TanDEM-X Forest Mapping Using Convolutional Neural Networks
Abstract
:1. Introduction
2. Background Concepts
2.1. Baseline Algorithms for Forest Mapping Using TanDEM-X
2.2. Convolutional Neural Networks
3. Proposed Models
- , absolutely calibrated backscatter image;
- , local incidence angle;
- , interferometric coherence;
- , volumetric decorrelation.
3.1. TDX-Res
3.2. TDX-Dense
3.3. TDX-U
4. Experimental Results
4.1. The Pennsylvania Dataset and Training Details
4.2. Methods and Metrics
- [TP]
- True positives: rate of pixels correctly classified as forest.
- [TN]
- True negatives: rate of pixels correctly classified as non-forest.
- [FP]
- False positives: rate of pixels wrongly classified as forest.
- [FN]
- False negatives: rate of pixels wrongly classified as non-forest.
4.3. Numerical Assessment
4.4. Visual Comparison
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehamn, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st century forest coverage change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machala, M.; Zejdová, L. Forest Mapping Through Object-based Image Analysis of Multispectral and LiDAR Aerial Data. Eur. J. Remote Sens. 2014, 47, 117–131. [Google Scholar] [CrossRef]
- Hong, D.; Yokoya, N.; Chanussot, J.; Zhu, X.X. An Augmented Linear Mixing Model to Address Spectral Variability for Hyperspectral Unmixing. IEEE Trans. Image Process. 2019, 28, 1923–1938. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dobson, M.C.; Ulaby, F.T.; Pierce, L.E. Land-cover classification and estimation of terrain attributes using synthetic aperture radar. Remote Sens. Environ. 1995, 51, 199–214. [Google Scholar] [CrossRef]
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
- Engdahl, M.E.; Hyyppa, J.M. Land-cover classification using multitemporal ERS-1/2 InSAR data. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1620–1628. [Google Scholar] [CrossRef]
- Sica, F.; Pulella, A.; Nannini, M.; Pinheiro, M.; Rizzoli, P. Repeat-pass SAR interferometry for land cover classification: A methodology using Sentinel-1 Short-Time-Series. Remote Sens. Environ. 2019, in press. [Google Scholar] [CrossRef]
- Krieger, G.; Moreira, A.; Fiedler, H.; Hajnsek, I.; Werner, M.; Younis, M.; Zink, M. TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry. IEEE Trans. Geosci. Remote Sens. 2007, 45, 3317–3341. [Google Scholar] [CrossRef] [Green Version]
- Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Borla Tridon, D.; Braeutigam, B.; Bachmann, M.; Schulze, D.; Fritz, T.; Huber, M.; et al. Generation and Performance Assessment of the global TanDEM-X digital elevation model. J. Photogr. Remote Sens. 2017, 132, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Martone, M.; Rizzoli, P.; Wecklich, C.; González, C.; Bueso-Bello, J.L.; Valdo, P.; Schulze, D.; Zink, M.; Krieger, G.; Moreira, A. The global forest/non-forest map from TanDEM-X interferometric SAR data. Remote Sens. Environ. 2018, 205, 352–373. [Google Scholar] [CrossRef]
- Martone, M.; Sica, F.; González, C.; Bueso-Bello, J.L.; Valdo, P.; Rizzoli, P. High-Resolution Forest Mapping from TanDEM-X Interferometric Data Exploiting Nonlocal Filtering. Remote Sens. 2018, 10, 1477. [Google Scholar] [CrossRef] [Green Version]
- The TanDEM-X Forest/Non-Forest Map. Available online: https://geoservice.dlr.de/web/maps/tdm:forest (accessed on 10 November 2019).
