- Berk, A.; Bernstein, L.S.; Robertson, D.C. MODTRAN: A Moderate Resolution Model for LOWTRAN 7; Spectral Sciences Inc.: Burlington, MA, USA, 1989. [Google Scholar]
- Tanré, D.; Deroo, C.; Duhaut, P.; Herman, M.; Morcrette, J.J.; Perbos, J.; Deschamps, P.Y. Description of a computer code to simulate the satellite signal in the solar spectrum: The 5S code. Int. J. Remote Sens. 1990, 11, 659–668. [Google Scholar] [CrossRef]
- Vermote, E.F.; Tanre, D.; Deuze, J.L.; Herman, M.; Morcette, J.-J. Second simulation of the satellite signal in the solar spectrum, 6S: An overview. IEEE Trans. Geosci. Remote. Sens. 1997, 35, 675–686. [Google Scholar] [CrossRef]
- Wilson, R.T. Py6S: A Python interface to the 6S radiative transfer model. Comput. Geosci. 2013, 51, 166. [Google Scholar] [CrossRef]
- Kotchenova, S.Y.; Vermote, E.F.; Levy, R.; Lyapustin, A. Radiative transfer codes for atmospheric correction and aerosol retrieval: Intercomparison study. Appl. Opt. 2008, 47, 2215. [Google Scholar] [CrossRef]
- Wilson, R.T.; Milton, E.J.; Nield, J.M. Are visibility-derived AOT estimates suitable for parameterizing satellite data atmospheric correction algorithms? Int. J. Remote Sens. 2015, 36, 1675–1688. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.; Jung, J.; Lee, J.; Choi, S.-U.; Hong, S.-Y.; Heo, J.; Nguyen, H.C.; Jung, J.; Lee, J.; Choi, S.-U.; et al. Optimal atmospheric correction for above-ground forest biomass estimation with the ETM+ remote sensor. Sensors 2015, 15, 18865–18886. [Google Scholar] [CrossRef]
- López-Serrano, P.; Corral-Rivas, J.; Díaz-Varela, R.; Álvarez-González, J.; López-Sánchez, C. Evaluation of radiometric and atmospheric correction algorithms for aboveground forest biomass estimation using Landsat 5 TM data. Remote Sens. 2016, 8, 369. [Google Scholar] [CrossRef]
- Lolli, S.; Alparone, L.; Garzelli, A.; Vivone, G. Haze correction for contrast-based multispectral pansharpening. IEEE Geosci. Remote. Sens. Lett. 2017, 14, 2255–2259. [Google Scholar] [CrossRef]
- Doxani, G.; Vermote, E.; Roger, J.-C.; Gascon, F.; Adriaensen, S.; Frantz, D.; Hagolle, O.; Hollstein, A.; Kirches, G.; Li, F.; et al. Atmospheric correction inter-comparison exercise. Remote Sens. 2018, 10, 352. [Google Scholar] [CrossRef]
- Justice, C.; Townshend, J.R.; Vermote, E.; Masuoka, E.; Wolfe, R.; Saleous, N.; Roy, D.; Morisette, J. An overview of MODIS Land data processing and product status. Remote Sens. Environ. 2002, 83, 3–15. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Csiszar, I. Early evaluation of the VIIRS calibration, cloud mask and surface reflectance Earth data records. Remote Sens. Environ. 2014, 148, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Muller-Wilm, U.; Louis, J.; Richter, R.; Gascon, F.; Niezette, M. Sentinel-2 Level 2A prototype processor: Architecture, algorithms and first results. In Proceedings of the ESA Living Planet Symposium, Edinburgh, UK, 9–13 September 2013. [Google Scholar]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Claverie, M.; Vermote, E.F.; Franch, B.; Masek, J.G. Evaluation of the Landsat-5 TM and Landsat-7 ETM + surface reflectance products. Remote Sens. Environ. 2015, 169, 390–403. [Google Scholar] [CrossRef]
