Analysis of Changes and Potential Characteristics of Cultivated Land Productivity Based on MODIS EVI: A Case Study of Jiangsu Province, China
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Framework of the Study
2.3. Data Source and Pre-Processing
2.4. Analytical Methods
2.4.1. Extraction of the MCI and MAD based on EVI Curves
2.4.2. Analysis of Productivity Changes and Potential Space based on the MAD
3. Results
3.1. Changes in the MCI of Cultivated Land
3.2. Analysis of Productivity Changes and Potential Characteristics in Single Cropping System
3.3. Analysis of Productivity Changes and Potential Characteristics in the First Crop of a Double Season
3.4. Analysis of Productivity Changes and Potential Characteristics in the Second Crop of a Double Season
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Burkle, L.A.; Delphia, C.M.; O’Neill, K.M.; Gibson, D. A dual role for farmlands: Food security and pollinator conservation. J. Ecol. 2017, 105, 890–899. [Google Scholar] [CrossRef]
- Lu, H.; Xie, H.L.; Lv, T.G.; Yao, G.R. Determinants of cultivated land recuperation in ecologically damaged areas in China. Land Use Policy 2019, 81, 160–166. [Google Scholar] [CrossRef]
- Kastner, T.; Erb, K.H.; Haberl, H. Rapid growth in agricultural trade: Effects on global area efficiency and the role of management. Environ. Res. Lett. 2014, 9, 034015. [Google Scholar] [CrossRef]
- Su, M.; Guo, R.Z.; Hong, W.Y. Institutional transition and implementation path for cultivated land protection in highly urbanized regions: A case study of Shenzhen, China. Land Use Policy 2019, 81, 493–501. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Huang, X.; Sloan, M. Spatial-temporal evolution and classification of marginalization of cultivated land in the process of urbanization. Habitat Int. 2017, 61, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Ridoutt, B.G.; Wu, W.; Lal, R.; Wang, L.; Wang, Y.; Li, C.; Zhao, G. A multi-indicator assessment of peri-urban agricultural production in Beijing, China. Ecol. Indic. 2019, 97, 350–362. [Google Scholar] [CrossRef]
- Liu, J.; Jin, X.B.; Xu, W.Y.; Fan, Y.T.; Ren, J.; Zhang, X.L.; Zhou, Y.K. Spatial coupling differentiation and development zoning trade-off of land space utilization efficiency in eastern China. Land Use Policy 2019, 85, 310–327. [Google Scholar] [CrossRef]
- Wang, Y.S. The challenges and strategies of food security under rapid urbanization in China. Sustainability 2019, 11, 542. [Google Scholar] [CrossRef]
- Pradhan, A.; Chan, C.; Roul, P.K.; Halbrendt, J.; Sipes, B. Potential of conservation agriculture (CA) for climate change adaptation and food security under rainfed uplands of India: A transdisciplinary approach. Agric. Syst. 2018, 163, 27–35. [Google Scholar] [CrossRef]
- Schmidhuber, J.; Tubiello, F.N. Global food security under climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19703–19708. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Liu, Z.; Xu, M.; Ma, Q.; Dou, Y. Urban expansion brought stress to food security in china: Evidence from decreased cropland net primary productivity. Sci. Total Environ. 2017, 576, 660–670. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Qiao, J.; Shi, P. Spatiotemporal patterns, relationships, and drivers of China’s agricultural ecosystem services from 1980 to 2010: A multiscale analysis. Landsc. Ecol. 2018, 33, 575–595. [Google Scholar] [CrossRef]
- Bouma, J.; Batjes, N.H.; Groot, J.J.R. Exploring land quality effectson world food supply. Geoderma 1998, 86, 43–59. [Google Scholar] [CrossRef]
