Combining Evapotranspiration and Soil Apparent Electrical Conductivity Mapping to Identify Potential Precision Irrigation Benefits
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Remotely Sensed Maps of ET
2.3. Airborne Missions and Data Processing
2.4. ECa Surveys
2.5. Crop Phenology
2.6. Micrometeorology
2.7. Shuttleworth–Wallace Validation
2.8. Relative Indices and Ordinal Correlation Analyses
3. Results
3.1. Validation of HRMET in Irrigated Potatoes, Sweet Corn, Peas, and Pearl Millet
3.2. Uncertainty in Remotely-Sensed ET Estimates
3.3. Relationships between Water Use and Availability
4. Discussion
4.1. Potential Precision Irrigation Benefits Depend on Crop Rotation
4.2. Potential Precision Irrigation Benefits Depend on Intrafield Soil Variability
4.3. Potential Precision Irrigation Benefits Depend on Existing Irrigation Practices
4.4. Future Applications of HRMET
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Crop Type | Phenological Variable | n | Prediction Model | Coefficients (Confidence Intervals) | RMSE | R2 | ||
---|---|---|---|---|---|---|---|---|
a | b | c | ||||||
Field corn | LAI (m2 m−2) | 122 | 3.986 (3.581, 4.391) | 1.308 (0.935, 1.681) | - | 1.127 | 0.464 | |
h (m) | 96 | 2.486 (1.951, 3.022) | 1.471 (0.555, 2.387) | 0.115 (−0.526, 0.755) | 0.498 | 0.632 | ||
Sweet corn | LAI (m2 m−2) | 124 | 4.848 (4.496, 5.199) | 1.323 (1.115, 1.531) | - | 0.783 | 0.788 | |
h (m) | 123 | 2.369 (2.130, 2.609) | −0.1758 (−0.321, −0.031) | - | 0.391 | 0.762 | ||
Potato | LAI (m2 m−2) | 209 | 4.675 (4.379, 4.971) | 0.6257 (0.504, 0.748) | - | 1.140 | 0.431 | |
h (m) | 213 | 0.252 (0.2294 0.275) | 0.7435 (0.620, 0.867) | - | 0.090 | 0.412 | ||
Peas | LAI (m2 m−2) | 29 | 5.386 (5.036, 5.737) | −0.1658 (−0.412, 0.080) | - | 0.327 | 0.974 | |
h (m) | 29 | 0.593 (0.561, 0.625) | 1.266 (1.048, 1.483) | - | 0.053 | 0.952 | ||
Pearl Millet | LAI (m2 m−2) | 13 | 1.739 (0.526, 2.952) | 0.393 (−0.148, 0.934) | - | 0.401 | 0.393 | |
h (m) | 12 | 3.633 (−11.680, 18.940) | 4.743 (−0.969, 10.460) | 0.111 (0.077, 0.145) | 0.028 | 0.516 |
References
- Sadler, E.J.; Evans, R.G.; Stone, K.C.; Camp, C.R. Opportunities for conservation with precision irrigation. J. Soil Water Conserv. 2005, 60, 371–378. [Google Scholar]
- Delgado, J.A.; Bausch, W.C. Potential use of precision conservation techniques to reduce nitrate leaching in irrigated crops. J. Soil Water Conserv. 2005, 60, 379–387. [Google Scholar]
- Liakos, V.; Vellidis, G.; Tucker, M.; Lowrance, C.; Liang, X. A decision support tool for managing precision irrigation with center pivots. In Precision Agriculture’15; Wageningen Academic Publishers: Wageningen, The Netherlands, 2015; pp. 713–720. ISBN 9086862675. [Google Scholar]
- Rezaei, M.; Saey, T.; Seuntjens, P.; Joris, I.; Boënne, W.; Van Meirvenne, M.; Cornelis, W. Predicting saturated hydraulic conductivity in a sandy grassland using proximally sensed apparent electrical conductivity. J. Appl. Geophys. 2016, 126, 35–41. [Google Scholar] [CrossRef]
- Fortes, R.; Millán, S.; Prieto, M.H.; Campillo, C. A methodology based on apparent electrical conductivity and guided soil samples to improve irrigation zoning. Precis. Agric. 2015, 16, 441–454. [Google Scholar] [CrossRef]