- Gascon, F.; Bouzinac, C.; Thépaut, O.; Jung, M.; Francesconi, B.; Louis, J.; Lonjou, V.; Lafrance, B.; Massera, S.; Gaudel-Vacaresse, A.; et al. Copernicus Sentinel-2A Calibration and products validation status. Remote Sens. 2017, 9, 584. [Google Scholar] [CrossRef]
- Li, Y.; Chen, J.; Ma, Q.; Zhang, H.K.; Liu, J. Evaluation of Sentinel-2A surface reflectance derived using Sen2Cor in North America. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2018, 11, 1997–2021. [Google Scholar] [CrossRef]
- Maiersperger, T.K.; Scaramuzza, P.L.; Leigh, L.; Shrestha, S.; Gallo, K.P.; Jenkerson, C.B.; Dwyer, J.L. Characterizing LEDAPS surface reflectance products by comparisons with AERONET, field spectrometer, and MODIS data. Remote Sens. Environ. 2013, 136, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Vuolo, F.; Żółtak, M.; Pipitone, C.; Zappa, L.; Wenng, H.; Immitzer, M.; Weiss, M.; Baret, F.; Atzberger, C. Data service platform for Sentinel-2 surface reflectance and value-added products: System use and examples. Remote Sens. 2016, 8, 938. [Google Scholar] [CrossRef]
- Vuolo, F.; Mattiuzzi, M.; Atzberger, C. Comparison of the Landsat Surface Reflectance Climate Data Record (CDR) and manually atmospherically corrected data in a semi-arid European study area. Int. J. Appl. Earth Obs. Geoinf. 2015, 41, 1–10. [Google Scholar] [CrossRef]
- Choi, M.; Kim, J.; Lee, J.; Kim, M.; Park, Y.-J.; Holben, B.; Eck, T.F.; Li, Z.; Song, H.H. GOCI Yonsei aerosol retrieval version 2 products: An improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia. Atmos. Meas. Tech. 2018, 11, 385–408. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J.; Wang, L. New customized methods for improvement of the MODIS C6 Dark Target and Deep Blue merged aerosol product. Remote Sens. Environ. 2017, 197, 115–124. [Google Scholar] [CrossRef]
- Bilal, M.; Nichol, J. Evaluation of the NDVI-based pixel selection criteria of the MODIS C6 Dark Target and Deep Blue combined aerosol product. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3448–3453. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Gray, J.M.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Kotchenova, S.Y.; Vermote, E.F.; Matarrese, R.; Frank, J.; Klemm, J. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Appl. Opt. 2006, 45, 6762–6774. [Google Scholar] [CrossRef]
- LISE. OLCI Level 2: Rayleigh Correction Over Land (S3-L2-SD-03-C15-LISE-ATBD). Available online: https://sentinels.copernicus.eu/documents/247904/349589/OLCI_L2_Rayleigh_Correction_Land.pdf (accessed on 17 October 2018).