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. In Proceedings of the Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1106–1114. [Google Scholar]
- Dong, C.; Loy, C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 295–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gargiulo, M.; Mazza, A.; Gaetano, R.; Ruello, G.; Scarpa, G. Fast Super-Resolution of 20 m Sentinel-2 Bands Using Convolutional Neural Networks. Remote Sens. 2019, 11, 2635. [Google Scholar] [CrossRef] [Green Version]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Donahue, J.; Girshick, R.; Darrell, T. Part-Based R-CNNs for Fine-Grained Category Detection. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014. [Google Scholar]
- Maltezos, E.; Doulamis, N.; Doulamis, A.; Ioannidis, C. Deep convolutional neural networks for building extraction from orthoimages and dense image matching point clouds. J. Appl. Remote Sens. 2017, 11, 042620. [Google Scholar] [CrossRef]
- Jiao, L.; Liang, M.; Chen, H.; Yang, S.; Liu, H.; Cao, X. Deep Fully Convolutional Network-Based Spatial Distribution Prediction for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5585–5599. [Google Scholar] [CrossRef]
- Fotiadou, K.; Tsagkatakis, G.; Tsakalides, P. Deep Convolutional Neural Networks for the Classification of Snapshot Mosaic Hyperspectral Imagery. Electron. Imaging 2017, 2017, 185–190. [Google Scholar] [CrossRef] [Green Version]
- Jahan, F.; Awrangjeb, M. Pixel-Based Land Cover Classification by Fusing Hyperspectral and LIDAR Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 711–718. [Google Scholar] [CrossRef] [Green Version]
- Zhu, X.X.; Tuia, D.; Mou, L.; Xia, G.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep Learning in Remote Sensing: A Comprehensive Review and List of Resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Masi, G.; Cozzolino, D.; Verdoliva, L.; Scarpa, G. Pansharpening by Convolutional Neural Networks. Remote Sens. 2016, 8, 594. [Google Scholar] [CrossRef] [Green Version]
- Vitale, S. A CNN-Based Pansharpening Method with Perceptual Loss. In Proceedings of the 2019 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2019), Saint Petersburg, Russia, 1–4 July 2019; pp. 3105–3108. [Google Scholar] [CrossRef]
- Chen, X.; Xiang, S.; Liu, C.; Pan, C. Vehicle Detection in Satellite Images by Hybrid Deep Convolutional Neural Networks. IEEE Geosci. Remote Sens. Lett. 2014, 11, 1797–1801. [Google Scholar] [CrossRef]
- Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; Paluri, M. Learning spatiotemporal features with 3d convolutional networks. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 4489–4497. [Google Scholar]
- Li, Y.; Zhang, H.; Shen, Q. Spectral–Spatial Classification of Hyperspectral Imagery with 3D Convolutional Neural Network. Remote Sens. 2017, 9, 67. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wu, G.; Du, Q. Transferred Deep Learning for Anomaly Detection in Hyperspectral Imagery. IEEE Geosci. Remote Sens. Lett. 2017, 14, 597–601. [Google Scholar] [CrossRef]
- Chierchia, G.; Cozzolino, D.; Poggi, G.; Verdoliva, L. SAR image despeckling through convolutional neural networks. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5438–5441. [Google Scholar] [CrossRef] [Green Version]
- Vitale, S.; Ferraioli, G.; Pascazio, V. A New Ratio Image Based CNN Algorithm For SAR Despeckling. arXiv 2019, arXiv:1906.04111. [Google Scholar]