- Neely, H.L.; Morgan, C.L.S.; Stanislav, S.; Rouze, G.; Shi, Y.; Thomasson, J.A.; Valasek, J.; Olsenholler, J. Strategies for soil-based precision agriculture in cotton. In Autonomous Air and Ground Sensing Systems for Agricultural Optimization and Phenotyping; International Society for Optics and Photonics: Bellingham, WA, USA, 2016; Volume 9866, p. 98660K. [Google Scholar]
- Pedrera-Parrilla, A.; Van De Vijver, E.; Van Meirvenne, M.; Espejo-Pérez, A.J.; Giráldez, J.V.; Vanderlinden, K. Apparent electrical conductivity measurements in an olive orchard under wet and dry soil conditions: Significance for clay and soil water content mapping. Precis. Agric. 2016, 17, 531–545. [Google Scholar] [CrossRef]
- Islam, A.; Ahuja, L.R.; Garcia, L.A.; Ma, L.; Saseendran, A.S. Modeling the effect of elevated co (2) and climate change on reference evapotranspiration in the semi-arid central great plains. Trans. ASABE 2012, 55, 2135–2146. [Google Scholar] [CrossRef]
- Nocco, M.A.; Ruark, M.D.; Kucharik, C.J. Apparent electrical conductivity predicts physical properties of coarse soils. Geoderma 2019, 335, 1–11. [Google Scholar] [CrossRef]
- Haghverdi, A.; Leib, B.G.; Washington-Allen, R.A.; Ayers, P.D.; Buschermohle, M.J. Perspectives on delineating management zones for variable rate irrigation. Comput. Electron. Agric. 2015, 117, 154–167. [Google Scholar] [CrossRef]
- Sudduth, K.A.; Kitchen, N.R.; Wiebold, W.J.; Batchelor, W.D.; Bollero, G.A.; Bullock, D.G.; Clay, D.E.; Palm, H.L.; Pierce, F.J.; Schuler, R.T. Relating apparent electrical conductivity to soil properties across the north-central USA. Comput. Electron. Agric. 2005, 46, 263–283. [Google Scholar] [CrossRef]
- Hedley, C.B.; Yule, I.J. Soil water status mapping and two variable-rate irrigation scenarios. Precis. Agric. 2009, 10, 342–355. [Google Scholar] [CrossRef]
- Hedley, C.B.; Yule, I.J. A method for spatial prediction of daily soil water status for precise irrigation scheduling. Agric. Water Manag. 2009, 96, 1737–1745. [Google Scholar] [CrossRef]
- Gooley, L.; Huang, J.; Page, D.; Triantafilis, J. Digital soil mapping of available water content using proximal and remotely sensed data. Soil Use Manag. 2014, 30, 139–151. [Google Scholar] [CrossRef]
- Ortuani, B.; Chiaradia, E.A.; Priori, S.; L’Abate, G.; Canone, D.; Comunian, A.; Giudici, M.; Mele, M.; Facchi, A. Mapping Soil Water Capacity Through EMI Survey to Delineate Site-Specific Management Units Within an Irrigated Field. Soil Sci. 2016, 181, 252–263. [Google Scholar] [CrossRef]
- Campbell, G.S.; Norman, J.M. An Introduction to Environmental Biophysics; Springer: Berlin/Heidelberg, Germany, 1998; ISBN 0387949372. [Google Scholar]
- Semmens, K.A.; Anderson, M.C.; Kustas, W.P.; Gao, F.; Alfieri, J.G.; McKee, L.; Prueger, J.H.; Hain, C.R.; Cammalleri, C.; Yang, Y. Monitoring daily evapotranspiration over two California vineyards using Landsat 8 in a multi-sensor data fusion approach. Remote Sens. Environ. 2016, 185, 155–170. [Google Scholar] [CrossRef] [Green Version]