- Hansen, J.E.; Travis, L.D. Light scattering in planetary atmospheres. Space Sci. Rev. 1974, 16, 527–610. [Google Scholar] [CrossRef]
- Tanre, D.; Herman, M.; Deschamps, P.Y.; de Leffe, A. Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties. Appl. Opt. 1979, 18, 3587–3594. [Google Scholar] [CrossRef]
- Liu, C.-H.; Liu, G.-R. Aerosol optical depth retrieval for spot HRV images. J. Mar. Sci. Technol. 2009, 17, 300–305. [Google Scholar]
- Roy, D.P.; Qin, Y.; Kovalskyy, V.; Vermote, E.F.; Ju, J.; Egorov, A.; Hansen, M.C.; Kommareddy, I.; Yan, L. Conterminous United States demonstration and characterization of MODIS-based Landsat ETM+ atmospheric correction. Remote Sens. Environ. 2014, 140, 433–449. [Google Scholar] [CrossRef]
- Ju, J.; Roy, D.P.; Vermote, E.; Masek, J.; Kovalskyy, V. Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods. Remote Sens. Environ. 2012, 122, 175–184. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Ju, J.; Kline, K.; Scaramuzza, P.L.; Kovalskyy, V.; Hansen, M.; Loveland, T.R.; Vermote, E.; Zhang, C. Web-enabled Landsat Data (WELD): Landsat ETM+ composited mosaics of the conterminous United States. Remote Sens. Environ. 2010, 114, 35–49. [Google Scholar] [CrossRef]
- Markham, B.L.; Helder, D.L. Forty-year calibrated record of earth-reflected radiance from Landsat: A review. Remote Sens. Environ. 2012, 122, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J.V. Reflectance quantities in optical remote sensing—Definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.; Schell, J.; Deering, D. Monitoring vegetation systems in the great plains with ERTS. In Proceedings of the Third ERTS Symposium, NASA, Washington, DC, USA, 10–14 December 1973; pp. 309–317. [Google Scholar]
- Berterretche, M.; Hudak, A.T.; Cohen, W.B.; Maiersperger, T.K.; Gower, S.T.; Dungan, J. Comparison of regression and geostatistical methods for mapping Leaf Area Index (LAI) with Landsat ETM+ data over a boreal forest. Remote Sens. Environ. 2005, 96, 49–61. [Google Scholar] [CrossRef] [Green Version]
- Curran, P.; Hay, A. The importance of measurement error for certain procedures in remote sensing at optical wavelengths. Photogramm. Eng. Remote Sens. 1986, 52, 229–241. [Google Scholar]
- Martins, V.S.; Soares, J.V.; Novo, E.M.L.M.; Barbosa, C.C.F.; Pinto, C.T.; Arcanjo, J.S.; Kaleita, A. Continental-scale surface reflectance product from CBERS-4 MUX data: Assessment of atmospheric correction method using coincident Landsat observations. Remote Sens. Environ. 2018, 218, 55–68. [Google Scholar] [CrossRef]