- Cao, M.; Ma, S.; Han, C. Potential productivity and human carrying capacity of an agro-ecosystem an analysis of food production potential of China. Agric. Syst. 1995, 47, 387–414. [Google Scholar] [CrossRef]
- Jiang, G.H.; Zhang, R.J.; Ma, W.Q.; Zhou, D.Y.; Wang, X.P.; He, X. Cultivated land productivity potential improvement in land consolidation schemes in Shenyang, China: Assessment and policy implications. Land Use Policy 2017, 68, 80–88. [Google Scholar] [CrossRef]
- Kuhnert, M.; Yeluripati, J.; Smith, P.; Hoffmann, H.; Van Oijen, M.; Constantin, J.; Coucheney, E.; Dechow, R.; Eckersten, H.; Gaiser, T.; et al. Impact analysis of climate data aggregation at different spatial scales on simulated net primary productivity for croplands. Eur. J. Agron. 2016, 88, 41–52. [Google Scholar] [CrossRef]
- Allanff, A. Studies in African Land Usage in Northern Rhodesia, Rhodes Living Stone Papers; Oxford University Press: Cape Town, South Africa, 1949; pp. 58–62. [Google Scholar]
- Steenwerth, K.; Belina, K.M. Cover crops enhance soil organic matter, carbon dynamicsand microbiological function in a vineyard agroecosystem. Appl. Soil Ecol. 2008, 40, 359–369. [Google Scholar] [CrossRef]
- Millington, R.; Gifford, R. Energy and how we live. In Australian UNESO Seminar; Committee to Man and Biosphere: Sydney, NSW, Australia, 1973. [Google Scholar]
- Dang, A.R.; Yan, S.Y.; Wu, H.Q.; Liu, Y.L. A GIS based study on the potential land productivity of China. Acta Ecol. Sin. 2000, 20, 910–915. [Google Scholar]
- Xu, Y.; Wu, K.N.; Cheng, X.J.; Liu, P.J. Spatial variation in cultivated land production capacity and analysis of main impact factors for promoting production capacity in northeast China. Resour. Sci. 2011, 33, 2030–2040. [Google Scholar]
- Ren, M.E. The Geographical distribution of crop productivity in Sichuan Province, China. J. Geogr. Sci. 1950, 17, 1–22. [Google Scholar]
- Bai, L.P.; Chen, F. Current situation and evaluation of crop productivity potential at home and abroad. J. Crop 2002, 01, 7–9. [Google Scholar]
- Yang, X.G.; Chen, F.; Lin, X.M.; Liu, Z.J.; Zhang, H.-L.; Zhao, J.; Li, K.; Ye, Q.; Li, Y.; Lv, S.; et al. Potential benefits of climate change for crop productivity in china. Agric. For. Meteorol. 2015, 208, 76–84. [Google Scholar] [CrossRef]
- Yun, W.J.; Wang, H.B.; Wang, G.Q.; Zhang, L.N. Research of throughput calculation based on agricultural land classification and agriculture statistics. China Land Sci. 2007, 21, 32–37. [Google Scholar]
- Liao, C.; Wang, J.; Dong, T.; Shang, J.; Liu, J.; Song, Y. Using spatio-temporal fusion of Landsat-8 and MODIS data to derive phenology, biomass and yield estimates for corn and soybean. Sci. Total Environ. 2019, 650, 1707–1721. [Google Scholar] [CrossRef] [PubMed]
- Vicente, S.; Sergio, M.; Cuadrat, P.; Jose, M.; Romo, A. Early prediction of crop production using drought indices at different time-scales and remote sensing data: Application in the Ebro Valley (north-east Spain). Int. J. Remote Sens. 2006, 27, 511–518. [Google Scholar] [CrossRef]
- De la Casa, A.; Ovando, G.; Bressanini, L.; Martinez, J.; Diaz, G.; Miranda, C. Soybean crop coverage estimation from NDVI images with different spatial resolution to evaluate yield variability in a plot. ISPRS J. Photogramm. Remote Sens. 2018, 146, 531–547. [Google Scholar] [CrossRef]
- Ma, J.W.; Nguyen, C.H.; Lee, K.; Heo, J. Regional-scale rice-yield estimation using stacked auto-encoder with climatic and MODIS data: A case study of South Korea. Int. J. Remote Sens. 2019, 40, 41–71. [Google Scholar] [CrossRef]