- Zipper, S.C.; Loheide, S.P., II. Using evapotranspiration to assess drought sensitivity on a subfield scale with HRMET, a high resolution surface energy balance model. Agric. For. Meteorol. 2014, 197, 91–102. [Google Scholar] [CrossRef]
- Feddes, R.A.; Hoff, H.; Bruen, M.; Dawson, T.; de Rosnay, P.; Dirmeyer, P.; Jackson, R.B.; Kabat, P.; Kleidon, A.; Lilly, A. Modeling root water uptake in hydrological and climate models. Bull. Am. Meteorol. Soc. 2001, 82, 2797–2809. [Google Scholar] [CrossRef]
- Zipper, S.C.; Soylu, M.E.; Booth, E.G.; Loheide, S.P., II. Untangling the effects of shallow groundwater and soil texture as drivers of subfield-scale yield variability. Water Resour. Res. 2015, 51, 6338–6358. [Google Scholar] [CrossRef] [Green Version]
- Watson, K.A.; Mayer, A.S.; Reeves, H.W. Groundwater availability as constrained by hydrogeology and environmental flows. Groundwater 2014, 52, 225–238. [Google Scholar] [CrossRef]
- Kraft, G.J.; Clancy, K.; Mechenich, D.J.; Haucke, J. Irrigation effects in the northern lake states: Wisconsin central sands revisited. Groundwater 2012, 50, 308–318. [Google Scholar] [CrossRef]
- Wisconsin Department of Natural Resources. The Ecological Landscapes of Wisconsin: An Assessment of Ecological Resources and Guide to Planning Sustainable Management; PUB-SS_1131L2015; Wisconsin Department of Natural Resources: Madison, WI, USA, 2015.
- Kraft, G.J.; Mechenich, D.J. Groundwater Pumping Effects on Groundwater Levels, Lake Levels, and Streamflows in the Wisconsin Central Sands; Center for Watershed Science and Education, College of Natural Resources, University of Wisconsin-Stevens Point/Extension: Stevens Point, WI, USA, 2010. [Google Scholar]
- Bradbury, K.; Fienen, M.; Kniffin, M.; Krause, J.; Westenbroek, S.M.; Leaf, A.T.; Barlow, P.M. Groundwater Flow Model for the Little Plover River basin in Wisconsin’s Central Sands; Wisconsin Geological and Natural History Survey: Madison, WI, USA, 2017. [Google Scholar]
- Fienen, M.N.; Bradbury, K.R.; Kniffin, M.; Barlow, P.M. Depletion Mapping and Constrained Optimization to Support Managing Groundwater Extraction. Groundwater 2018, 56, 18–31. [Google Scholar] [CrossRef]
- Kustas, W.P.; Anderson, M.C.; Alfieri, J.G.; Prueger, J.H.; Geli, H.M.E.; Neale, C.M.U. Mapping evapotranspiration with high-resolution aircraft imagery over vineyards using one-and two-source modeling schemes. Hydrol. Earth Syst. Sci. 2016, 20, 1523. [Google Scholar]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M. A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces. Agron. J. 2000, 92, 847–854. [Google Scholar] [CrossRef]
- Yang, Y.; Shang, S. A hybrid dual-source scheme and trapezoid framework–based evapotranspiration model (HTEM) using satellite images: Algorithm and model test. J. Geophys. Res. Atmos. 2013, 118, 2284–2300. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212, 198–212. [Google Scholar] [CrossRef]
- Feng, J.; Wang, Z. A satellite-based energy balance algorithm with reference dry and wet limits. Int. J. Remote Sens. 2013, 34, 2925–2946. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Timmermans, W.J.; Kustas, W.P.; Andreu, A. Utility of an automated thermal-based approach for monitoring evapotranspiration. Acta Geophys. 2015, 63, 1571–1608. [Google Scholar] [CrossRef]