Spectral Band | Band Numbers | ||
---|---|---|---|
L8 OLI | L7 ETM+ | L4/5 TM | |
Coastal Aerosol | B1 [443.0] | − | − |
Blue | B2 [482.0] | B1 [485.0] | B1 [485.0] |
Green | B3 [561.5] | B2 [560.0] | B2 [560.0] |
RED | B4 [654.5] | B3 [660.0] | B3 [660.0] |
NIR | B5 [865.0] | B4 [835.0] | B4 [830.0] |
SWIR1 | B6 [1608.5] | B5 [1650.0] | B5 [1650.0] |
SWIR2 | B7 [2200.5] | B7 [2220.0] | B7 [2215.0] |
Date | Sensor | Band 1 | Band 2 | Band 3 | ||||||
ASD | LEDAPS | SREM | ASD | LEDAPS | SREM | ASD | LEDAPS | SREM | ||
20030826 | ETM+ | 0.045 | 0.053 | 0.067 | 0.075 | 0.080 | 0.076 | 0.086 | 0.090 | 0.085 |
20060615 | ETM+ | 0.054 | 0.063 | 0.078 | 0.092 | 0.099 | 0.094 | 0.106 | 0.108 | 0.102 |
20070720 | ETM+ | 0.051 | 0.057 | 0.070 | 0.085 | 0.091 | 0.087 | 0.110 | 0.116 | 0.110 |
20080612 | TM5 | 0.072 | 0.063 | 0.073 | 0.114 | 0.105 | 0.096 | 0.123 | 0.108 | 0.087 |
20080714 | TM5 | 0.056 | 0.058 | 0.068 | 0.086 | 0.095 | 0.088 | 0.108 | 0.111 | 0.101 |
20080823 | ETM+ | 0.051 | 0.052 | 0.064 | 0.080 | 0.080 | 0.076 | 0.093 | 0.092 | 0.104 |
20080916 | TM5 | 0.037 | 0.054 | 0.063 | 0.059 | 0.083 | 0.076 | 0.068 | 0.100 | 0.093 |
20090530 | TM5 | 0.052 | 0.055 | 0.065 | 0.087 | 0.090 | 0.084 | 0.084 | 0.087 | 0.057 |
20100805 | TM5 | 0.030 | 0.040 | 0.056 | 0.057 | 0.067 | 0.066 | 0.052 | 0.057 | 0.418 |
20100821 | TM5 | 0.030 | 0.037 | 0.052 | 0.059 | 0.068 | 0.066 | 0.054 | 0.058 | 0.359 |
Average | 0.048 | 0.053 | 0.066 | 0.079 | 0.086 | 0.081 | 0.088 | 0.093 | 0.088 | |
1 StDev | 0.012 | 0.008 | 0.007 | 0.017 | 0.012 | 0.010 | 0.023 | 0.020 | 0.018 | |
2 CV | 0.255 | 0.154 | 0.108 | 0.212 | 0.138 | 0.126 | 0.261 | 0.214 | 0.201 | |
MBE | 0.005 | 0.018 | 0.006 | 0.002 | 0.004 | 0.000 | ||||
r | 0.869 | 0.809 | 0.905 | 0.914 | 0.883 | 0.888 | ||||
Date | Sensor | Band 4 | Band 5 | Band 7 | ||||||
ASD | LEDAPS | SREM | ASD | LEDAPS | SREM | ASD | LEDAPS | SREM | ||
20030826 | ETM+ | 0.277 | 0.276 | 0.253 | 0.319 | 0.310 | 0.289 | 0.172 | 0.174 | 0.148 |
20060615 | ETM+ | 0.312 | 0.299 | 0.268 | 0.317 | 0.296 | 0.271 | 0.170 | 0.163 | 0.135 |
20070720 | ETM+ | 0.259 | 0.256 | 0.239 | 0.344 | 0.338 | 0.318 | 0.197 | 0.206 | 0.179 |
20080612 | TM5 | 0.328 | 0.301 | 0.281 | 0.317 | 0.289 | 0.262 | 0.174 | 0.153 | 0.136 |
20080714 | TM5 | 0.246 | 0.277 | 0.254 | 0.335 | 0.323 | 0.289 | 0.203 | 0.186 | 0.163 |
20080823 | ETM+ | 0.280 | 0.264 | 0.248 | 0.335 | 0.324 | 0.305 | 0.183 | 0.183 | 0.159 |
