Monitoring Soil Surface Mineralogy at Different Moisture Conditions Using Visible Near-Infrared Spectroscopy Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Image Acquisition
2.3. Image Processing
2.4. Spectral Information Divergence Approach (SID)
2.5. Inductivity Coupled Plasma-Optical Emission Spectrometry Instruments (ICP-OES) Measurements
3. Results
3.1. Drying-Field Capacity Treatment (D-FC)
3.2. Field Capacity Treatment (FC)
3.3. Waterlogging-Field Capacity Treatment (W-FC)
3.4. ICP- OES Results
4. Discussion
4.1. Drying-Field Capacity Treatment (D-FC)
4.2. Field Capacity Treatment (FC)
4.3. Waterlogging-Field Capacity Treatment (W-FC)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chan, K.Y.; Heenan, D.P. Lime-induced loss of soil organic carbon and effect on aggregate stability. Soil Sci. Soc. Am. J. 1999, 63, 1841–1844. [Google Scholar] [CrossRef]
- Breuer, J.; Schwertmann, U. Changes to hardsetting properties of soil by addition of metal hydroxides. Eur. J. Soil Sci. 1999, 50, 657–664. [Google Scholar] [CrossRef]
- Kaiser, M.; Ellerbrock, R.H.; Wulf, M.; Dultz, S.; Hierath, C.; Sommer, M. The influence of mineral characteristics on organic matter content, composition, and stability of topsoils under long-term arable and forest land use. J. Geophys. Res. Biogeosci. 2012, 117, 1–16. [Google Scholar] [CrossRef]
- Kogel-Knabner, I.; Guggenberger, G.; Kleber, M.; Kandeler, E.; Kalbitz, K.; Scheu, S.; Eusterhues, K.; Leinweber, P. Organo-mineral associations in temperate soils: Integrating biology, mineralogy, and organic matter chemistry. J. Plant Nutr. Soil Sci. 2008, 171, 61–82. [Google Scholar] [CrossRef]
- Martins, M.R.; Angers, D.A.; Corá, J.E. Non-labile plant C contributes to long-lasting macroaggregation of an Oxisol. Soil Biol. Biochem. 2013, 58, 153–158. [Google Scholar] [CrossRef]
- Duiker, S.W.; Rhoton, F.E.; Torrent, J.; Smeck, N.E.; Lal, R. Iron (hydr)oxide crystallinity effects on soil aggregation. Soil Sci. Soc. Am. J. 2003, 67, 606–611. [Google Scholar] [CrossRef]
- Zhang, X.C.; Norton, L.D. Effect of exchangeable Mg on saturated hydraulic conductivity, disaggregation and clay dispersion of disturbed soils. J. Hydrol. 2002, 260, 194–205. [Google Scholar] [CrossRef]
- Totsche, K.U.; Amelung, W.; Gerzabek, M.H.; Guggenberger, G.; Klumpp, E.; Knief, C.; Lehndorff, E.; Mikutta, R.; Peth, S.; Prechtel, A.; et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 2018, 181, 104–136. [Google Scholar] [CrossRef]
- Barto, E.K.; Alt, F.; Oelmann, Y.; Wilcke, W.; Rillig, M.C. Contributions of biotic and abiotic factors to soil aggregation across a land use gradient. Soil Biol. Biochem. 2010, 42, 2316–2324. [Google Scholar] [CrossRef]
- Regelink, I.C.; Stoof, C.R.; Rousseva, S.; Weng, L.; Lair, G.J.; Kram, P.; Nikolaidis, N.P.; Kercheva, M.; Banwart, S.; Comans, R.N.J. Linkages between aggregate formation, porosity and soil chemical properties. Geoderma 2015, 247, 24–37. [Google Scholar] [CrossRef]
- Falsone, G.; Celi, L.; Stanchi, S.; Bonifacio, E. Relative importance of mineralogy and organic matter characteristics on macroaggregate and colloid dynamics in Mg-silicate dominated soils. Land Degrad. Dev. 2016, 27, 1700–1708. [Google Scholar] [CrossRef]
- Qafoku, N.P. Climate-Change Effects on Soils: Accelerated Weathering, Soil Carbon, and Elemental Cycling. Adv. Agron. 2015, 131, 111–172. [Google Scholar]
- Kleber, M.; Eusterhues, K.; Keiluweit, M.; Mikutta, C.; Mikutta, R.; Nico, P.S. Mineral-Organic Associations: Formation, Properties, and Relevance in Soil Environments. Adv. Agron. 2015, 130, 1–140. [Google Scholar]