- Serbin, S.P.; Singh, A.; McNeil, B.E.; Kingdon, C.C.; Townsend, P.A. Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Ecol. Appl. 2014, 24, 1651–1669. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.; Özdoğan, M.; Zipper, S.C.; Román, M.O.; Walker, J.; Hong, S.Y.; Marshall, M.; Magliulo, V.; Moreno, J.; Alonso, L. How universal is the relationship between remotely sensed vegetation indices and crop leaf area index? A global assessment. Remote Sens. 2016, 8, 597. [Google Scholar] [CrossRef]
- Huete, A.; Justice, C.; Van Leeuwen, W. MODIS vegetation index (MOD13). Algorithm Theor. Basis Doc. 1999, 3, 213. [Google Scholar]
- Boegh, E.; Soegaard, H.; Broge, N.; Hasager, C.B.; Jensen, N.O.; Schelde, K.; Thomsen, A. Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sens. Environ. 2002, 81, 179–193. [Google Scholar] [CrossRef]
- Allred, B.; Daniels, J.J.; Ehsani, M.R. Handbook of Agricultural Geophysics; CRC Press: Boca Raton, FL, USA, 2008; ISBN 142001935X. [Google Scholar]
- Sheets, K.R.; Hendrickx, J.M.H. Noninvasive Soil Water Content Measurement Using Electromagnetic Induction. Water Resour. Res. 1995, 31, 2401–2409. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Characterizing soil spatial variability with apparent soil electrical conductivity: I. Survey protocols. Comput. Electron. Agric. 2005, 46, 103–133. [Google Scholar] [CrossRef]
- Daccache, A.; Knox, J.W.; Weatherhead, E.K.; Daneshkhah, A.; Hess, T.M. Implementing precision irrigation in a humid climate–Recent experiences and on-going challenges. Agric. Water Manag. 2015, 147, 135–143. [Google Scholar] [CrossRef]
- Hedley, C.B.; Roudier, P.; Yule, I.J.; Ekanayake, J.; Bradbury, S. Soil water status and water table depth modelling using electromagnetic surveys for precision irrigation scheduling. Geoderma 2013, 199, 22–29. [Google Scholar] [CrossRef]
- Kobayashi, H.; Ryu, Y.; Baldocchi, D.D.; Welles, J.M.; Norman, J.M. On the correct estimation of gap fraction: How to remove scattered radiation in gap fraction measurements? Agric. For. Meteorol. 2013, 174, 170–183. [Google Scholar] [CrossRef]
- Baret, F.; Guyot, G. Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sens. Environ. 1991, 35, 161–173. [Google Scholar] [CrossRef]
- Anderson, M.C.; Neale, C.M.U.; Li, F.; Norman, J.M.; Kustas, W.P.; Jayanthi, H.; Chavez, J. Upscaling ground observations of vegetation water content, canopy height, and leaf area index during SMEX02 using aircraft and Landsat imagery. Remote Sens. Environ. 2004, 92, 447–464. [Google Scholar] [CrossRef]
- Murthy, V.; Grant, R.; Milford, J.; Oliphant, A.; Orlandini, S.; Stigter, K.; Wieringa, J. Agricultural meteorological variables and their observations. In Guide to Agricultural Meteorological Practices; WMO-134; WMO: Geneva, Switzerland, 2010; Chapter 2; pp. 1–35. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO Rome 1998, 300, 6541. [Google Scholar]
- Walter, I.A.; Allen, R.G.; Elliott, R.; Jensen, M.E.; Itenfisu, D.; Mecham, B.; Howell, T.A.; Snyder, R.; Brown, P.; Echings, S. ASCE’s standardized reference evapotranspiration equation. In Watershed Management and Operations Management 2000; Amer Society of Civil Engineers: Reston, VA, USA, 2000; pp. 1–11. [Google Scholar]
