Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm
Abstract
:1. Introduction
2. Methods
2.1. The NOAA JPSS Enterprise Algorithm
2.2. Simulation Dataset
2.3. Land Surface Emissivity Estimation
2.4. Ground LST Estimation
3. Results and Analyses
3.1. Algorithm Coefficients
3.2. Sensitivity Analysis
3.2.1. Sensor Noise
3.2.2. Emissivity Uncertainty
3.2.3. Water Vapor Content
3.2.4. Total Error
3.3. Validate with the In Situ LST
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Valor, E.; Caselles, V. Mapping land surface emissivity from ndvi: Application to european, african, and south american areas. Remote Sens. Environ. 1996, 57, 167–184. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, S.; Wang, J.; Li, X. A stepwise refining algorithm of temperature and emissivity separation for hyperspectral thermal infrared data. IEEE Trans. Geosci. Remote Sens. 2010, 48, 1588–1597. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Manzo-Delgado, L.; Sánchez-Colón, S.; Álvarez, R. Assessment of seasonal forest fire risk using noaa-avhrr: A case study in central mexico. Int. J. Remote Sens. 2009, 30, 4991–5013. [Google Scholar] [CrossRef]
- Guo, G.; Zhou, M. Using modis land surface temperature to evaluate forest fire risk of northeast china. IEEE Geosci. Remote Sens. Lett. 2004, 1, 98–100. [Google Scholar]
- Cheng, J.; Liu, Q.; Li, X.; Qing, X.; Liu, Q.; Du, Y. Correlation-based temperature and emissivity separation algorithm. Sci. China Ser. D Earth Sci. 2008, 51, 363–372. [Google Scholar] [CrossRef]
- Wulder, M.A.; White, J.C.; Loveland, T.R.; Woodcock, C.E.; Belward, A.S.; Cohen, W.B.; Fosnight, E.A.; Shaw, J.; Masek, J.G.; Roy, D.P. The global landsat archive: Status, consolidation, and direction. Remote Sens. Environ. 2016, 185, 271–283. [Google Scholar] [CrossRef]
- Meng, X.; Li, H.; Du, Y.; Liu, Q.; Zhu, J.; Sun, L. Retrieving land surface temperature from landsat 8 tirs data using rttov and aster ged. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 4302–4305. [Google Scholar]
- Cristóbal, J.; Jiménez-Muñoz, J.; Prakash, A.; Mattar, C.; Skoković, D.; Sobrino, J. An improved single-channel method to retrieve land surface temperature from the landsat-8 thermal band. Remote Sens. 2018, 10, 431. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; He, G.; Wang, G.; Long, T.; Peng, Y. An enhanced single-channel algorithm for retrieving land surface temperature from landsat series data. J. Geophys. Res. 2016, 121, 11712–11722. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Sobrino, J.A.; Skokovic, D.; Mattar, C.; Cristobal, J. Land surface temperature retrieval methods from landsat-8 thermal infrared sensor data. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1840–1843. [Google Scholar] [CrossRef]
- Wang, F.; Qin, Z.; Song, C.; Tu, L.; Karnieli, A.; Zhao, S. An improved mono-window algorithm for land surface temperature retrieval from landsat 8 thermal infrared sensor data. Remote Sens. 2015, 7, 4268–4289. [Google Scholar] [CrossRef]
- Du, C.; Ren, H.; Qin, Q.; Meng, J.; Zhao, S. A practical split-window algorithm for estimating land surface temperature from landsat 8 data. Remote Sens. 2015, 7, 647–665. [Google Scholar] [CrossRef]