20080916 | TM5 | 0.236 | 0.244 | 0.225 | 0.277 | 0.300 | 0.269 | 0.148 | 0.175 | 0.153 |
20090530 | TM5 | 0.307 | 0.280 | 0.263 | 0.295 | 0.282 | 0.258 | 0.159 | 0.156 | 0.140 |
20100805 | TM5 | 0.315 | 0.317 | 0.284 | 0.233 | 0.226 | 0.199 | 0.109 | 0.105 | 0.090 |
20100821 | TM5 | 0.339 | 0.334 | 0.299 | 0.236 | 0.227 | 0.200 | 0.106 | 0.095 | 0.082 |
Average | 0.290 | 0.285 | 0.261 | 0.301 | 0.292 | 0.266 | 0.162 | 0.160 | 0.138 | |
StDev | 0.034 | 0.026 | 0.021 | 0.038 | 0.036 | 0.038 | 0.031 | 0.033 | 0.029 | |
CV | 0.116 | 0.930 | 0.815 | 0.125 | 0.125 | 0.142 | 0.193 | 0.208 | 0.210 | |
MBE | −0.005 | −0.028 | −0.009 | −0.035 | −0.002 | −0.024 | ||||
r | 0.878 | 0.919 | 0.944 | 0.949 | 0.921 | 0.922 |
Bands | Average | MBE | R | ||||
---|---|---|---|---|---|---|---|
TOA | LEDAPS | SREM | LEDAPS | SREM | LEDAPS | SREM | |
B1 | 0.107 | 0.053 | 0.066 | −0.054 | −0.041 | 0.963 | 0.997 |
B2 | 0.104 | 0.086 | 0.081 | −0.018 | −0.023 | 0.994 | 0.999 |
B3 | 0.100 | 0.093 | 0.088 | −0.008 | −0.013 | 1.000 | 1.000 |
B4 | 0.265 | 0.285 | 0.261 | 0.020 | −0.003 | 0.984 | 1.000 |
B5 | 0.266 | 0.292 | 0.266 | 0.025 | 0.000 | 0.993 | 1.000 |
B7 | 0.139 | 0.160 | 0.138 | 0.021 | −0.001 | 0.995 | 1.000 |
1 LC | 2 TP | Sensor | Band | 3 n | 4 β | 5 α | 6 r | MBE | RMSD | MSE |
---|---|---|---|---|---|---|---|---|---|---|
Urban | 2013–2018 | OLI | Coastal Aerosol | 402 | 1.057 | 0.037 | 0.891 | 0.042 | 0.044 | 0.002 |
Blue | 402 | 1.018 | 0.022 | 0.951 | 0.024 | 0.025 | 0.001 | |||
Green | 402 | 0.943 | 0.006 | 0.990 | −0.001 | 0.005 | 0.000 | |||
Red | 402 | 0.939 | 0.007 | 0.997 | −0.002 | 0.005 | 0.000 | |||
NIR | 402 | 0.989 | 0.003 | 1.000 | 0.000 | 0.001 | 0.000 | |||
SWIR1 | 402 | 0.972 | −0.002 | 1.000 | −0.007 | 0.008 | 0.000 | |||
SWIR2 | 402 | 0.949 | −0.003 | 0.997 | −0.01 | 0.011 | 0.000 | |||
All | 2814 | 0.874 | 0.025 | 0.963 | 0.006 | 0.020 | 0.000 | |||
Vegetation | 2013–2018 | OLI | CA | 1062 | 0.928 | 0.043 | 0.983 | 0.038 | 0.041 | 0.001 |
B | 1056 | 0.931 | 0.027 | 0.991 | 0.021 | 0.025 | 0.000 | |||
G | 1056 | 0.904 | 0.008 | 0.997 | −0.003 | 0.012 | 0.000 | |||
R | 1056 | 0.929 | 0.007 | 0.998 | −0.002 | 0.010 | 0.000 | |||
NIR | 1032 | 0.989 | 0.002 | 1.000 | −0.001 | 0.003 | 0.000 | |||
SWIR1 | 1056 | 0.966 | −0.001 | 1.000 | −0.009 | 0.010 | 0.000 | |||
SWIR2 | 1056 | 0.944 | −0.002 | 1.000 | −0.011 | 0.012 | 0.000 | |||
All | 7374 | 0.919 | 0.018 | 0.990 | 0.005 | 0.020 | 0.000 | |||
