Winter Wheat Mapping Based on Sentinel-2 Data in Heterogeneous Planting Conditions
Abstract
:1. Introduction
2. Materials
2.1. Study Area
2.2. Datasets
3. Methods
3.1. Data Preprocessing
3.2. Calculating the Separability Using Jeffries–Matusita (JM) Distance
3.3. Description for Spectral Features
3.4. Description of the Classification Scheme
3.5. Random Forest Algorithm for Selecting Features and Extracting Winter Wheat
3.6. Accuracy Assessment
4. Results
4.1. Selection of Optimum Periods
4.2. Selection of Optimum Features
4.3. Winter Wheat Mapping in NAC and CAC
4.4. Accuracy of Winter Wheat Maps
5. Discussion
5.1. Winter Wheat Mapping in Heterogeneous Planting Conditions
5.2. Factors Influencing the Accuracy of Winter Wheat Mappings
5.3. Winter Wheat Mapping Using Optimum Feature Subset
5.4. Uncertainty Analysis and Future Needs
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO Regional Office for Asia and the Pacific. FAO statistical Yearbook 2014, Asia and the Pacific, Food and Agriculture; FAO Regional Office for Asia and the Pacific: Bangkok, Thailand, 2014; pp. 71–99. [Google Scholar]
- China Statistics Press. China Rural Statistical Yearbook; China Statistics Press: Beijing, China, 2018. [Google Scholar]
- Wu, D.; Yu, Q.; Lu, C.; Hengsdijk, H. Quantifying production potentials of winter wheat in the North China Plain. Eur. J. Agron. 2006, 24, 226–235. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhang, M.; Zhang, X.; Zeng, H.; Wu, B. Mapping Winter Wheat Biomass and Yield Using Time Series Data Blended from PROBA-V 100- and 300-m S1 Products. Remote Sens. 2016, 8, 824. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, W.; Atzberger, C.; Zhao, A.; Pan, Y.; Huang, X. A Phenology-Based Method to Map Cropping Patterns under a Wheat-Maize Rotation Using Remotely Sensed Time-Series Data. Remote Sens. 2018, 10, 1203. [Google Scholar] [CrossRef]
- Hubert-Moy, L.; Cottonec, A.; Le Du, L.; Chardin, A.; Perez, P. A comparison of parametric classification procedures of remotely sensed data applied on different landscape units. Remote Sens. Environ. 2001, 75, 174–187. [Google Scholar] [CrossRef]
- Khan, A.; Hansen, M.C.; Potapov, P.V.; Adusei, B.; Pickens, A.; Krylov, A.; Stehman, S.V. Evaluating Landsat and RapidEye Data for Winter Wheat Mapping and Area Estimation in Punjab, Pakistan. Remote Sens. 2018, 10, 489. [Google Scholar] [CrossRef]
- Yang, Y.; Tao, B.; Ren, W.; Zourarakis, D.P.; Masri, B.E.; Sun, Z.; Tian, Q. An Improved Approach Considering Intraclass Variability for Mapping Winter Wheat Using Multitemporal MODIS EVI Images. Remote Sens. 2019, 11, 1191. [Google Scholar] [CrossRef]
- Skakun, S.; Franch, B.; Vermote, E. Early season large-area winter crop mapping using MODIS NDVI data, growing degree days information and a Gaussian mixture mode. Remote Sens. Environ. 2017, 195, 244–258. [Google Scholar] [CrossRef]
- Tao, J.; Wu, W.; Yong, Z. Mapping winter wheat using phenological feature of peak before winter on the North China Plain based on time-series MODIS data. J. Integr. Agric. 2017, 16, 348–359. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Q.; Chen, L.; Li, J.; Liu, Q. Review of research advances in remote sensing monitoring of grain crop area. Trans. Chin. Soc. Agric. Eng. 2005, 21, 166–171. [Google Scholar]