- Rozenstein, O.; Qin, Z.; Derimian, Y.; Karnieli, A. Derivation of land surface temperature for landsat-8 tirs using a split window algorithm. Sensors (Basel) 2014, 14, 5768–5780. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; He, L.; Hu, W. A temperature and emissivity separation algorithm for landsat-8 thermal infrared sensor data. Remote Sens. 2015, 7, 9904–9927. [Google Scholar] [CrossRef]
- Cook, M.; Schott, J.; Mandel, J.; Raqueno, N. Development of an operational calibration methodology for the landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (lst) product from the archive. Remote Sens. 2014, 6, 11244–11266. [Google Scholar] [CrossRef]
- Parastatidis, D.; Mitraka, Z.; Chrysoulakis, N.; Abrams, M. Online global land surface temperature estimation from landsat. Remote Sens. 2017, 9, 1208. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res. Atmos. 2003, 108, 2015–2023. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, J.; Li, M.; Zhang, X. Validation of landsat-8 tirs land surface temperature retrieved from multiple algorithms in an extremely arid region. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium, Beijing, China, 10–15 July 2016; pp. 6934–6937. [Google Scholar]
- Barsi, J.; Schott, J.; Hook, S.; Raqueno, N.; Markham, B.; Radocinski, R. Landsat-8 thermal infrared sensor (tirs) vicarious radiometric calibration. Remote Sens. 2014, 6, 11607–11626. [Google Scholar] [CrossRef]
- Sobrino, J.; Skoković, D. Permanent stations for calibration/validation of thermal sensors over spain. Data 2016, 1, 10. [Google Scholar] [CrossRef]
- Li, S.; Jiang, G.M. Land surface temperature retrieval from landsat-8 data with the generalized split-window algorithm. IEEE Access 2018, 6, 18149–18162. [Google Scholar] [CrossRef]
- Montanaro, M.; Gerace, A.; Lunsford, A.; Reuter, D. Stray light artifacts in imagery from the landsat 8 thermal infrared sensor. Remote Sens. 2014, 6, 10435–10456. [Google Scholar] [CrossRef]
- Gerace, A.; Montanaro, M. Derivation and validation of the stray light correction algorithm for the thermal infrared sensor onboard landsat 8. Remote Sens. Environ. 2017, 191, 246–257. [Google Scholar] [CrossRef]
- Duan, S.-B.; Li, Z.-L.; Wang, C.; Zhang, S.; Tang, B.-H.; Leng, P.; Gao, M.-F. Land-surface temperature retrieval from landsat 8 single-channel thermal infrared data in combination with ncep reanalysis data and aster ged product. Int. J. Remote Sens. 2018, 1–16. [Google Scholar] [CrossRef]
- García-Santos, V.; Cuxart, J.; Martínez-Villagrasa, D.; Jiménez, M.; Simó, G. Comparison of three methods for estimating land surface temperature from landsat 8-tirs sensor data. Remote Sens. 2018, 10, 1450. [Google Scholar] [CrossRef]
- Chen, Y.; Duan, S.-B.; Ren, H.; Labed, J.; Li, Z.-L. Algorithm development for land surface temperature retrieval: Application to chinese gaofen-5 data. Remote Sens. 2017, 9, 161. [Google Scholar] [CrossRef]
- Caselles, V.; Rubio, E.; Coll, C.; Valor, E. Thermal band selection for the prism instrument: 3. Optimal band configurations. J. Geophys. Res. Atmos. 1998, 103, 17057–17067. [Google Scholar] [CrossRef]
- Guillevic, P.; Göttsche, F.; Nickeson, J.; Hulley, G.; Ghent, D.; Yu, Y.; Trigo, I.; Hook, S.; Sobrino, J.; Remedios, J. Land surface temperature product validation best practice protocol. Version 1.0. Best Pract. Satell. Deriv. Land Prod. Valid. 2017, 60. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, Y.; Yu, P.; Wang, H. Enterprise Algorithm Theoretical Basis Document for Viirs Land Surface Temperature Production; NOAA: Silver Spring, MD, USA, 2017.
- Sobrino, J.A.; Li, Z.-L.; Stoll, M.P.; Becker, F. Multi-channel and multi-angle algorithms for estimating sea and land surface temperature with atsr data. Int. J. Remote Sens. 1996, 17, 2089–2114. [Google Scholar] [CrossRef]
- Mattar, C.; Durán-Alarcón, C.; Jiménez-Muñoz, J.C.; Santamaría-Artigas, A.; Olivera-Guerra, L.; Sobrino, J.A. Global atmospheric profiles from reanalysis information (gapri): A new database for earth surface temperature retrieval. Int. J. Remote Sens. 2015, 36, 5045–5060. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.-C.; Sobrino, J.A. Split-window coefficients for land surface temperature retrieval from low-resolution thermal infrared sensors. IEEE Geosci. Remote Sens. Lett. 2008, 5, 806–809. [Google Scholar] [CrossRef]
- Baldridge, A.M.; Hook, S.J.; Grove, C.I.; Rivera, G. The aster spectral library version 2.0. Remote Sens. Environ. 2009, 113, 711–715. [Google Scholar] [CrossRef]
- Snyder, W.C.; Wan, Z.; Zhang, Y.; Feng, Y.-Z. Thermal infrared (3–14 um) bidirectional reflectance measurements of sands and soils. Remote Sens. Environ. 1997, 60, 101–109. [Google Scholar] [CrossRef]
- Menenti, M.; Bastiaanssen, W.; Van Eick, D.; El Karim, M.A. Linear relationships between surface reflectance and temperature and their appliation to map actual evaporation of groundwater. Adv. Space Res. 1989, 9, 165–176. [Google Scholar] [CrossRef]
- Griend, A.A.V.D.; Owe, M. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. Intern. J. Remote Sens. 1993, 14, 1119–1131. [Google Scholar] [CrossRef]
- Cheng, J.; Ren, H.; Liang, S.; Yan, G. Glass-Global Land Surface Broadband Emissivity Product: Algorithm Theoretical Basis Document Version 1.0; Beijing Normal University: Beijing, China, 2010. [Google Scholar]
- Cheng, J.; Liang, S.; Nie, A.; Liu, Q. Is there a physical linkage between surface emissive and reflective variables over non-vegetated surfaces? J. Indian Soc. Remote Sens. 2017, 46, 591–596. [Google Scholar] [CrossRef]
- Tang, B.H.; Shao, K.; Li, Z.L.; Wu, H.; Tang, R. An improved ndvi-based threshold method for estimating land surface emissivity using modis satellite data. Int. J. Remote Sens. 2015, 36, 4864–4878. [Google Scholar] [CrossRef]
- Emami, H.; Mojaradi, B.; Safari, A. A new approach for land surface emissivity estimation using ldcm data in semi-arid areas: Exploitation of the aster spectral library data set. Int. J. Remote Sens. 2016, 37, 5060–5085. [Google Scholar] [CrossRef]
- Valor, E.; Caselles, V. Validation of the vegetation cover method for land surface emissivity estimation. In Recent Research Developments in Thermal Remote Sensing; Caselles, V., Valor, E., Coll, C., Eds.; Research Signpost: Kerala, India, 2005; pp. 1–20. [Google Scholar]
- Carlson, T.N.; Ripley, D.A. On the relation between ndvi, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Tang, R.; Li, Z.L.; Tang, B. An application of the t s –vi triangle method with enhanced edges determination for evapotranspiration estimation from modis data in arid and semi-arid regions: Implementation and validation. Remote Sens. Environ. 2010, 114, 540–551. [Google Scholar] [CrossRef]
- Ye, X.; Ren, H.; Liu, R.; Qin, Q.; Liu, Y.; Dong, J. Land surface temperature estimate from chinese gaofen-5 satellite data using split-window algorithm. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5877–5888. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, S.; Verhoef, W.; Shi, L.; Liu, Q. Estimating the hemispherical broadband longwave emissivity of global vegetated surfaces using a radiative transfer model. IEEE Trans. Geosci. Remote Sens. 2016, 54, 905–917. [Google Scholar] [CrossRef]
- Augustine, J.A.; Deluisi, J.J.; Long, C.N. Surfrad-a national surface radiation budget network for atmospheric research. Bull. Am. Meteorol. Soc. 2000, 81, 2341–2357. [Google Scholar] [CrossRef]
- Augustine, J.A.; Hodges, G.B.; Cornwall, C.R.; Michalsky, J.J.; Medina, C.I. An update on surfrad—The gcos surface radiation budget network for the continental united states. J. Atmos. Ocean. Technol. 2005, 22, 1460–1472. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y.; et al. Heihe watershed allied telemetry experimental research (hiwater): Scientific objectives and experimental design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, S.; Li, X.; Shi, S.; Wang, J.; Zhu, Z.; Xu, T.; Wang, W.; Ma, M. Intercomparison of surface energy flux measurement systems used during the hiwater-musoexe. J. Geophys. Res. Atmos. 2013, 118, 13140–13157. [Google Scholar] [CrossRef]
- Yu, Y.; Tarpley, D.; Privette, J.L.; Flynn, L.E.; Xu, H.; Chen, M.; Vinnikov, K.Y.; Sun, D.; Tian, Y. Validation of goes-r satellite land surface temperature algorithm using surfrad ground measurements and statistical estimates of error properties. IEEE Trans. Geosci. Remote Sens. 2012, 50, 704–713. [Google Scholar] [CrossRef]
- Guillevic, P.C.; Biard, J.C.; Hulley, G.C.; Privette, J.L.; Hook, S.J.; Olioso, A.; Göttsche, F.M.; Radocinski, R.; Román, M.O.; Yu, Y.; et al. Validation of land surface temperature products derived from the visible infrared imaging radiometer suite (viirs) using ground-based and heritage satellite measurements. Remote Sens. Environ. 2014, 154, 19–37. [Google Scholar] [CrossRef]
- Li, H.; Sun, D.; Yu, Y.; Wang, H.; Liu, Y.; Liu, Q.; Du, Y.; Wang, H.; Cao, B. Evaluation of the viirs and modis lst products in an arid area of northwest china. Remote Sens. Environ. 2014, 142, 111–121. [Google Scholar] [CrossRef]
- Zhao, P.; Xu, X.; Chen, F.; Guo, X.; Zheng, X.; Liu, L.; Hong, Y.; Li, Y.; La, Z.; Peng, H.; et al. The third atmospheric scientific experiment for understanding the earth–atmosphere coupled system over the tibetan plateau and its effects. Bull. Am. Meteorol. Soc. 2018, 99, 757–776. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, S.; Yao, Y.; Zhang, X. Estimating the optimal broadband emissivity spectral range for calculating surface longwave net radiation. IEEE Geosci. Remote Sens. Lett. 2013, 10, 401–405. [Google Scholar] [CrossRef]
- Galve, J.M.; Coll, C.; Caselles, V.; Valor, E. An atmospheric radiosounding database for generating land surface temperature algorithms. IEEE Trans. Geosci. Remote Sens. 2008, 46, 1547–1557. [Google Scholar] [CrossRef]
- Chedin, A.; Scott, N.A.; Wahiche, C.; Moulinier, P. The improved initialization inversion method: A high resolution physical method for temperature retrievals from satellites of the tiros-n series. J. Appl. Meteorol. 1985, 24, 128–143. [Google Scholar] [CrossRef]
- Borbas, E.E.; Seemann, S.W.; Huang, H.L.; Li, J.; Menzel, W.P. Global profile training database for satellite regression retrievals with estimates of skin temperature and emissivity. In Proceedings of the Fourteenth International TOVS Study Conference, Beijing, China, 25–31 May 2005. [Google Scholar]