- David, M.J. An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 2014, 141, 116–128. [Google Scholar]
- Saeed, U.; Dempewolf, J.; Becker-Reshef, I.; Khan, A.; Ahmad, A.; Wajid, S.A. Forecasting wheat yield from weather data and MODIS NDVI using Random Forests for Punjab province, Pakistan. Int. J. Remote Sens. 2017, 38, 4831–4854. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Lin, W.P. Winter wheat yield estimation based on MODIS EVI. Trans. CSAE 2005, 21, 90–94. [Google Scholar]
- Maselli, F.; Moriondo, M.; Angeli, L.; Fibbi, L.; Bindi, M. Estimation of wheat production by the integration of MODIS and ground data. Int. J. Remote Sens. 2011, 32, 1105–1123. [Google Scholar] [CrossRef]
- Beckerreshef, I.; Vermote, E.; Lindeman, M.; Justice, C. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens. Environ. 2010, 114, 1312–1323. [Google Scholar] [CrossRef]
- Leeuwen, W.J.D.V.; Huete, A.R.; Laing, T.W. MODIS vegetation index compositing approach: A prototype with AVHRR data. Remote Sens. Environ. 1999, 69, 264–280. [Google Scholar] [CrossRef]
- Wu, Y.P.; Yun, W.J.; Zhou, R. Model for calculation of cultivated land productivity. Trans. CSAE 2008, 24, 108–113. [Google Scholar]
- Zscheischler, J.; Fatichi, S.; Wolf, S.; Blanken, P.D.; Bohrer, G.; Clark, K.; Desai, A.R.; Hollinger, D.; Keenan, T.; Novick, K.A.; et al. Short-term favorable weather conditions are an important control of interannual variability in carbon and water fluxes. J. Geophys. Res. Biogeosci. 2016, 121, 2186–2198. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Jonsson, P.; Tamura, M. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky-Golay filter. Remote Sens. Environ. 2004, 91, 332–344. [Google Scholar] [CrossRef]
- Ding, M.J.; Chen, Q.; Xin, L.J.; Li, L.H.; Li, X.B. Spatial and temporal variations of multiple cropping index in China based on SPOT NDVI during 1999–2013. Acta Geogr. Sin. 2015, 70, 1080–1090. [Google Scholar]
- Sakamoto, T.; Yokozawa, M.; Toritani, H.; Shibayama, M.; Ishitsuka, N.; Ohno, H. A crop phenology detection method using time-series MODIS data. Remote Sens. Environ. 2005, 96, 366–374. [Google Scholar] [CrossRef]
- Zhu, X.L.; Li, Q.; Shen, M.G.; Chen, J.; Wu, J. A methodology for multiple cropping index extraction based on NDVI time-series. J. Nat. Resour. 2008, 23, 534–544. [Google Scholar]
- Fan, J.L.; Wu, B.F. A methodology for retrieving cropping index from NDVI profile. J. Remote Sens. 2004, 8, 628–636. [Google Scholar]
- Peng, L.N.; Hu, Y.; Li, J.Y.; Du, Q.Y. An improved evaluation scheme for performing quality assessments of unconsolidated cultivated land. Sustainability 2017, 9, 1312. [Google Scholar] [CrossRef]
- Zhang, X.Y.; Chen, Y.; Men, M.X.; Li, X.W.; Zhou, Y.P.; Xu, H. Study on population carrying capacity of cultivated land based on production capacity. Res. Soil Water Conserv. 2010, 17, 176–180. [Google Scholar]
- Liu, X.N.; Zhang, B.S.; Henry, B.; Zhang, J.L.; Grace, P. Assessing the impact of historical and future climate change on potential natural vegetation types and net primary productivity in Australian grazing lands. Rangel. J. 2017, 39, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Dengiz, O. Potential impact of land use change on land productivity dynamics with focus on land degradation in a sub-humid terrestrial ecosystem. Theor. Appl. Climatol. 2017, 133, 73–88. [Google Scholar] [CrossRef]
- Tang, G.P.; Li, X.B.; Fischer, G.; Prieler, S. Climate change and its impacts on China’s agriculture. Acta Geogr. Sin. 2000, 55, 129–138. [Google Scholar]