Desert | 2013–2018 | OLI | CA | 1148 | 0.914 | 0.036 | 0.991 | 0.022 | 0.024 | 0.001 |
2000–2018 | TM ETM + OLI | B | 2482 | 0.927 | 0.018 | 0.990 | 0.004 | 0.009 | 0.000 | |
G | 2440 | 0.929 | −0.002 | 0.991 | −0.024 | 0.026 | 0.001 | |||
R | 2516 | 0.954 | −0.007 | 0.997 | −0.026 | 0.027 | 0.001 | |||
NIR | 2520 | 0.975 | −0.006 | 0.990 | −0.018 | 0.024 | 0.000 | |||
SWIR1 | 2065 | 0.967 | −0.011 | 0.995 | −0.029 | 0.032 | 0.001 | |||
SWIR2 | 2499 | 0.900 | 0.002 | 0.994 | −0.048 | 0.052 | 0.003 | |||
All | 15789 | 0.907 | 0.016 | 0.994 | −0.020 | 0.031 | 0.001 |
Bands | Average | MBE | r | ||||
---|---|---|---|---|---|---|---|
TOA | Landsat | SREM | Landsat | SREM | Landsat | SREM | |
Coastal Aerosol | 0.268 | 0.217 | 0.238 | −0.051 | −0.030 | 0.997 | 0.998 |
Blue | 0.284 | 0.256 | 0.261 | −0.028 | −0.023 | 0.998 | 0.998 |
Green | 0.350 | 0.364 | 0.338 | 0.014 | −0.012 | 0.997 | 0.998 |
Red | 0.433 | 0.451 | 0.427 | 0.017 | −0.006 | 0.997 | 0.998 |
NIR | 0.517 | 0.520 | 0.517 | 0.003 | 0.000 | 0.994 | 0.995 |
SWIR1 | 0.582 | 0.607 | 0.585 | 0.025 | 0.003 | 0.977 | 0.982 |
SWIR2 | 0.499 | 0.525 | 0.498 | 0.036 | −0.001 | 0.977 | 0.990 |
Band | 1 AOD | 2 n | 3 β | 4 α | 5 r | MBE | RMSD |
---|---|---|---|---|---|---|---|
Coastal Aerosol | 0.0 < AOD < 0.1 | 319 | 0.920 | 0.041 | 0.987 | 0.035 | 0.038 |
0.1 < AOD < 0.2 | 125 | 0.893 | 0.049 | 0.985 | 0.039 | 0.042 | |
0.2 < AOD < 0.3 | 56 | 0.835 | 0.060 | 0.963 | 0.045 | 0.049 | |
0.3 < AOD < 0.4 | 13 | 0.864 | 0.055 | 0.988 | 0.039 | 0.042 | |
0.4 < AOD < 1.1 | 12 | 0.903 | 0.060 | 0.881 | 0.052 | 0.055 | |
Blue | 0.0 < AOD < 0.1 | 319 | 0.933 | 0.025 | 0.994 | 0.019 | 0.022 |
0.1 < AOD < 0.2 | 125 | 0.906 | 0.032 | 0.995 | 0.021 | 0.025 | |
0.2 < AOD < 0.3 | 56 | 0.871 | 0.040 | 0.985 | 0.026 | 0.030 | |
0.3 < AOD < 0.4 | 13 | 0.894 | 0.036 | 0.997 | 0.021 | 0.024 | |
0.4 < AOD < 1.1 | 12 | 0.914 | 0.040 | 0.955 | 0.031 | 0.034 | |
Green | 0.0 < AOD < 0.1 | 319 | 0.913 | 0.007 | 0.999 | −0.005 | 0.013 |
0.1 < AOD < 0.2 | 125 | 0.899 | 0.011 | 0.999 | −0.005 | 0.014 | |
0.2 < AOD < 0.3 | 56 | 0.890 | 0.015 | 0.998 | −0.002 | 0.013 | |
0.3 < AOD < 0.4 | 13 | 0.905 | 0.013 | 1.000 | −0.006 | 0.014 | |
0.4 < AOD < 1.1 | 12 | 0.906 | 0.016 | 0.995 | 0.003 | 0.010 | |
Red | 0.0 < AOD < 0.1 | 319 | 0.938 | 0.005 | 1.000 | −0.005 | 0.011 |
0.1 < AOD < 0.2 | 125 | 0.926 | 0.009 | 1.000 | −0.005 | 0.013 | |
0.2 < AOD < 0.3 | 56 | 0.923 | 0.011 | 0.999 | −0.003 | 0.012 | |
0.3 < AOD < 0.4 | 13 | 0.932 | 0.009 | 1.000 | −0.007 | 0.013 | |