- Meng, X.; Cheng, J.; Liang, S. Estimating land surface temperature from feng yun-3c/mersi data using a new land surface emissivity scheme. Remote Sens. 2017, 9, 1247. [Google Scholar] [CrossRef]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next landsat satellite: The landsat data continuity mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef]
- Jiang, J.; Li, H.; Liu, Q.; Wang, H.; Du, Y.; Cao, B.; Zhong, B.; Wu, S. Evaluation of land surface temperature retrieval from fy-3b/virr data in an arid area of northwestern china. Remote Sens. 2015, 7, 7080–7104. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Sòria, G.; Ruescas, A.B.; Danne, O.; Brockmann, C.; Ghent, D.; Remedios, J.; North, P.; Merchant, C.; et al. Synergistic use of meris and aatsr as a proxy for estimating land surface temperature from sentinel-3 data. Remote Sens. Environ. 2016, 179, 149–161. [Google Scholar] [CrossRef]
- Ren, H.; Du, C.; Liu, R.; Qin, Q.; Yan, G.; Li, Z.-L.; Meng, J. Atmospheric water vapor retrieval from landsat 8 thermal infrared images. J. Geophys. Res. Atmos. 2015, 120, 1723–1738. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; El-Kharraz, J.; Gómez, M.; Romaguera, M.; Sòria, G. Single-channel and two-channel methods for land surface temperature retrieval from dais data and its application to the barrax site. Int. J. Remote Sens. 2010, 25, 215–230. [Google Scholar] [CrossRef]
- Zhang, Z.; He, G.; Wang, M.; Long, T.; Wang, G.; Zhang, X. Validation of the generalized single-channel algorithm using landsat 8 imagery and surfrad ground measurements. Remote Sens. Lett. 2016, 7, 810–816. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X.; Wu, Z. Land surface temperature retrieval from landsat 8 tirs—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef]
- Qin, Z.; Dall’Olmo, G.; Karnieli, A.; Berliner, P. Derivation of split window algorithm and its sensitivity analysis for retrieving land surface temperature from noaa-advanced very high resolution radiometer data. J. Geophys. Res. Atmos. 2001, 106, 22655–22670. [Google Scholar] [CrossRef]
- Sobrino, J.A. Land surface temperature retrieval from thermal infrared data: An assessment in the context of the surface processes and ecosystem changes through response analysis (spectra) mission. J. Geophys. Res. 2005, 110. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Sobrino, J.A. A single-channel algorithm for land-surface temperature retrieval from aster data. IEEE Geosci. Remote Sens. Lett. 2010, 7, 176–179. [Google Scholar] [CrossRef]
- Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
Site | Name | Latitude | Longitude | Land Cover | Period | Path/Row | |
---|---|---|---|---|---|---|---|
SURFRAD | BND | Bondville | 40.0519 | −88.3731 | cropland | 2013~2018 | 23/32 |
GWN | Goodwin Creek | 34.2547 | −89.8729 | grassland | 2013~2018 | 23/36 | |
PSU | Penn. State | 40.7201 | −77.9309 | cropland | 2013~2018 | 16/32 | |
SXF | Sioux Falls | 43.7343 | −96.6233 | grassland | 2013~2018 | 29/30 | |
FPK | Fort Peck | 48.3079 | −105.1018 | grassland | 2013~2018 | 35/26 | |
TBL | Table Mountain | 40.1256 | −105.2378 | sparse grassland | 2013~2018 | 33/32 | |
DRA | Desert Rock | 36.6232 | −116.0196 | arid shrubland | 2013~2018 | 40/35 | |
HiWATE_A | HYL | Hu Yang Lin | 41.9932 | 101.1239 | populus forest | 2013~2015 | 133/031 |
LD | Luo Di | 41.9993 | 101.1326 | barren-land | 2013~2015 | ||
NT | Nong Tian | 42.0048 | 101.1338 | cropland | 2013~2015 | ||
