Monitoring 40-Year Lake Area Changes of the Qaidam Basin, Tibetan Plateau, Using Landsat Time Series
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Methods
2.3.1. Extracting Lake Extents
2.3.2. Extracting Glaciers
- The sum mountain shadow area was determined by the union of the mountain shadows in multi-temporal images with varying sun angles.
- The glacier area located in mountain shadows of image i is calculated by:
- The glaciers in the total mountain shadows can be delineated by:
2.3.3. Area Change Analysis
2.3.4. Correlation Analysis
3. Results and Discussion
3.1. Accuracy Assessment
3.2. Distribution of Lakes in 2015 and the 40-year Lake Changes on the Qaidam Basin
3.3. Climate Changes and Glaciers in the QB
3.4. Environmental impacts on Lake Area Changes
3.5. Human Impacts on Lake Area Changes
4. Discussion
4.1. Uncertainties
4.2. Comparison between This Study and Previous Studies on the TP
4.3. Environmental Degradations in Lakes of the QB
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adrian, R.; O’Reilly, C.M.; Zagarese, H.; Baines, S.B.; Hessen, D.O.; Keller, W.; Livingstone, D.M.; Sommaruga, R.; Straile, D.; Donk, E.V.; et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 2009, 54, 2283–2297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, Y.; Yao, T.; Bird, B.W.; Yang, K.; Zhai, J.; Sheng, Y. Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution. J. Hydrol. 2013, 483, 61–67. [Google Scholar] [CrossRef]
- Qiu, J. China: The third pole. Nature 2008, 454, 393–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, Y.; Axel, T. Climatic change on the Tibetan Plateau: Potential evapotranspiration trends from 1961–2000. Clim. Chang. 2006, 76, 291–319. [Google Scholar]
- Liu, J.; Wang, S.; Yu, S.; Yang, D.; Zhang, L. Climate warming and growth of high-elevation inland lakes onthe Tibetan Plateau. Glob. Planet. Chang. 2009, 67, 209–217. [Google Scholar] [CrossRef]
- Xue, X.; Guo, J.; Han, B.; Sun, Q.; Liu, L. The effect of climate warming and permafrost thaw on desertification in the Qinghai–Tibetan Plateau. Geomorphology 2009, 108, 182–190. [Google Scholar] [CrossRef]
- Yao, T.; Thompson, L.; Yang, W.; Yu, W.; Gao, Y.; Guo, X.; Yang, X.; Duan, K.; Zhao, H.; Xu, B.; et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2012, 2, 663–667. [Google Scholar] [CrossRef]
- Ragettli, S.; Immerzeel, W.W.; Pellicciotti, F. Contrasting climate change impact on river flows from high-altitude catchments in the Himalayan and Andes Mountains. Proc. Natl. Acad. Sci. USA 2016, 113, 9222–9227. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, K.; Wang, B.; Sheng, Y.; Bird, B.W.; Zhang, G.; Tian, L. Response of inland lake dynamics overthe Tibetan Plateau to climate change. Clim. Chang. 2014, 125, 281–290. [Google Scholar] [CrossRef]
- Fang, Y.; Cheng, W.; Zhang, Y.; Wang, N.; Zhao, S.; Zhou, C.; Chen, X.; Bao, A. Changes in inland lakes on the Tibetan Plateau over the past 40 years. J. Geogr. Sci. 2016, 26, 415–438. [Google Scholar] [CrossRef] [Green Version]
- Beniston, M.; Diaz, H.F.; Bradley, R.S. Climatic change at high elevation sites: An overview. Clim. Chang. 1997, 36, 233–251. [Google Scholar] [CrossRef]
- Sidjak, R.W. Glacier mapping of the Illecille-waet icefield, British Columbia, Canada, using Landsat TM and digital elevation data. Int. J. Remote Sens. 1999, 20, 273–284. [Google Scholar] [CrossRef]
- Liao, J.; Shen, G.; Li, Y. Lake variations in response to climate change in the Tibetan Plateau in the past 40 years. Int. J. Digit. Earth. 2013, 6, 534–549. [Google Scholar] [CrossRef]