- Castillejo-González, I.L.; Pena-Barragán, J.M.; Jurado-Expósito, M. Evaluation of pixel-and object-based approaches for mapping wild oat (Avena sterilis) weed patches in wheat fields using QuickBird imagery for site-specific management. Eur. J. Agron. 2014, 59, 57–66. [Google Scholar] [CrossRef]
- Yang, C.; Everitt, J.H.; Murden, D. Evaluating high resolution SPOT 5 satellite imagery for crop identification. Comput. Electron. Agric. 2011, 75, 347–354. [Google Scholar] [CrossRef]
- Siachalou, S.; Mallinis, G.; Tsakiri-Strati, M. A hidden Markov models approach for crop classification: Linking crop phenology to time series of multi-sensor remote sensing data. Remote Sens. 2015, 7, 3633–3650. [Google Scholar] [CrossRef]
- Shoko, C.; Mutanga, O. Examining the strength of the newly-launched Sentinel 2 MSI sensor in detecting and discriminating subtle differences between C3 and C4 grass species. ISPRS J. Photogramm. Remote Sens. 2017, 129, 32–40. [Google Scholar] [CrossRef]
- Delegido, J.; Verrelst, J.; Alonso, L.; Moreno, J. Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors 2011, 11, 7063–7081. [Google Scholar] [CrossRef]
- Korhonen, L.; Saputra, D.H.; Packalen, P.; Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens. Environ. 2017, 195, 259–274. [Google Scholar] [CrossRef]
- Pal, M.; Maxwell, A.E.; Warner, T.A. Kernel-based extreme learning machine for remote-sensing image classification. Remote Sens. Lett. 2013, 4, 853–862. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM. Remote Sens. Environ. 2006, 103, 179–189. [Google Scholar] [CrossRef]
- Conrad, C.; Colditz, R.R.; Dech, S.; Klein, D.; Vlek, P.L.G. Temporal segmentation of MODIS time series for improving crop classification in Central Asian irrigation systems. Int. J. Remote Sens. 2011, 32, 8763–8778. [Google Scholar] [CrossRef]
- Wardlow, B.; Egbert, S.; Kastens, J. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Remote Sens. Environ. 2007, 108, 290–310. [Google Scholar] [CrossRef]
- Shao, Y.; Lunetta, R.S.; Wheeler, B.; Iiames, J.S.; Campbell, J.B. An evaluation of time-series smoothing algorithms for land-cover classifications using MODIS-NDVI multitemporal data. Remote Sens. Environ. 2016, 174, 258–265. [Google Scholar] [CrossRef]
- Liu, G.D.; Wu, M.Q.; Niu, Z.; Wang, C.Y. Investigation method for crop area using remote sensing sampling basedon GF-1 satellite data. Trans. Chin. Soc. Agric. Eng. 2015, 31, 160–166. [Google Scholar]
- Son, N.T.; Chen, C.F.; Chen, C.R.; Minh, V.Q. Assessment of Sentinel-1A data for rice crop classification using random forests and support vector machines. Geocarto Int. 2018, 33, 587–601. [Google Scholar] [CrossRef]
- Liu, H.M.; He, B.F.; Zhang, H.Q. Anhui Winter Wheat Growing Remote Sensing Monitoring and Evaluation Methods Research. Chin. Agric. Sci. Bull. 2011, 27, 18–22. [Google Scholar]
- Ma, X.Q.; Zhang, H.Q.; Wu, W.Y.; Qi, S.E.; Chen, X.Y. Analyzing and Zoning of the Eco-climate Suitability on Winter Wheat Varieties in Anhui Province. Chin. J. Agrometeorol. 2012, 33, 86–92. [Google Scholar]
- Shang, M.; Zhi, P.; Fei, W.; Wei, J.; Shao, J. Application on remote sensing survey of abandoned farmlands in winter along the Huaihe River based on GF-1 image. Trans. Chin. Soc. Agric. Eng. 2019, 35, 227–233. [Google Scholar]
- Statistics Bureau of Anhui Province. Anhui Statistical Yearbook; Statistics Bureau of Anhui Province: Hefei, China, 2018.
- ESA Introducing Sentinel-2. Available online: http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2/Introducing_Sentinel-2 (accessed on 17 December 2015).