- Richter, N.; Jarmer, T.; Chabrillat, S.; Oyonarte, C.; Hostert, P.; Kaufmann, H. Free Iron Oxide Determination in Mediterranean Soils using Diffuse Reflectance Spectroscopy. Soil Sci. Soc. Am. J. 2009, 73, 72–81. [Google Scholar] [CrossRef]
- Gomez, C.; Oltra-Carrió, R.; Bacha, S.; Lagacherie, P.; Briottet, X. Evaluating the sensitivity of clay content prediction to atmospheric effects and degradation of image spatial resolution using Hyperspectral VNIR/SWIR imagery. Remote Sens. Environ. 2015, 164, 1–15. [Google Scholar] [CrossRef]
- Xie, X.L.; Pan, X.Z.; Sun, B. Visible and Near-Infrared Diffuse Reflectance Spectroscopy for Prediction of Soil Properties near a Copper Smelter. Pedosphere 2012, 22, 351–366. [Google Scholar] [CrossRef]
- Mulder, V.L.; Plötze, M.; de Bruin, S.; Schaepman, M.E.; Mavris, C.; Kokaly, R.F.; Egli, M. Quantifying mineral abundances of complex mixtures by coupling spectral deconvolution of SWIR spectra (2.1–2.4 μm) and regression tree analysis. Geoderma 2013, 207, 279–290. [Google Scholar] [CrossRef]
- Mohanty, B.; Gupta, A.; Das, B.S. Estimation of weathering indices using spectral reflectance over visible to mid-infrared region. Geoderma 2016, 266, 111–119. [Google Scholar] [CrossRef]
- Sarathjith, M.C.; Das, B.S.; Vasava, H.B.; Mohanty, B.; Sahadevan, A.S.; Wani, S.P.; Sahrawat, K.L. Diffuse Reflectance Spectroscopic Approach for the Characterization of Soil Aggregate Size Distribution. Soil Sci. Soc. Am. J. 2014, 78, 369–376. [Google Scholar] [CrossRef]
- Ymeti, I.; van der Werff, H.; Shrestha, D.P.; Jetten, V.G.; Lievens, C.; van der Meer, F. Using Color, Texture and Object-Based Image Analysis of Multi-Temporal Camera Data to Monitor Soil Aggregate Breakdown. Sensors 2017, 17, 1241. [Google Scholar] [CrossRef]
- Zavala, L.M.; Granged, A.J.P.; Jordán, A.; Bárcenas-Moreno, G. Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions. Geoderma 2010, 158, 366–374. [Google Scholar] [CrossRef]
- Hanesch, M.; Stanjek, H.; Petersen, N. Thermomagnetic measurements of soil iron minerals: The role of organic carbon. Geophys. J. Int. 2006, 165, 53–61. [Google Scholar] [CrossRef]
- Liu, H.B.; Chen, T.H.; Zou, X.H.; Qing, C.S.; Frost, R.L. Thermal treatment of natural goethite: Thermal transformation and physical properties. Thermochim. Acta 2013, 568, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Specim, Spectral Imaging Ltd. Available online: www.specim.fi (accessed on 29 October 2019).
- Nguyen, H.T.; Lee, B.W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression. Eur. J. Agron. 2006, 24, 349–356. [Google Scholar] [CrossRef]
- Mariotto, I.; Thenkabail, P.S.; Huete, A.; Slonecker, E.T.; Platonov, A. Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission. Remote Sens. Environ. 2013, 139, 291–305. [Google Scholar] [CrossRef]
- Butz, C.; Grosjean, M.; Fischer, D.; Wunderle, S.; Tylmann, W.; Rein, B. Hyperspectral imaging spectroscopy: A promising method for the biogeochemical analysis of lake sediments. J. Appl. Remote Sens. 2015, 9, 096031. [Google Scholar] [CrossRef]
- Richards, J. Remote Sensing Digital Image Analysis; An Introduction; Springer: Berlin, Germany, 1993. [Google Scholar]
- Jelenek, J.; Kopackova, V.; Koucka, L.; Misurec, J. Testing a Modified PCA-Based Sharpening Approach for Image Fusion. Remote Sens. 2016, 8, 25. [Google Scholar] [CrossRef]
- ENVI. Exelis Visual Information Solutions. 2015. Available online: http://www.harrisgeospatial.com/ (accessed on 29 October 2019).