- Zhang, Z.; Wang, H.; Xu, F.; Jin, Y. Complex-Valued Convolutional Neural Network and Its Application in Polarimetric SAR Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7177–7188. [Google Scholar] [CrossRef]
- Bentes, C.; Frost, A.; Velotto, D.; Tings, B. Ship-Iceberg Discrimination with Convolutional Neural Networks in High Resolution SAR Images. In Proceedings of the EUSAR 2016 11th European Conference on Synthetic Aperture Radar, Hamburg, Germany, 6–9 June 2016; pp. 1–4. [Google Scholar]
- Ødegaard, N.; Knapskog, A.O.; Cochin, C.; Louvigne, J. Classification of ships using real and simulated data in a convolutional neural network. In Proceedings of the 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, USA, 1–6 May 2016. [Google Scholar] [CrossRef]
- Scarpa, G.; Gargiulo, M.; Mazza, A.; Gaetano, R. A CNN-Based Fusion Method for Feature Extraction from Sentinel Data. Remote Sens. 2018, 10, 236. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar]
- Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2015, Munich, Germany, 5–9 October 2015; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Mazza, A.; Sica, F. Deep Learning Solutions for Tandem-X-Based Forest Classification. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 2631–2634. [Google Scholar] [CrossRef] [Green Version]
- Martone, M.; Rizzoli, P.; Krieger, G. Volume Decorrelation Effects in TanDEM-X Data. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1812–1816. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.E.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going Deeper with Convolutions. arXiv 2014, arXiv:1409.4842. [Google Scholar]
- Lin, T.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature Pyramid Networks for Object Detection. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 936–944. [Google Scholar]
- Shore, J.; Johnson, R. Axiomatic derivation of the principle of maximum entropy and the principle of minimum cross-entropy. IEEE Trans. Inf. Theory 1980, 26, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Chao, M.; Lo, Y.C. Automatic skin lesion segmentation using deep fully convolutional networks with jaccard distance. IEEE Trans. Med. Imaging 2017, 36, 1876–1886. [Google Scholar] [CrossRef] [PubMed]
- Scarpa, G.; Vitale, S.; Cozzolino, D. Target-Adaptive CNN-Based Pansharpening. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5443–5457. [Google Scholar] [CrossRef] [Green Version]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv 2015, arXiv:1502.03167. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- O’Neil-Dunne, J.; MacFaden, S.; Royar, A.; Reis, M.; Dubayah, R.; Swatantran, A. An object-Based Approach to Satewide Land Cover Mapping. In Proceedings of the ASPRS Annual Conference, Louisville, KY, USA, 23–28 March 2014. [Google Scholar]
Layer | Kernel Shape |
---|---|
Batch Normalization | - |
Conv + ReLU | 64 (3 × 3) |
Conv + ReLU | 64 (3 × 3) |
Conv + ReLU | 64 (3 × 3) |
Conv + ReLU | 64 (3 × 3) |
Conv + ReLU | 64 (3 × 3) |
Conv + ReLU | 64 (3 × 3) |
Conv + Sigmoid | 1 (1 × 1) |
Layer | Kernel Shape |
---|---|
Batch Normalization | - |
Conv + ReLU | 64 (3 × 3) |
Conv + ReLU | 64 (3 × 3) |
Conv + ReLU | 64 (3 × 3) |
Conv + ReLU | 64 (3 × 3) |
Conv + ReLU | 64 (3 × 3) |
Conv + ReLU | 64 (3 × 3) |
Conv + Sigmoid | 1 (1 × 1) |
Layer | Kernel Shape |