- Nocco, M.A.; Kraft, G.J.; Loheide, S.P.; Kucharik, C.J. Drivers of potential recharge from irrigated agroecosystems in the wisconsin central sands. Vadose Zone J. 2018, 17. [Google Scholar] [CrossRef]
- Shuttleworth, W.J.; Wallace, J.S. Evaporation from sparse crops-an energy combination theory. Q. J. R. Meteorol. Soc. 1985, 111, 839–855. [Google Scholar] [CrossRef]
- Camillo, P.J.; Gurney, R.J. A resistance parameter for bare-soil evaporation models. Soil Sci. 1986, 141, 95–105. [Google Scholar] [CrossRef]
- Rawls, W.J.; Ahuja, L.R.; Brakensiek, D.L. Estimating soil hydraulic properties from soils data. In Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils; University of California: Riverside, CA, USA, 1992; pp. 329–340. [Google Scholar]
- Newson, R. Parameters behind “nonparametric” statistics: Kendall’s tau, Somers’D and median differences. Stata J. 2002, 2, 45–64. [Google Scholar] [CrossRef]
- Brisson, N.; Itier, B.; L’Hotel, J.C.; Lorendeau, J.Y. Parameterisation of the Shuttleworth–Wallace model to estimate daily maximum transpiration for use in crop models. Ecol. Modell. 1998, 107, 159–169. [Google Scholar] [CrossRef]
- Sanford, S.; Panuska, J. Irrigation Management in Wisconsin. Univ. Wisconsin Coop. Ext. Publ. 2015. Available online: https://fyi.extension.wisc.edu/cropirrigation/files/2015/03/IrrigationManagement.pdf (accessed on 5 December 2015).
- Reyes, A.; Messina, C.D.; Hammer, G.L.; Liu, L.; van Oosterom, E.; Lafitte, R.; Cooper, M. Soil water capture trends over 50 years of single-cross maize (Zea mays L.) breeding in the US corn-belt. J. Exp. Bot. 2015, 66, 7339–7346. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Qiu, J.; Zhang, R.; Huang, S.; Chen, S.; Wang, H.; Luo, J.; Fan, Y. Intercomparison of Three Two-Source Energy Balance Models for Partitioning Evaporation and Transpiration in Semiarid Climates. Remote Sens. 2018, 10, 1149. [Google Scholar] [CrossRef]
- Cammalleri, C.; Anderson, M.C.; Kustas, W.P. Upscaling of evapotranspiration fluxes from instantaneous to daytime scales for thermal remote sensing applications. Hydrol. Earth Syst. Sci. 2014, 18, 1885–1894. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Radeloff, V.C.; Ives, A.R. Improving the mapping of crop types in the Midwestern US by fusing Landsat and MODIS satellite data. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 1–11. [Google Scholar] [CrossRef]
- Anderson, M.C.; Allen, R.G.; Morse, A.; Kustas, W.P. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens. Environ. 2012, 122, 50–65. [Google Scholar] [CrossRef]
Site/Year | Planted Area (ha) | Crop | Planting Date | Harvest Date |
---|---|---|---|---|
Field H | 26 | |||
2014 | peas | 22 May | 27 July (pearl millet cover crop) | |
2015 | potato | 1 May | 16 September (vine kill 13 August) | |
2016 | field corn | 15 May | 11 November | |
Field G | 30 | |||
2014 | potato | 9 May | 10 September (vine kill 22 August) | |
2015 | field corn | 10 May | 28 October | |
2016 | sweet corn | 2 June | 31 August | |