- Xu, M.M.; Zhang, L.P.; Du, B. An Image-Based Endmember Bundle Extraction Algorithm Using Both Spatial and Spectral Information. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2607–2617. [Google Scholar] [CrossRef]
- Zhao, H.Q.; Zhao, X.S.; Cen, Y.; Yang, H. Research on the Impact of Absorption Feature Extraction on Spectral Difference Between Similar Minerals. Spectrosc. Spectr. Anal. 2017, 37, 869–874. [Google Scholar]
- Van der Meer, F. The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 3–17. [Google Scholar] [CrossRef]
- Qin, J.; Burks, T.F.; Ritenour, M.A.; Bonn, W.G. Detection of citrus canker using hyperspectral reflectance imaging with spectral information divergence. J. Food Eng. 2009, 93, 183–191. [Google Scholar] [CrossRef]
- Chang, C.I. An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Trans. Inf. Theory 2000, 46, 1927–1932. [Google Scholar] [CrossRef] [Green Version]
- United States Geological Survey (USGS). Digital Spectral Library. 2017. Available online: https://crustal.usgs.gov (accessed on 4 September 2017).
- PerkinElmer, I. Sensitivity, Background, Noise, and Calibration in Atomic Spectroscopy: Effects on Accuracy and Detection Limits; PerkinElmer, Inc.: Waltham, MA, USA, 2018; pp. 1–11. [Google Scholar]
- Bravo-Garza, M.R.; Bryan, R.B.; Voroney, P. Influence of wetting and drying cycles and maize residue addition on the formation of water stable aggregates in Vertisols. Geoderma 2009, 151, 150–156. [Google Scholar] [CrossRef]
- Pires, L.F.; Villanueva, F.C.A.; Dias, N.M.P.; Bacchi, O.O.S.; Reichardt, K. Chemical migration during soil water retention curve evaluation. An. Acad. Bras. Ciências 2011, 83, 1097–1107. [Google Scholar] [CrossRef]
- Denef, K.; Six, J.; Merckx, R.; Paustian, K. Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy. Plant Soil 2002, 246, 185–200. [Google Scholar] [CrossRef]
- Scheidegger, A.; Borkovec, M.; Sticher, H. Coating of silica sand with goethite: Preparation and analytical identification. Geoderma 1993, 58, 43–65. [Google Scholar] [CrossRef]
- Wogelius, R.A.; Walther, J.V. Olivine dissolution at 25-degrees-C- effects of Ph, CO2, and organic-acids. Geochim. Cosmochim. Acta 1991, 55, 943–954. [Google Scholar] [CrossRef]
- Welch, S.A.; Ullman, W.J. The effect of organic-acids on plagioclase dissolution rates and stoichiometry. Geochim. Cosmochim. Acta 1993, 57, 2725–2736. [Google Scholar] [CrossRef]
- Bosch, J.; Fritzsche, A.; Totsche, K.U.; Meckenstock, R.U. Nanosized Ferrihydrite Colloids Facilitate Microbial Iron Reduction under Flow Conditions. Geomicrobiol. J. 2010, 27, 123–129. [Google Scholar] [CrossRef]
- Guerrero, C.; Mataix-Solera, J.; Navarro-Pedreno, J.; Garcia-Orenes, F.; Gomez, I. Different patterns of aggregate stability in burned and restored soils. Arid Land Res. Manag. 2001, 15, 163–171. [Google Scholar] [CrossRef]
- Arcenegui, V.; Guerrero, C.; Mataix-Solera, J.; Mataix-Beneyto, J.; Zornoza, R.; Morales, J.; Mayoral, A.M. The presence of ash as an interference factor in the estimation of the maximum temperature reached in burned soils using near-infrared spectroscopy (NIR). Catena 2008, 74, 177–184. [Google Scholar] [CrossRef]
- Regelink, I.C.; Weng, L.; Koopmans, G.F.; Van Riemsdijk, W.H. Asymmetric flow field-flow fractionation as a new approach to analyse iron-(hydr)oxide nanoparticles in soil extracts. Geoderma 2013, 202, 134–141. [Google Scholar] [CrossRef]
- Cismasu, A.C.; Williams, K.H.; Nico, P.S. Iron and Carbon Dynamics during Aging and Reductive Transformation of Biogenic Ferrihydrite. Environ. Sci. Technol. 2016, 50, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.M.; Schwertmann, U. Maghemite in soils and its origin: 1. Properties and observations on soil maghemites. Clay Miner. 1974, 10, 289–298. [Google Scholar] [CrossRef]