SDQ | Si Dao Qiao | 42.0012 | 101.1374 | tamarix | 2013~2017 | ||
HiWATER_B | GB | Ge Bi | 38.9150 | 100.3042 | gobi desert | 2013~2015 | 133/033 |
SSW | Shen Sha Wo | 38.7892 | 100.4933 | sand dune | 2013~2015 | ||
JCHM | Ji Chang Huang Mo | 38.7781 | 100.6967 | desert steppe | 2013~2015 | ||
SD | Shi Di | 38.9751 | 100.4464 | reed wetland | 2013~2017 | ||
CJZ | Chao Ji Zhan | 38.8555 | 100.3722 | corn | 2013~2017 | ||
HZZ | HuaZhaiZi | 38.7659 | 100.3201 | desert steppe | 2013~2017 | ||
YG | YaoGan | 38.8270 | 100.4756 | artificial grass | 2015~2017 | ||
DSL | Da Sha Long | 38.8399 | 98.9406 | marsh | 2013~2017 | 134/033 | |
HiWATER_C | ArouCJZ | Arou Chao Ji Zhan | 38.0473 | 100.4643 | alpine meadow | 2013~2017 | 133/034 |
EB | Er Bao | 37.9492 | 100.9151 | alpine meadow | 2013~2016 | ||
HZS | Huang Zang Si | 38.2254 | 100.1918 | wheat | 2013~2015 | ||
HCG | Huang Cao Gou | 38.0033 | 100.7312 | alpine meadow | 2013~2015 | ||
TIPEX-III | BG | BanGe | 31.4200 | 90.0300 | alpine meadow | 20140712~20140903 | 138/038 139/038 |
TWV(cm) | Method | C0 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | RMSE(K) |
---|---|---|---|---|---|---|---|---|---|---|
0.0–2.5 | Wan | −1.56 | 1.007 | 0.162 | −0.288 | 3.179 | 6.864 | −11.209 | 0.165 | 0.44 |
Enterprise algorithm | 54.95 | 1.01 | 1.557 | −57.805 | 0.147 | −103.52 | - | - | 0.481 | |
Sobrino | −0.39 | 2.116 | −0.045 | 64.386 | −3.7 | −147.522 | 21.065 | - | 0.431 | |
2.0–3.5 | Wan | −0.099 | 0.998 | 0.148 | −0.252 | 5.236 | 5.488 | −5.455 | 0.02 | 0.57 |
Enterprise algorithm | 50.035 | 1.006 | 5.377 | −52.801 | −3.16 | −87.906 | - | - | 0.589 | |
Sobrino | −1.631 | 2.681 | -0.054 | 67.827 | −3.213 | -204.953 | 41.441 | - | 0.503 | |
3.0–4.5 | Wan | 9.622 | 0.961 | 0.121 | −0.175 | 6.611 | 5.747 | −9.262 | 0 | 0.709 |
Enterprise algorithm | 45.395 | 0.968 | 8.09 | −37.955 | −5.312 | −70.798 | - | - | 0.723 | |
Sobrino | −2.767 | 3.171 | −0.05 | 51.397 | −0.151 | −210.415 | 37.574 | - | 0.691 | |
4.0–5.5 | Wan | 15.209 | 0.937 | 0.092 | −0.104 | 8.228 | 8.091 | −13.697 | −0.064 | 0.688 |
Enterprise algorithm | 32.395 | 0.942 | 12.365 | −17.99 | −9.291 | −58.571 | - | - | 0.716 | |
Sobrino | −4.399 | 3.969 | -0.113 | 34.649 | 2.335 | −200.753 | 32.846 | - | 0.728 | |
5.0–7.0 | Wan | 7.239 | 0.962 | 0.065 | −0.054 | 7.942 | 8.838 | −15.162 | −0.001 | 0.71 |
Enterprise algorithm | 17.191 | 0.968 | 11.816 | −11.396 | −8.402 | −47.408 | - | - | 0.722 | |
Sobrino | −5.096 | 3.932 | −0.044 | −4.701 | 8.634 | −219.875 | 33.98 | - | 0.743 | |
0.0–7.0 | Wan | −2.64 | 1.012 | 0.142 | −0.201 | 2.844 | −0.569 | −7.6 | 0.263 | 0.844 |
Enterprise algorithm | 67.297 | 0.985 | −6.916 | −63.855 | 9.548 | −90.919 | - | - | 1.075 | |
Sobrino | −0.717 | 1.988 | 0.121 | 70.148 | −7.006 | −143.246 | 19.247 | - | 0.72 |
Data | Method | W1 | W2 | W3 | W4 | W5 | W6 | |
---|---|---|---|---|---|---|---|---|
bias(K) | CLAR | WAN | 0.057 | −0.008 | −0.029 | 0.107 | −0.307 | −0.022 |
Enterprise algorithm | 0.142 | 0.058 | −0.017 | −0.075 | −0.051 | −0.031 | ||
Sobrino | 0.193 | 0.065 | −0.040 | −0.167 | −0.249 | −0.140 | ||
TIGR | WAN | −0.121 | −0.035 | 0.034 | −0.04 | −0.180 | −0.085 | |
Enterprise algorithm | −0.055 | 0.028 | 0.049 | −0.158 | 0.078 | −0.155 | ||
Sobrino | 0.138 | 0.032 | 0.013 | −0.261 | −0.106 | 0.058 | ||
SeeBor | WAN | 0.129 | 0.164 | 0.284 | 0.430 | −0.085 | 0.150 | |
Enterprise algorithm | 0.197 | 0.230 | 0.299 | 0.263 | 0.174 | −0.005 | ||