---|---|
Batch Normalization | - |
Conv + ReLU | 64 × b × (3 × 3) |
Conv + ReLU | 64 × 64 × (3 × 3) |
2 × 2 Max Pooling | - |
Conv + ReLU | 128 × 64 × (3 × 3) |
Conv + ReLU | 128 × 128 × (3 × 3) |
2 × 2 Max Pooling | - |
Conv + ReLU | 256 × 128 × (3 × 3) |
Conv + ReLU | 256 × 256 × (3 × 3) |
2 × 2 Max Pooling | - |
Conv + ReLU | 512 × 256 × (3 × 3) |
Conv + ReLU | 512 × 512 × (3 × 3) |
2 × 2 Upsampling | - |
Conv + ReLU | 256 × 512 × (3 × 3) |
Conv + ReLU | 256 × 256 × (3 × 3) |
2 × 2 Upsampling | - |
Conv + ReLU | 128 × 256 × (3 × 3) |
Conv + ReLU | 128 × 128 × (3 × 3) |
2 × 2 Upsampling | - |
Conv + ReLU | 64 × 128 × (3 × 3) |
Conv + ReLU | 64 × 64 × (3 × 3) |
Conv + Sigmoid | 1 × 64 × (1 × 1) |
Model | Recall | Prec. | -Score | Acc. | ||||
---|---|---|---|---|---|---|---|---|
TDX-Res | × | 80.09% | 61.79% | 69.76% | 69.67% | |||
TDX-Res | × | × | 84.44% | 79.97% | 82.15% | 83.96% | ||
TDX-Res | × | × | 78.69% | 75.32% | 76.97% | 79.43% | ||
TDX-Res | × | × | 91.29% | 64.32% | 75.47% | 74.08% | ||
TDX-Res | × | × | 84.06% | 65.67% | 73.74% | 73.84% | ||
TDX-Dense | × | × | 79.12% | 67.87% | 73.06% | 74.51% | ||
TDX-U | × | × | 80.48% | 84.57% | 82.48% | 85.06% | ||
TDX-Res [39] | × | × | × | 85.04% | 81.38% | 83.17% | 84.97% | |
TDX-Dense [39] | × | × | × | 83.99% | 83.76% | 83.88% | 85.89% | |
TDX-U | × | × | × | 84.46% | 88.19% | 86.29% | 88.27% | |
TDX-Res | × | × | × | 86.97% | 79.42% | 83.02% | 84.46% | |
TDX-Dense | × | × | × | 91.94% | 74.10% | 82.06% | 82.44% | |
TDX-U | × | × | × | 82.94% | 89.25% | 85.98% | 88.18% | |
TDX-Res | × | × | × | × | 89.80% | 75.59% | 82.08% | 82.88% |
TDX-Dense | × | × | × | × | 86.40% | 80.83% | 83.52% | 85.11% |
TDX-U | × | × | × | × | 80.98% | 90.97% | 85.68% | 88.18% |
Method | Recall | Prec. | -Score | Acc. | ||||
---|---|---|---|---|---|---|---|---|
Baseline [11] | × | × | 76.17% | 60.34% | 67.34% | 67.72% | ||
Baseline+ [11] | × | × | 68.23% | 74.32% | 71.14% | 75.82% | ||
Random forest | × | × | 92.24% | 55.32% | 69.16% | 64.06% | ||
TDX-U | × | × | 77.91% | 85.62% | 81.58% | 84.63% | ||
Random forest | × | × | 89.70% | 49.40% | 63.71% | 55.37% | ||
TDX-U | × | × | 80.48% | 84.57% | 82.48% | 85.06% | ||
Random forest | × | × | × | 90.28% | 61.53% | 73.18% | 71.09% | |
TDX-U | × | × | × | 84.46% | 88.19% | 86.29% | 88.27% | |
Random forest | × | × | × | 91.93% | 60.16% | 72.72% | 69.88% | |
TDX-U | × | × | × | 82.94% | 89.25% | 85.98% | 88.18% | |
Random forest | × | × | × | × | 90.94% | 61.19% | 73.16% | 70.85% |
TDX-U | × | × | × | × | 80.98% | 90.97% | 85.68% | 88.18% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazza, A.; Sica, F.; Rizzoli, P.; Scarpa, G. TanDEM-X Forest Mapping Using Convolutional Neural Networks. Remote Sens. 2019, 11, 2980. https://doi.org/10.3390/rs11242980
Mazza A, Sica F, Rizzoli P, Scarpa G. TanDEM-X Forest Mapping Using Convolutional Neural Networks. Remote Sensing. 2019; 11(24):2980. https://doi.org/10.3390/rs11242980
Chicago/Turabian StyleMazza, Antonio, Francescopaolo Sica, Paola Rizzoli, and Giuseppe Scarpa. 2019. "TanDEM-X Forest Mapping Using Convolutional Neural Networks" Remote Sensing 11, no. 24: 2980. https://doi.org/10.3390/rs11242980
APA StyleMazza, A., Sica, F., Rizzoli, P., & Scarpa, G. (2019). TanDEM-X Forest Mapping Using Convolutional Neural Networks. Remote Sensing, 11(24), 2980. https://doi.org/10.3390/rs11242980