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Cooley, S.W.; Smith, L.C.; Stepan, L.; Mascaro, J. Tracking Dynamic Northern Surface Water Changes with High-Frequency Planet CubeSat Imagery. Remote Sens. 2017, 9, 1306. [Google Scholar] [CrossRef]
- Houborg, R.; McCabe, M.F. High-Resolution NDVI from Planet’s Constellation of Earth Observing Nano-Satellites: A New Data Source for Precision Agriculture. Remote Sens. 2016, 8, 768. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, X.; Jiang, H. Object-oriented method for urban vegetation mapping using IKONOS imagery. Int. J. Remote Sens. 2010, 31, 177–196. [Google Scholar] [CrossRef]
- Van Niel, T.G.; McVicar, T.R.; Datt, B. On the relationship between training sample size and data dimensionality: Monte Carlo analysis of broadband multitemporal classification. Remote Sens. Environ. 2005, 98, 468–480. [Google Scholar] [CrossRef]
- Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Random forest classification of crop type using multi-temporal terrasar-x dual-polarimetric data. Remote Sens. Lett. 2014, 5, 157–164. [Google Scholar] [CrossRef]
- Rouse, J.W.; Hass, R.H.; Scheel, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plain with ERTS. In Proceedings of the 3rd Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 10–14 December 1973; pp. 309–317. [Google Scholar]
- Huete, A.R.; Didan, K.; Miura, T. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [Google Scholar] [CrossRef]
- Xu, H. A Study on Information Extraction of Water Body with the Modified Normalized Difference Water Index (MNDWI). J. Remote Sens. 2005, 9, 590–595. [Google Scholar]
- Zha, Y.; Ni, S.; Yang, S. An Effective Approach to Automatically Extract Urban Land-use from TM Imagery. J. Remote Sens. 2003, 7, 38–40. [Google Scholar]
- Clevers, J.G.; Gitelson, A.A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and -3. Int. J. Appl. Earth. Obs. Geoinf. 2013, 23, 344–351. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric. For. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N. Remote estimation of chlorophyll content in higher plant leaves. Int. J. Remote Sens. 1997, 18, 2691–2697. [Google Scholar] [CrossRef]
- Wang, N.; Li, Q.Z.; Zhang, Y.; Zhao, L.C.; Wang, H.Y. Identification of main crops based on the univariate feature selection in Subei. J. Remote Sens. 2017, 21, 519–530. [Google Scholar]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M. An assessment of the effectiveness of a Random Forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random Forest classification of multisource remote sensing and geographic data. IEEE Geosci. Remote Sens. Symp. 2004, 2, 1049–1052. [Google Scholar]
- Du, P.; Samat, A.; Waske, B.; Liu, S.; Li, Z. Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS J. Photogramm. Remote Sens. 2015, 105, 38–53. [Google Scholar] [CrossRef]
- Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Genuer, R.; Poggi, J.M.; Tuleau-Malot, C. Variable selection using random forests. Pattern Recognit. Lett. 2010, 31, 2225–2236. [Google Scholar] [CrossRef] [Green Version]
- Guan, H.; Li, J.; Chapman, M.; Deng, F.; Ji, Z. Integration of orthoimagery and lidar data for object-based urban thematic mapping using random forests. Int. J. Remote Sens. 2013, 34, 5166–5186. [Google Scholar] [CrossRef]