- Nie, Y.; Sheng, Y.; Liu, Q.; Liu, L.; Liu, S.; Zhang, Y.; Song, C. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sens. Environ. 2017, 189, 1–13. [Google Scholar] [CrossRef]
- Tian, H.; Li, W.; Wu, M.; Huang, N.; Li, G.; Li, X.; Niu, Z. Dynamic monitoring of the largest freshwater lake in China using a new water index derived from high spatiotemporal resolution Sentinel-1A data. Remote Sens. 2017, 9, 521. [Google Scholar] [CrossRef]
- Lyons, E.; Sheng, Y. LakeTime: Automated Seasonal Scene Selection for Global Lake Mapping Using Landsat ETM+ and OLI. Remote Sens. 2018, 10, 54. [Google Scholar] [CrossRef]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Nie, Y.; Liu, Q.; Liu, S. Glacial lake expansion in the central Himalayas by Landsat images, 1990–2010. PLoS ONE 2013, 8, e83973. [Google Scholar] [CrossRef]
- Jin, R.; Xin, L.; Che, T.; Wu, L.; Mool, P. Glacier area changes in the Pumqu river basin, Tibetan Plateau between the 1970s and 2001. J. Glaciol. 2005, 51, 607–610. [Google Scholar] [CrossRef]
- Zhu, L.; Xie, M.; Wu, Y. Quantitative analysis of land area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Southern Tibet Plateau. Chin. Sci. Bull. 2010, 55, 1294–1303. [Google Scholar] [CrossRef]
- Ye, Q.; Zhu, L.; Zheng, H.; Naruse, R.; Kang, S. Glacier and lake variations in the Yamzhog Yumco Basin in the last two decades using remote sensing and GIS technologies. J. Glaciol. 2007, 53, 673–676. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Ke, L.; Richards, K.S. Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 26–37. [Google Scholar] [CrossRef]
- Dong, S.; Peng, F.; You, Q.; Guo, J.; Xue, X. Lake dynamics and its relationship to climate change on the Tibetan Plateau over the last four decades. Reg. Environ. Chang. 2018, 18, 477–487. [Google Scholar] [CrossRef]
- Lafitte, G. Spoiling Tibet: China and resource nationalism on the roof of the world. In Zed Books, London; Zed Books Ltd.: New York, NY, USA, 2013; p. 73. [Google Scholar]
- Zhao, C.; Liu, B.; Xiao, L.; Li, Y.; Liu, S.; Zhao, B.; Ma, J.; Chu, G.; Gao, P.; Sun, Y. Significant enrichment of Ga, Rb, Cs, REEs and Y in the Jurassic No. 6 coal in the IQE Coalfield, northern Qaidam Basin, China—A hidden gem. Ore Geol. Rev. 2017, 83, 1–13. [Google Scholar] [CrossRef]
- Ji, J.; Zhang, K.; Clift, P.D.; Zhuang, G.; Song, B.; Ke, X.; Xu, Y. High-resolution magnetostratigraphic study of the Paleogene–Neogene strata in the Northern Qaidam Basin: Implications for the growth of the Northeastern Tibetan Plateau. Gondwana Res. 2017, 46, 141–155. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, J.; Dang, Y.; Cheng, Z.; Huang, T.; Zhao, J.; Xu, Y.; Huang, J.; Xiao, Z.; Komatsu, G. A new terrestrial analogue site for Mars research: The Qaidam Basin, Tibetan Plateau (NW China). Earth-Sci. Rev. 2017, 164, 84–101. [Google Scholar] [CrossRef]
- Chen, A.; Zheng, M.; Shi, L.; Wang, H.; Xu, J. Magnetostratigraphy of deep drilling core 15YZK01 in the northwestern Qaidam Basin (NE Tibetan Plateau): Tectonic movement, salt deposits and their link to Quaternary glaciation. Quat. Int. 2017, 436, 201–211. [Google Scholar] [CrossRef]
- Jia, M.; Liu, M.; Wang, Z.; Mao, D.; Ren, C.; Cui, H. Evaluating the effectiveness of conservation on mangroves: A remote sensing-based comparison for two adjacent protected areas in Shenzhen and Hong Kong, China. Remote Sens. 2016, 8, 627. [Google Scholar] [CrossRef]
- Hutchinson, M.F. Anusplin Version 4.2 User Guide; Centre for Resource and Environmental Studies (CRES), The Australian National University: Canberra, Australia, 2002. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements—FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998. [Google Scholar]
- