Detection of Liquefaction Phenomena from the 2017 Pohang (Korea) Earthquake Using Remote Sensing Data
Abstract
:1. Introduction
2. Data and Methodology
2.1. SAR Data Analysis
2.2. Optical Data Analysis
3. Results and Discussion
3.1. SAR Data Analysis
3.2. Optical Data Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Choi, J.H.; Ko, K.; Gihm, Y.S.; Cho, C.S.; Lee, H.; Song, S.G.; Bang, E.S.; Lee, H.J.; Bae, H.K.; Kim, S.W. Surface Deformations and Rupture Processes Associated with the 2017 Mw 5.4 Pohang, Korea, Earthquake. Bull. Seismol. Soc. Am. 2019, 109, 756–769. [Google Scholar] [CrossRef]
- Chini, M.; Albano, M.; Saroli, M.; Pulvirenti, L.; Moro, M.; Bignami, C.; Falcucci, E.; Gori, S.; Modoni, G.; Pierdicca, N. Coseismic liquefaction phenomenon analysis by COSMO-SkyMed: 2012 Emilia (Italy) earthquake. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 65–78. [Google Scholar] [CrossRef]
- Gihm, Y.S.; Kim, S.W.; Ko, K.; Choi, J.-H.; Bae, H.; Hong, P.S.; Lee, Y.; Lee, H.; Jin, K.; Choi, S. Paleoseismological implications of liquefaction-induced structures caused by the 2017 Pohang earthquake. Geosci. J. 2018, 871–880. [Google Scholar] [CrossRef]
- Ishitsuka, K.; Tsuji, T.; Matsuoka, T. Detection and mapping of soil liquefaction in the 2011 Tohoku earthquake using SAR interferometry. Earth Planets Space 2012, 64, 22. [Google Scholar] [CrossRef]
- Gupta, R.; Saraf, A.; Chander, R. Cover Discrimination of areas susceptible to earthquake-induced liquefaction from Landsat data. Int. J. Remote Sens. 1998, 19, 569–572. [Google Scholar] [CrossRef]
- Yusuf, Y.; Matsuoka, M.; Yamazaki, F. Damage assessment after 2001 Gujarat earthquake using Landsat-7 satellite images. J. Indian Soc. Remote Sens. 2001, 29, 17–22. [Google Scholar] [CrossRef]
- Saraf, A.; Sinvhal, A.; Sinvhal, H.; Ghosh, P.; Sarma, B. Satellite data reveals 26 January 2001 Kutch earthquake-induced ground changes and appearance of water bodies. Int. J. Remote Sens. 2002, 23, 1749–1756. [Google Scholar] [CrossRef]
- Ramakrishnan, D.; Mohanty, K.; Nayak, S.; Chandran, R.V. Mapping the liquefaction induced soil moisture changes using remote sensing technique: An attempt to map the earthquake induced liquefaction around Bhuj, Gujarat, India. Geotech. Geol. Eng. 2006, 24, 1581–1602. [Google Scholar] [CrossRef]
- Sengar, S.S.; Kumar, A.; Ghosh, S.K.; Wason, H.R.; Roy, P.S. Liquefaction identification using class-based sensor independent approach based on single pixel classification after 2001 Bhuj, India earthquake. J. Appl. Remote Sens. 2012, 6, 063531. [Google Scholar]
- Oommen, T.; Baise, L.G.; Gens, R.; Prakash, A.; Gupta, R.P. Documenting earthquake-induced liquefaction using satellite remote sensing image transformations. Environ. Eng. Geosci. 2013, 19, 303–318. [Google Scholar] [CrossRef]
- Zhu, J.; Baise, L.G.; Koch, M. Mapping earthquake induced liquefaction surface effects from the 2011 Tohoku earthquake using satellite imagery. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 2328–2331. [Google Scholar]
- Matsuoka, M.; Yamazaki, F. Use of satellite SAR intensity imagery for detecting building areas damaged due to earthquakes. Earthq. Spectra 2004, 20, 975–994. [Google Scholar] [CrossRef]
- Stramondo, S.; Bignami, C.; Chini, M.; Pierdicca, N.; Tertulliani, A. Satellite radar and optical remote sensing for earthquake damage detection: Results from different case studies. Int. J. Remote Sens. 2006, 27, 4433–4447. [Google Scholar] [CrossRef]
- Chini, M.; Piscini, A.; Cinti, F.R.; Amici, S.; Nappi, R.; DeMartini, P.M. The 2011 Tohoku (Japan) Tsunami Inundation and Liquefaction Investigated Through Optical, Thermal, and SAR Data. IEEE Geosci. Remote Sens. Lett. 2013, 10, 347–351. [Google Scholar] [CrossRef]
- Bowers, S.A.; Hanks, R. Reflection of Radiant Energy from Soils. Ph.D. Thesis, Kansas State University, Manhattan, KS, USA, 1971. [Google Scholar]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Chavez, P.S. Image-based atmospheric corrections-revisited and improved. Photogramm. Eng. Remote Sens. 1996, 62, 1025–1035. [Google Scholar]