- Chau, V.N.; Holland, J.; Cassells, S.; Tuohy, M. Using gis to map impacts upon agriculture from extreme floods in vietnam. Appl. Geogr. 2013, 41, 65–74. [Google Scholar] [CrossRef]
- Du, X.D.; Jin, X.B.; Yang, X.L.; Yang, X.H.; Xiang, X.M. Spatial-temporal pattern changes of main agriculture natural disasters in China during 1990–2011. J. Geogr. Sci. 2015, 25, 387–398. [Google Scholar] [CrossRef]
- Baskan, O.; Dengiz, O.; Demirag, I.T. The land productivity dynamics trend as a tool for land degradation assessment in a dryland ecosystem. Environ. Monit. Assess. 2017, 189, 212. [Google Scholar] [CrossRef]
- Thakur, A.K.; Mohanty, R.K.; Singh, R.; Patil, D.U. Enhancing water and cropping productivity through integrated system of rice intensification (ISRI) with aquaculture and horticulture under rainfed conditions. Agric. Water Manag. 2015, 161, 65–76. [Google Scholar] [CrossRef]
Changes in Productivity | Decreased Area | Increased Area | Stable Area |
---|---|---|---|
Proportion of cultivated land | 46.5% | 21.3% | 32.2% |
Potential Space | <20% | 20%–40% | 40%–60% | 60%–80% | >80% |
---|---|---|---|---|---|
Proportion of cultivated land in areas where productivity increased | 39% | 38.2% | 14.2% | 4.4% | 4.2% |
Proportion of cultivated land in areas where productivity decreased | 4.5% | 22.6% | 27.1% | 19.5% | 26.3% |
Changes in Productivity | Decreased Area | Increased Area | Stable Area |
---|---|---|---|
Proportion of cultivated land | 10.7% | 72% | 17.3% |
Potential Space | <20% | 20%–40% | 40%–60% | 60%–80% | >80% |
---|---|---|---|---|---|
Proportion of cultivated land in areas where productivity increased | 1.5% | 10.5% | 24.8% | 28.8% | 34.4% |
Proportion of cultivated land in areas where productivity decreased | 0.5% | 4.6% | 8.80% | 8.0% | 78.1% |
Changes in Productivity | Decreased Area | Increased Area | Stable Area |
---|---|---|---|
Proportion of cultivated land | 32.5% | 40.8% | 26.7% |
Potential Space | <20% | 20%–40% | 40%–60% | 60%–80% | >80% |
---|---|---|---|---|---|
Proportion of cultivated land in areas where productivity increased | 1.5% | 18.5% | 33.1% | 27.7% | 19.2% |
Proportion of cultivated land in areas where productivity decreased | 0.5% | 5.0% | 9.6% | 9.8% | 75.1% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Jin, J.; Jin, X.; Xiao, Y.; Ren, J.; Liu, J.; Sun, R.; Zhou, Y. Analysis of Changes and Potential Characteristics of Cultivated Land Productivity Based on MODIS EVI: A Case Study of Jiangsu Province, China. Remote Sens. 2019, 11, 2041. https://doi.org/10.3390/rs11172041
Xu W, Jin J, Jin X, Xiao Y, Ren J, Liu J, Sun R, Zhou Y. Analysis of Changes and Potential Characteristics of Cultivated Land Productivity Based on MODIS EVI: A Case Study of Jiangsu Province, China. Remote Sensing. 2019; 11(17):2041. https://doi.org/10.3390/rs11172041
Chicago/Turabian StyleXu, Weiyi, Jiaxin Jin, Xiaobin Jin, Yuanyuan Xiao, Jie Ren, Jing Liu, Rui Sun, and Yinkang Zhou. 2019. "Analysis of Changes and Potential Characteristics of Cultivated Land Productivity Based on MODIS EVI: A Case Study of Jiangsu Province, China" Remote Sensing 11, no. 17: 2041. https://doi.org/10.3390/rs11172041
APA StyleXu, W., Jin, J., Jin, X., Xiao, Y., Ren, J., Liu, J., Sun, R., & Zhou, Y. (2019). Analysis of Changes and Potential Characteristics of Cultivated Land Productivity Based on MODIS EVI: A Case Study of Jiangsu Province, China. Remote Sensing, 11(17), 2041. https://doi.org/10.3390/rs11172041