- Congalton, R.; Green, K. Assessing the Accuracy of Remotely Sensed Data; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Fernandes, J.L.; Ebecken, N.F.F.; Esquerdo, J.C.D.M. Sugarcane yield prediction in Brazil using NDVI time series and neural networks ensemble. Int. J. Remote Sens. 2017, 38, 4631–4644. [Google Scholar] [CrossRef]
- Zhang, L.; Gong, Z.N.; Wang, Q.W.; Jin, D.D.; Wang, X. Wetland mapping of Yellow River Delta wetlands based on multi-feature optimization of Sentinel-2 images. J. Remote Sens. 2019, 23, 313–326. [Google Scholar]
- Zhong, L.H.; Gong, P.; Biging, G.S. Efficient corn and soybean mapping with temporal extend ability: A multi-year experiment using Landsat imagery. Remote Sens. Environ. 2014, 140, 1–13. [Google Scholar] [CrossRef]
- Da Silva, C.A.; Frank, T.; Rodrigues, T.C.S. Discrimination of soybean areas through images EVI/MODIS and analysis based on geo-object. Rev. Bras. Eng. Agric. Ambient. 2014, 18, 44–53. [Google Scholar]
NAC | CAC | |
---|---|---|
Sowing | 24 October, 2017 | 28 October, 2017 |
Seeding | 6 November, 2017 | 9 November, 2017 |
Tillering | 13 December, 2017 | 14 December, 2017 |
Overwintering | 25 December, 2017 | 2 January, 2018 |
Greening up | 14 February, 2018 | 17 February, 2018 |
Jointing | 21 March, 2018 | 12 March, 2018 |
Heading | 14 April, 2018 | 12 April, 2018 |
Maturing | 15 May, 2018 | 10 May, 2018 |
Harvesting | 23 May, 2018 | 27 May, 2018 |
Sensor | Acquisition Time | The Number of Scenes | Wheat Growth Stage |
---|---|---|---|
Sentinel-2 MSI | 8 November 2017 | 2 | Seeding |
Sentinel-2 MSI | 18 December 2017 | 2 | Tillering |
Sentinel-2 MSI | 11 February 2018 | 2 | Greening up |
Sentinel-2 MSI | 7 April 2018 | 2 | Heading |
Sentinel-2 MSI | 6 June 2018 | 2 | Harvesting |
Planet CCD | 7 April 2018 | 11 | Heading |
Features | Band Number | Instructions | Reference | |
---|---|---|---|---|
Spectra | Center wavelength (nm) | Resolution (m) | - | |
band 2 | 496 | 10 | ||
band 3 | 560 | 10 | ||
band 4 | 665 | 10 | ||
band 5 | 704 | 20 | ||
band 6 | 740 | 20 | ||
band 7 | 783 | 20 | ||
band 8 | 835 | 10 | ||
band 8a | 865 | 20 | ||
band 11 | 1614 | 20 | ||
band 12 | 2202 | 20 | ||
Vegetation indices | NDVI | (ρ8 − ρ4)/(ρ8 + ρ4) | Rouse et al., 1974 | |
NDVI5 | (ρ8 − ρ5)/(ρ8 + ρ5) | Gitelson, 1997 | ||
NDVI6 | (ρ8 − ρ6)/(ρ8 + ρ6) | Gitelson, 1997 | ||
NDVI7 | (ρ8 − ρ7)/(ρ8 + ρ7) | Gitelson, 1997 | ||
EVI | 2.5 × ((ρ8 − ρ4)/(ρ8 + 6ρ4 − 7.5ρ2 + 1)) | Huete et al., 2002 | ||
SAVI | 1.5 × ((ρ8 − ρ4)/(ρ8 + ρ4 + 1)) | Huete et al., 1988 | ||
GNDVI | (ρ8 − ρ3)/(ρ8 + ρ3) | Gitelson, 1997 | ||
Water index | MNDWI | (ρ3 − ρ11)/(ρ3 + ρ11) | Xu, 2005 | |
Building index | NDBI | (ρ11 − ρ8)/(ρ11 + ρ8) | Zha, 2003 |
Scheme | Spectral Feature Combination |
---|---|
A | Nine indices (seven vegetation indices + water index+ building index) |
B | Ten spectral bands (bands 2, 3, 4, 5, 6, 7, 8, 8a, 11, 12) |
C | Nineteen features (ten spectral bands + nine indices) |
D | Optimum subset from the nineteen features |
NAC | 8 November 2017 | 18 December2017 | 11 February 2018 | 7 April2018 | 6 June2018 |
Water | 1.98 | 1.99 | 1.99 | 1.99 | 1.99 |
Urban | 1.99 | 1.99 | 1.99 | 1.99 | 1.99 |