Sobrino | 0.228 | 0.283 | 0.330 | 0.236 | 0.006 | 0.177 | ||
RMSE(K) | CLAR | WAN | 0.430 | 0.527 | 0.651 | 0.739 | 0.920 | 1.007 |
Enterprise algorithm | 0.498 | 0.544 | 0.662 | 0.742 | 0.874 | 1.417 | ||
Sobrino | 0.540 | 0.479 | 0.607 | 0.762 | 0.922 | 1.022 | ||
TIGR | WAN | 0.357 | 0.608 | 0.735 | 0.945 | 1.205 | 0.724 | |
Enterprise algorithm | 0.420 | 0.619 | 0.757 | 0.930 | 1.202 | 0.923 | ||
Sobrino | 0.594 | 0.513 | 0.762 | 0.997 | 1.175 | 0.810 | ||
SeeBor | WAN | 0.429 | 0.621 | 0.753 | 0.925 | 1.132 | 0.750 | |
Enterprise algorithm | 0.523 | 0.659 | 0.765 | 0.866 | 1.143 | 1.038 | ||
Sobrino | 0.578 | 0.628 | 0.762 | 0.863 | 1.139 | 0.779 |
True TWV Subrange (cm) | Method | Used TWV Subrange (cm) | ||||
---|---|---|---|---|---|---|
0.0–2.5 | 2.0–3.5 | 3.0–4.5 | 4.0–5.5 | 5.5–7.0 | ||
0.0–2.5 | Wan | 0.440 K | 1.422 K | - | - | - |
Sobrino | 0.431 K | 0.771 K | - | - | - | |
Enterprise algorithm | 0.481 K | 1.377 K | - | - | - | |
2.0–3.5 | Wan | 0.891 K | 0.570 K | 1.232 K | - | - |
Sobrino | 0.795 K | 0.503 K | 0.851 K | - | - | |
Enterprise algorithm | 1.057 K | 0.589 K | 1.207 K | - | - | |
3.0–4.5 | Wan | - | 1.104 K | 0.709 K | 1.062 K | - |
Sobrino | - | 1.053 K | 0.691 K | 0.930 K | - | |
Enterprise algorithm | - | 1.121 K | 0.723 K | 1.063 K | - | |
4.0–5.5 | Wan | - | - | 0.938 K | 0.688 K | 1.033 K |
Sobrino | - | - | 0.900 K | 0.728 K | 0.987 K | |
Enterprise algorithm | - | - | 0.944 K | 0.716 K | 0.980 K | |
5.5–7.0 | Wan | - | - | - | 1.014 K | 0.710 K |
Sobrino | - | - | - | 1.017 K | 0.743 K | |
Enterprise algorithm | - | - | - | 0.960 K | 0.722 K |
Date | In Situ (K) | Enterprise Algorithm (K) | Wan (K) | Sobrino (K) |
---|---|---|---|---|
27 July 2014 | 300.29 | 300.30 | 300.10 | 300.38 |
12 August 2014 | 296.13 | 293.98 | 293.78 | 294.15 |
28 August 2014 | 295.73 | 296.05 | 295.83 | 296.26 |
18 July 2014 | 294.27 | 295.45 | 295.29 | 295.72 |
19 August 2014 | 298.8 | 298.70 | 298.47 | 298.82 |
BIAS(K) | −0.15 | −0.35 | 0.02 | |
RMSE(K) | 1.11 | 1.16 | 1.12 |
RTE10 | RTE11 | Qin | JMS10 | JMS11 | RTE_M | Wan | Enterprise Algorithm | Sobrino | |
---|---|---|---|---|---|---|---|---|---|
BIAS(K) | −0.95 | −0.96 | −1.28 | −0.92 | −0.51 | 1.00 | 1.85 | 1.90 | 2.08 |
RMSE(K) | 2.95 | 3.05 | 3.02 | 3.04 | 3.10 | 2.61 | 2.95 | 2.93 | 3.09 |
RTE10 | RTE11 | JMS | Wang | Du | JM2014 | RTE_M | Wan | Enterprise Algorithm | Sobrino | |
---|---|---|---|---|---|---|---|---|---|---|
Bias(K) | −0.1 | 2.0 | 0.8 | 0.7 | −1.4 | 0.4 | 0.1 | 0.2 | 0.1 | 0.2 |
RMSE(K) | 2.3 | 3.6 | 2.2 | 2.3 | 2.0 | 1.6 | 2.3 | 1.7 | 1.7 | 1.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, X.; Cheng, J.; Zhao, S.; Liu, S.; Yao, Y. Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm. Remote Sens. 2019, 11, 155. https://doi.org/10.3390/rs11020155
Meng X, Cheng J, Zhao S, Liu S, Yao Y. Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm. Remote Sensing. 2019; 11(2):155. https://doi.org/10.3390/rs11020155
Chicago/Turabian StyleMeng, Xiangchen, Jie Cheng, Shaohua Zhao, Sihan Liu, and Yunjun Yao. 2019. "Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm" Remote Sensing 11, no. 2: 155. https://doi.org/10.3390/rs11020155
APA StyleMeng, X., Cheng, J., Zhao, S., Liu, S., & Yao, Y. (2019). Estimating Land Surface Temperature from Landsat-8 Data using the NOAA JPSS Enterprise Algorithm. Remote Sensing, 11(2), 155. https://doi.org/10.3390/rs11020155