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. Sentinel-2 sen2cor: L2a processor for users. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016; pp. 9–13. [Google Scholar]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Tucker, C.J. Remote sensing of leaf water content in the near infrared. Remote Sens. Environ. 1980, 10, 23–32. [Google Scholar] [CrossRef]
- Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 1: Theoretical approach. Remote Sens. Environ. 2002, 82, 188–197. [Google Scholar] [CrossRef]
- Chen, D.; Jackson, T.; Li, F.; Cosh, M.; Walthall, C.; Anderson, M. Estimation of vegetation water content for corn and soybeans with a normalized difference water index (NDWI) using Landsat Thematic Mapper data. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Toulouse, France, 21–25 July 2003; pp. 2853–2856. [Google Scholar]
- Curcio, J.A.; Petty, C.C. The near infrared absorption spectrum of liquid water. J. Opt. Soc. Am. 1951, 41, 302–304. [Google Scholar] [CrossRef]
- Rollin, E.; Milton, E. Processing of high spectral resolution reflectance data for the retrieval of canopy water content information. Remote Sens. Environ. 1998, 65, 86–92. [Google Scholar] [CrossRef]
- Philpot, W. Spectral reflectance of wetted soils. In Proceedings of the ASD and IEEE GRS, Art, Science and Applications of Reflectance Spectroscopy Symposium, Boulder, CO, USA, 23–25 February 2010. [Google Scholar]
- Oltra-Carrió, R.; Baup, F.; Fabre, S.; Fieuzal, R.; Briottet, X. Improvement of soil moisture retrieval from hyperspectral VNIR-SWIR data using clay content information: From laboratory to field experiments. Remote Sens. 2015, 7, 3184–3205. [Google Scholar] [CrossRef]
Satellite: Imager | Pre-Earthquake Sensing Date | Post-Earthquake Sensing Date |
---|---|---|
Sentinel-2A/B: MSI | 11 November | 16 November |
Landsat 8: OLI | 31 October | 16 November |
Sentinel-2 (MSI) | |||||||
---|---|---|---|---|---|---|---|
Band | λ (nm) | Res. (m) | Band | λ (nm) | Res. (m) | ||
1 | Coastal aerosol | 433–453 | 30 | 1 | Coastal aerosol | 433–453 | 60 |
2 | Blue | 450–515 | 30 | 2 | Blue | 458–523 | 10 |
3 | Green | 525–600 | 30 | 3 | Green | 543–578 | 10 |
4 | Red | 630–680 | 30 | 4 | Red | 650–680 | 10 |
- | 5 | Red edge 1 | 698–713 | 20 | |||
- | 6 | Red edge 2 | 733–748 | 20 | |||
- | 7 | Red edge 3 | 773–793 | 20 | |||
5 | Near infrared (NIR) | 845–885 | 30 | 8 | Near infrared (NIR) | 785–900 | 10 |
- | 8a | NIR-narrow | 855–875 | 20 | |||
- | 9 | Water vapor | 935–955 | 60 | |||
9 | Cirrus | 1360–1390 | 30 | 10 | Cirrus | 1360–1390 | 60 |
6 | SWIR 1 | 1560–1660 | 30 | 11 | SWIR 1 | 1565–1655 | 20 |
7 | SWIR 2 | 2100–2300 | 30 | 12 | SWIR 2 | 2100–2280 | 20 |
8 | Panchromatic | 500–680 | 15 | - |
Threshold | Detection Accuracy (%) | |||||||
---|---|---|---|---|---|---|---|---|
Landsat 8 | Sentinel-2 | |||||||
NDWI Difference | TDLI | NDWI Difference | TDLI | |||||
Gao | McFeeters | mNDWI | Gao | McFeeters | mNDWI | |||
0.000 | 21.881 | 99.387 | 63.190 | 73.211 | 58.282 | 42.536 | 50.716 | 95.501 |
0.025 | 8.793 | 82.822 | 32.106 | 56.237 | 26.380 | 15.542 | 26.789 | 75.665 |
0.050 | 2.658 | 36.401 | 14.928 | 35.583 | 10.634 | 3.885 | 8.793 | 53.579 |
0.075 | 0.613 | 7.975 | 6.544 | 19.018 | 4.090 | 0.204 | 3.681 | 37.832 |
0.100 | 0.000 | 0.818 | 3.272 | 10.634 | 2.658 | 0.000 | 1.227 | 26.789 |
0.125 | 0.000 | 0.204 | 1.227 | 5.521 | 0.818 | 0.000 | 0.409 | 18.200 |
0.150 | 0.000 | 0.000 | 0.613 | 2.249 | 0.409 | 0.000 | 0.000 | 11.247 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baik, H.; Son, Y.-S.; Kim, K.-E. Detection of Liquefaction Phenomena from the 2017 Pohang (Korea) Earthquake Using Remote Sensing Data. Remote Sens. 2019, 11, 2184. https://doi.org/10.3390/rs11182184
Baik H, Son Y-S, Kim K-E. Detection of Liquefaction Phenomena from the 2017 Pohang (Korea) Earthquake Using Remote Sensing Data. Remote Sensing. 2019; 11(18):2184. https://doi.org/10.3390/rs11182184
Chicago/Turabian StyleBaik, Hyunseob, Young-Sun Son, and Kwang-Eun Kim. 2019. "Detection of Liquefaction Phenomena from the 2017 Pohang (Korea) Earthquake Using Remote Sensing Data" Remote Sensing 11, no. 18: 2184. https://doi.org/10.3390/rs11182184
APA StyleBaik, H., Son, Y. -S., & Kim, K. -E. (2019). Detection of Liquefaction Phenomena from the 2017 Pohang (Korea) Earthquake Using Remote Sensing Data. Remote Sensing, 11(18), 2184. https://doi.org/10.3390/rs11182184