- Tratnyek, P.G.; Johnson, R.L. Nanotechnologies for environmental cleanup. Nano Today 2006, 1, 44–48. [Google Scholar] [CrossRef]
- Egli, M.; Dahms, D.; Norton, K. Soil formation rates on silicate parent material in alpine environments: Different approaches-different results? Geoderma 2014, 213, 320–333. [Google Scholar] [CrossRef]
- Righi, D.; Petit, S.; Bouchet, A. Characterization of hydroxy-interlayered vermiculite and illite- smectite interstratified minerals from the weathering of chlorite in a cryorthod. Clays Clay Miner. 1993, 41, 484–495. [Google Scholar] [CrossRef]
- McCauley, A.; Jones, C.; Olson-Rutz, K. Soil pH and Organic Matter. In Nutrient Management Module No. 8; Montana State University: Bozeman, MT, USA, 2017; p. 16. [Google Scholar]
- Zaher, H.; Caron, J.; Ouaki, B. Modeling aggregate internal pressure evolution following immersion to quantify mechanisms of structural stability. Soil Sci. Soc. Am. J. 2005, 69, 1–12. [Google Scholar] [CrossRef]
- Paré, T.; Dinel, H.; Moulin, A.P.; Townley-Smith, L. Organic matter quality and structural stability of a Black Chernozemic soil under different manure and tillage practices. Geoderma 1999, 91, 311–326. [Google Scholar] [CrossRef]
- Hansel, C.M.; Benner, S.G.; Neiss, J.; Dohnalkova, A.; Kukkadapu, R.K.; Fendorf, S. Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochim. Cosmochim. Acta 2003, 67, 2977–2992. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, H.D.; Postma, D.; Jakobsen, R.; Larsen, O. Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochim. Cosmochim. Acta 2005, 69, 3967–3977. [Google Scholar] [CrossRef]
- Dultz, S.; Steinke, H.; Mikutta, R.; Woche, S.K.; Guggenberger, G. Impact of organic matter types on surface charge and aggregation of goethite. Colloids Surf. A Physicochem. Eng. Asp. 2018, 554, 156–168. [Google Scholar] [CrossRef]
- Colombo, C.; Torrent, J. Relationships between aggregation and iron-oxides terra rossa soils from southern Italy. Catena 1991, 18, 51–59. [Google Scholar] [CrossRef]
- Sunil, B.M.; Deepa, A.V. Influence of Drying Temperature on Three Soils Physical Properties. Geotech. Geol. Eng. 2016, 34, 777–788. [Google Scholar] [CrossRef]
- Jones, A.A.; Bennett, P.C. Mineral Microniches Control the Diversity of Subsurface Microbial Populations. Geomicrobiol. J. 2014, 31, 246–261. [Google Scholar] [CrossRef]
- Ahmed, E.; Holmstrom, S.J.M. Microbe-mineral interactions: The impact of surface attachment on mineral weathering and element selectivity by microorganisms. Chem. Geol. 2015, 403, 13–23. [Google Scholar] [CrossRef]
- Raous, S.; Becquer, T.; Garnier, J.; Martins, E.D.; Echevarria, G.; Sterckeman, T. Mobility of metals in nickel mine spoil materials. Appl. Geochem. 2010, 25, 1746–1755. [Google Scholar] [CrossRef]
- Lesovaya, S.N.; Goryachkin, S.V.; Polekhovskii, Y.S. Soil formation and weathering on ultramafic rocks in the mountainous tundra of the Rai-Iz massif, Polar Urals. Eurasian Soil Sci. 2012, 45, 33–44. [Google Scholar] [CrossRef]
- Remusat, L.; Hatton, P.J.; Nico, P.S.; Zeller, B.; Kleber, M.; Derrien, D. NanoSIMS Study of Organic Matter Associated with Soil Aggregates: Advantages, Limitations, and Combination with STXM. Environ. Sci. Technol. 2012, 46, 3943–3949. [Google Scholar] [CrossRef]
- Rumpel, C.; Baumann, K.; Remusat, L.; Dignac, M.F.; Barre, P.; Deldicque, D.; Glasser, G.; Lieberwirth, I.; Chabbi, A. Nanoscale evidence of contrasted processes for root-derived organic matter stabilization by mineral interactions depending on soil depth. Soil Biol. Biochem. 2015, 85, 82–88. [Google Scholar] [CrossRef]
- Vogel, C.; Mueller, C.W.; Höschen, C.; Buegger, F.; Heister, K.; Schulz, S.; Schloter, M.; Kögel-Knabner, I. Submicron structures provide preferential spots for carbon and nitrogen sequestration in soils. Nat. Commun. 2014, 5, 2947. [Google Scholar] [CrossRef] [PubMed]