Field P | 14 | |||
2014 | field corn | 12 May | 3 November | |
2015 | sweet corn | 30 May | 1 September | |
2016 | potato | 6 May | 2 October (vine kill 19 August) | |
Field L | 16 | |||
2014 | sweet corn | 24 May | 25 August | |
2015 | sweet corn | 30 May | 1 September | |
2016 | potato | 7 May | 5 October (vine kill 19 August) | |
Field E | 25 | |||
2014 | sweet corn | 24 May | 25 August | |
2015 | potato | 3 May | 21 September (vine kill 20 August) | |
2016 | field corn | 16 May | 11 November | |
Field W | 28 | |||
2014 | field corn | 15 May | 3 November | |
2015 | peas | 30 May | 23 July (pearl millet cover crop) | |
2016 | potato | 4 May | 28 September (vine kill 19 August) |
HRMET Input | Spatial Resolution | Source | Uncertainty Estimation Used to Create Monte Carlo Ensemble of Input Data |
---|---|---|---|
Canopy temperature | 2 m | Thermal imagery (Section 2.3) | 25-pixel moving window to generate average canopy temperature per pixel and standard deviation |
LAI | 5 m | Multispectral imagery (Section 2.3) | Coefficient matrix based on 50 permutations of LAI-EVI predictive model (Section 2.5) |
Height | 5 m | Multispectral imagery (Section 2.3) | Coefficient matrix based on 50 permutations of LAI-EVI predictive model (Section 2.5) |
Air temperature | fixed | Micromet (Section 2.6) | 10-min measurements averaged over flight time from three met stations |
Wind Speed | fixed | Micromet (Section 2.6) | 10-min measurements averaged over flight time from three met stations |
Relative humidity | fixed | Micromet (Section 2.6) | 10-min measurements averaged over flight time from three met stations |
Solar radiation | fixed | Micromet (Section 2.6) | 10-min measurements averaged over flight time from three met stations |
Albedo | fixed | Empirical (Section 2.2) | 0.05 standard deviation imposed |
Emissivity | fixed | Empirical (Section 2.2) | 0.01 standard deviation imposed |
Mission | Date (DOY) | Flight Time (UTC) | Air Temperature (°C) | Wind Speed (m s−1) | Solar Radiation (W m−2) | Vapor Pressure (kPa) |
---|---|---|---|---|---|---|
1 | 6 June 14 (157) | 16:12–16:28 | 24.8 (0.5) | 1.1 (0.7) | 690 (156) | 1.7 (0.1) |
2 | 16 July 14 (197) | 15:50–16:17 | 20.1 (0.5) | 1.3 (0.5) | 791 (157) | 1.3 (0.1) |
3 | 23 July 14 (204) | 15:07–15:24 | 21.6 (0.3) | 1.2 (0.3) | 650 (55) | 1.7 (0.0) |
4 | 7 August 14 (219) | 15:38–15:54 | 24.1 (0.2) | 1.3 (0.7) | 664 (18) | 1.8 (0.1) |
5 | 16 June 15 (167) | 17:15–17:45 | 21.4 (0.8) | 0.8 (0.3) | 1058 (83) | 1.4 (0.0) |
6 | 02 July 15 (183) | 16:21–16:36 | 20.3 (0.3) | 0.8 (0.4) | 785 (3) | 1.3 (0.0) |
7 | 27 July 15 (208) | 16:02–16:19 | 27.6 (0.5) | 1.1 (0.4) | 730 (84) | 2.4 (0.0) |
8 | 11 August 15 (223) | 15:37–15:58 | 23.5 (0.4) | 1.2 (0.1) | 500 (227) | 1.8 (0.0) |
9 | 17 June 16 (169) | 15:40–16:13 | 25.6 (0.1) | 0.9 (0.6) | 727 (5) | 1.9 (0.1) |
10 | 1 July 16 (183) | 15:42–16:19 | 18.3 (0.2) | 2.1 (0.4) | 813 (10) | 1.4 (0.1) |
11 | 1 August 16 (214) | 15:34–16:05 | 25.7 (0.2) | 0.7 (0.3) | 691 (1) | 2.2 (0.1) |
12 | 18 August 16 (231) | 16:15–16:38 | 27.4 (0.4) | 1.6 (1.0) | 543 (117) | 2.4 (0.1) |
Intrafield Relative ET | Intrafield Relative ECa | Crop Soil Water Status | Recommended Precision Irrigation Actions |