0.4 < AOD < 1.1 | 12 | 0.925 | 0.013 | 0.998 | 0.001 | 0.009 | |
NIR | 0.0 < AOD < 0.1 | 319 | 0.991 | 0.001 | 1.000 | −0.002 | 0.002 |
0.1 < AOD < 0.2 | 125 | 0.986 | 0.003 | 1.000 | −0.002 | 0.003 | |
0.2 < AOD < 0.3 | 56 | 0.985 | 0.004 | 1.000 | −0.001 | 0.003 | |
0.3 < AOD < 0.4 | 13 | 0.987 | 0.004 | 1.000 | 0.000 | 0.003 | |
0.4 < AOD < 1.1 | 12 | 0.981 | 0.006 | 1.000 | 0.001 | 0.004 | |
SWIR1 | 0.0 < AOD < 0.1 | 319 | 0.964 | −0.001 | 1.000 | −0.011 | 0.012 |
0.1 < AOD < 0.2 | 125 | 0.960 | 0.001 | 1.000 | −0.012 | 0.014 | |
0.2 < AOD < 0.3 | 56 | 0.961 | 0.001 | 1.000 | −0.011 | 0.013 | |
0.3 < AOD < 0.4 | 13 | 0.963 | 0.000 | 1.000 | −0.013 | 0.015 | |
0.4 < AOD < 1.1 | 12 | 0.964 | 0.000 | 1.000 | −0.008 | 0.009 | |
SWIR2 | 0.0 < AOD < 0.1 | 319 | 0.935 | −0.001 | 1.000 | −0.014 | 0.018 |
0.1 < AOD < 0.2 | 125 | 0.927 | 0.000 | 1.000 | −0.017 | 0.022 | |
0.2 < AOD < 0.3 | 56 | 0.930 | −0.001 | 1.000 | −0.016 | 0.020 | |
0.3 < AOD < 0.4 | 13 | 0.925 | 0.000 | 1.000 | −0.021 | 0.026 | |
0.4 < AOD < 1.1 | 12 | 0.925 | 0.000 | 1.000 | −0.013 | 0.015 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilal, M.; Nazeer, M.; Nichol, J.E.; Bleiweiss, M.P.; Qiu, Z.; Jäkel, E.; Campbell, J.R.; Atique, L.; Huang, X.; Lolli, S. A Simplified and Robust Surface Reflectance Estimation Method (SREM) for Use over Diverse Land Surfaces Using Multi-Sensor Data. Remote Sens. 2019, 11, 1344. https://doi.org/10.3390/rs11111344
Bilal M, Nazeer M, Nichol JE, Bleiweiss MP, Qiu Z, Jäkel E, Campbell JR, Atique L, Huang X, Lolli S. A Simplified and Robust Surface Reflectance Estimation Method (SREM) for Use over Diverse Land Surfaces Using Multi-Sensor Data. Remote Sensing. 2019; 11(11):1344. https://doi.org/10.3390/rs11111344
Chicago/Turabian StyleBilal, Muhammad, Majid Nazeer, Janet E. Nichol, Max P. Bleiweiss, Zhongfeng Qiu, Evelyn Jäkel, James R. Campbell, Luqman Atique, Xiaolan Huang, and Simone Lolli. 2019. "A Simplified and Robust Surface Reflectance Estimation Method (SREM) for Use over Diverse Land Surfaces Using Multi-Sensor Data" Remote Sensing 11, no. 11: 1344. https://doi.org/10.3390/rs11111344
APA StyleBilal, M., Nazeer, M., Nichol, J. E., Bleiweiss, M. P., Qiu, Z., Jäkel, E., Campbell, J. R., Atique, L., Huang, X., & Lolli, S. (2019). A Simplified and Robust Surface Reflectance Estimation Method (SREM) for Use over Diverse Land Surfaces Using Multi-Sensor Data. Remote Sensing, 11(11), 1344. https://doi.org/10.3390/rs11111344