- Bazilevskaya, E.; Archibald, D.D.; Martinez, C.E. Rate constants and mechanisms for the crystallization of Al nano-goethite under environmentally relevant conditions. Geochim. Cosmochim. Acta 2012, 88, 167–182. [Google Scholar] [CrossRef]
- Thompson, A.; Chadwick, O.A.; Rancourt, D.G.; Chorover, J. Iron-oxide crystallinity increases during soil redox oscillations. Geochim. Cosmochim. Acta 2006, 70, 1710–1727. [Google Scholar] [CrossRef]
- Grimley, D.A.; Arruda, N.K. Observations of magnetite dissolution in poorly drained soils. Soil Sci. 2007, 172, 968–982. [Google Scholar] [CrossRef]
- Thompson, A.; Rancourt, D.G.; Chadwick, O.A.; Chorover, J. Iron solid-phase differentiation along a redox gradient in basaltic soils. Geochim. Cosmochim. Acta 2011, 75, 119–133. [Google Scholar] [CrossRef]
- Wolska, E.; Schwertmann, U. The vacancy ordering and distribution of aluminium ions in Gamma-(FE, AL)2O3. Solid State Ion. 1989, 32–33, 214–218. [Google Scholar] [CrossRef]
- Tamrat, W.Z.; Rose, J.; Grauby, O.; Doelsch, E.; Levard, C.; Chaurand, P.; Basile-Doelsch, I. Composition and molecular scale structure of nanophases formed by precipitation of biotite weathering products. Geochim. Cosmochim. Acta 2018, 229, 53–64. [Google Scholar] [CrossRef]
- Hansel, C.M.; Learman, D.R.; Lentini, C.J.; Ekstrom, E.B. Effect of adsorbed and substituted Al on Fe(II)-induced mineralization pathways of ferrihydrite. Geochim. Cosmochim. Acta 2011, 75, 4653–4666. [Google Scholar] [CrossRef]
- Pasakarnis, T.; McCormick, M.L.; Parkin, G.F.; Thompson, A.; Scherer, M.M. Fe-aq(II)-Fe-oxide(III) oxide electron transfer and Fe exchange: Effect of organic carbon. Environ. Chem. 2015, 12, 52–63. [Google Scholar] [CrossRef]
- Six, J.; Elliott, E.T.; Paustian, K. Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy. Soil Sci. Soc. Am. J. 2000, 64, 1042–1049. [Google Scholar] [CrossRef]
- Hughes, G.F. On mean accuracy of statistical pattern recognizers. IEEE Trans. Inf. Theory 1968, 14, 55–63. [Google Scholar] [CrossRef]
Soil ID | Soil Particle Size (%) | Texture Class | OM (%) | Fe2O3 (%) | ||
---|---|---|---|---|---|---|
Clay | Silt | Sand | ||||
Soil 1 | 16 | 71 | 13 1 | Silty Loam | 0 | 0.5 |
Soil 2 | 16 | 71 | 13 | Silty Loam | 4.6 2 | Na 4 |
Soil 3 | 23 | 52 | 25 | Silty Loam | 12.3 3 | Na |
Characteristics | Specification |
---|---|
Spectral range | 391–1008 nm |
Spectral resolution FWHM | 0.75–0.82 nm |
Spatial pixels | 1024 |
Spectral bands | 784 |
Detector | CMOS (Complementary metal-oxide- semiconductor sensors) |
Radiometric resolution | 12 bit |
Frame rate | 10 fps |
Output data format | Binary BIL data with separate ASCII format header, Envi compatible |
Instrument calibration | Spectral calibration. Normalization using internal referencing |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ymeti, I.; Pikha Shrestha, D.; van der Meer, F. Monitoring Soil Surface Mineralogy at Different Moisture Conditions Using Visible Near-Infrared Spectroscopy Data. Remote Sens. 2019, 11, 2526. https://doi.org/10.3390/rs11212526
Ymeti I, Pikha Shrestha D, van der Meer F. Monitoring Soil Surface Mineralogy at Different Moisture Conditions Using Visible Near-Infrared Spectroscopy Data. Remote Sensing. 2019; 11(21):2526. https://doi.org/10.3390/rs11212526
Chicago/Turabian StyleYmeti, Irena, Dhruba Pikha Shrestha, and Freek van der Meer. 2019. "Monitoring Soil Surface Mineralogy at Different Moisture Conditions Using Visible Near-Infrared Spectroscopy Data" Remote Sensing 11, no. 21: 2526. https://doi.org/10.3390/rs11212526
APA StyleYmeti, I., Pikha Shrestha, D., & van der Meer, F. (2019). Monitoring Soil Surface Mineralogy at Different Moisture Conditions Using Visible Near-Infrared Spectroscopy Data. Remote Sensing, 11(21), 2526. https://doi.org/10.3390/rs11212526