---|---|---|---|
Low | Low | Soils have relatively lower plant available water, crops are under water-stress | Increase irrigation, reduce drainage |
Low | High | Soils have relatively higher plant available water, crops are under oxygen-stress 1 | Reduce irrigation, increase drainage |
Moderate to High | Low | Soils have relatively lower plant available water, but crops are well-watered | No change |
Moderate to High | High | Soils have relatively higher plant available water, crops are well-watered | No change |
Mission | Date (DOY) | H | G | P | L | E | W |
---|---|---|---|---|---|---|---|
1 | 06 June 14 (157) | 0.36 (0.02) | 0.35 (0.04) | 0.18 (0.04) | 0.35 (0.02) | 0.34 (0.04) | 0.31 (0.04) |
2 | 16 July 14 (197) | 0.76 (0.02) | 0.73 (0.02) | 0.78 (0.02) | 0.77 (0.02) | 0.68 (0.02) | na |
3 | 23 July 14 (204) | 0.67 (0.01) | 0.66 (0.01) | 0.65 (0.01) | 0.65 (0.01) | 0.63 (0.01) | 0.64 (0.01) |
4 | 07 August 14 (219) | 0.50 (0.02) | 0.66 (0.01) | 0.75 (0.01) | 0.74 (0.01) | 0.74 (0.01) | 0.74 (0.01) |
5 | 16 June 15 (167) | na | na | 0.59 (0.04) | 0.48 (0.06) | 0.79 (0.01) | 0.72 (0.02) |
6 | 02 July 15 (183) | 0.73 (0.01) | 0.55 (0.05) | 0.47 (0.01) | 0.12 (0.05) | 0.71 (0.03) | 0.75 (0.01) |
7 | 27 July 15 (208) | 0.73 (0.02) | 0.78 (0.02) | 0.78 (0.01) | 0.79 (0.01) | 0.75 (0.02) | na |
8 | 11 August 15 (223) | na | 0.52 (0.02) | 0.45 (0.02) | na | 0.44 (0.03) | 0.37 (0.02) |
9 | 17 June 16 (169) | 0.55 (0.03) | 0.36 (0.05) | 0.54 (0.03) | 0.50 (0.05) | 0.69 (0.02) | 0.45 (0.04) |
10 | 01 July 16 (183) | 0.73 (0.02) | 0.53 (0.01) | 0.74 (0.02) | 0.71 (0.02) | 0.71 (0.04) | 0.74 (0.02) |
11 | 01 August 16 (214) | 0.74 (0.01) | 0.73 (0.01) | 0.68 (0.01) | 0.70 (0.01) | 0.73 (0.01) | 0.70 (0.02) |
12 | 18 August 16 (231) | na | 0.59 (0.02) | 0.31 (0.03) | 0.22 (0.04) | 0.61 (0.03) | 0.37 (0.05) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nocco, M.A.; Zipper, S.C.; Booth, E.G.; Cummings, C.R.; Loheide, S.P., II; Kucharik, C.J. Combining Evapotranspiration and Soil Apparent Electrical Conductivity Mapping to Identify Potential Precision Irrigation Benefits. Remote Sens. 2019, 11, 2460. https://doi.org/10.3390/rs11212460
Nocco MA, Zipper SC, Booth EG, Cummings CR, Loheide SP II, Kucharik CJ. Combining Evapotranspiration and Soil Apparent Electrical Conductivity Mapping to Identify Potential Precision Irrigation Benefits. Remote Sensing. 2019; 11(21):2460. https://doi.org/10.3390/rs11212460
Chicago/Turabian StyleNocco, Mallika A., Samuel C. Zipper, Eric G. Booth, Cadan R. Cummings, Steven P. Loheide, II, and Christopher J. Kucharik. 2019. "Combining Evapotranspiration and Soil Apparent Electrical Conductivity Mapping to Identify Potential Precision Irrigation Benefits" Remote Sensing 11, no. 21: 2460. https://doi.org/10.3390/rs11212460
APA StyleNocco, M. A., Zipper, S. C., Booth, E. G., Cummings, C. R., Loheide, S. P., II, & Kucharik, C. J. (2019). Combining Evapotranspiration and Soil Apparent Electrical Conductivity Mapping to Identify Potential Precision Irrigation Benefits. Remote Sensing, 11(21), 2460. https://doi.org/10.3390/rs11212460