Bare land | 1.56 | 1.70 | 1.55 | 1.98 | 1.76 |
Grass | 1.85 | 1.86 | 1.71 | 1.96 | 1.84 |
Forest | 1.87 | 1.76 | 1.66 | 1.86 | 1.98 |
Others | 1.83 | 1.80 | 1.62 | 1.99 | 1.92 |
CAC | 8 November 2017 | 18 December2017 | 11 February 2018 | 7 April2018 | 6 June2018 |
Water | 1.97 | 1.99 | 1.97 | 1.99 | 1.98 |
Urban | 1.97 | 1.99 | 1.97 | 1.99 | 1.97 |
Bare land | 1.77 | 1.62 | 1.46 | 1.99 | 1.72 |
Grass | 1.96 | 1.81 | 1.68 | 1.83 | 1.99 |
Forest | 1.99 | 1.99 | 1.84 | 1.94 | 1.99 |
Oilseed rape | 1.70 | 1.41 | 1.70 | 1.96 | 1.70 |
Others | 1.99 | 1.99 | 1.97 | 1.99 | 1.83 |
NAC | A | B | C | D | ||||||||||||
PA(%) | UA(%) | Kappa | PE(%) | PA(%) | UA(%) | Kappa | PE(%) | PA(%) | UA(%) | Kappa | PE(%) | PA(%) | UA(%) | Kappa | PE(%) | |
Sample_1 | 94.7 | 91.4 | 0.85 | 3.6 | 90.3 | 91.7 | 0.85 | 3.2 | 94.5 | 91.5 | 0.88 | 3.0 | 94.1 | 91.0 | 0.87 | 3.2 |
Sample_2 | 91.4 | 97.5 | 0.82 | 5.0 | 96.0 | 93.1 | 0.82 | 4.9 | 94.2 | 95.0 | 0.86 | 4.1 | 95.5 | 94.3 | 0.83 | 4.2 |
Sample_3 | 95.6 | 96.7 | 0.84 | 2.0 | 94.6 | 96.3 | 0.85 | 2.2 | 95.5 | 96.9 | 0.88 | 1.4 | 95.4 | 96.4 | 0.87 | 1.5 |
Sample_4 | 94.1 | 95.1 | 0.83 | 1.7 | 97.0 | 92.9 | 0.83 | 1.7 | 95.5 | 94.4 | 0.85 | 1.1 | 97.0 | 93.1 | 0.84 | 1.4 |
Sample_5 | 94.6 | 96.3 | 0.85 | 3.4 | 91.2 | 97.7 | 0.82 | 5.6 | 94.1 | 91.0 | 0.87 | 1.3 | 95.1 | 96.7 | 0.86 | 2.7 |
CAC | A | B | C | D | ||||||||||||
PA(%) | UA(%) | Kappa | PE(%) | PA(%) | UA(%) | Kappa | PE(%) | PA(%) | UA(%) | Kappa | PE (%) | PA (%) | UA (%) | Kappa | PE (%) | |
Sample_1 | 76.0 | 91.6 | 0.73 | 16.9 | 84.1 | 85.7 | 0.77 | 15.4 | 79.4 | 90.3 | 0.78 | 12.0 | 76.0 | 91.6 | 0.76 | 16.4 |
Sample_2 | 81.7 | 80.3 | 0.70 | 23.8 | 82.8 | 74.6 | 0.72 | 20.6 | 81.2 | 74.9 | 0.71 | 20.7 | 81.2 | 74.9 | 0.71 | 21.7 |
Sample_3 | 81.9 | 66.9 | 0.72 | 21.6 | 75.1 | 65.3 | 0.69 | 27.6 | 81.8 | 66.1 | 0.72 | 20.8 | 82.2 | 68.3 | 0.73 | 18.6 |
Sample_4 | 93.2 | 77.6 | 0.78 | 19.6 | 90.1 | 71.1 | 0.71 | 22.6 | 93.4 | 77.0 | 0.78 | 17.3 | 91.9 | 79.0 | 0.78 | 15.8 |
Sample_5 | 72.6 | 65.7 | 0.70 | 23.1 | 84.4 | 73.2 | 0.71 | 22.4 | 76.7 | 84.3 | 0.72 | 20.8 | 74.9 | 72.1 | 0.70 | 24.4 |
Sample_6 | 85.4 | 71.1 | 0.71 | 24.1 | 77.6 | 75.8 | 0.70 | 27.5 | 81.2 | 74.9 | 0.71 | 24.1 | 82.8 | 73.7 | 0.71 | 25.3 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Fang, S.; She, B.; Zhang, H.; Jin, N.; Xia, H.; Yang, Y.; Ding, Y. Winter Wheat Mapping Based on Sentinel-2 Data in Heterogeneous Planting Conditions. Remote Sens. 2019, 11, 2647. https://doi.org/10.3390/rs11222647
Zhang D, Fang S, She B, Zhang H, Jin N, Xia H, Yang Y, Ding Y. Winter Wheat Mapping Based on Sentinel-2 Data in Heterogeneous Planting Conditions. Remote Sensing. 2019; 11(22):2647. https://doi.org/10.3390/rs11222647
Chicago/Turabian StyleZhang, Dongyan, Shengmei Fang, Bao She, Huihui Zhang, Ning Jin, Haoming Xia, Yuying Yang, and Yang Ding. 2019. "Winter Wheat Mapping Based on Sentinel-2 Data in Heterogeneous Planting Conditions" Remote Sensing 11, no. 22: 2647. https://doi.org/10.3390/rs11222647
APA StyleZhang, D., Fang, S., She, B., Zhang, H., Jin, N., Xia, H., Yang, Y., & Ding, Y. (2019). Winter Wheat Mapping Based on Sentinel-2 Data in Heterogeneous Planting Conditions. Remote Sensing, 11(22), 2647. https://doi.org/10.3390/rs11222647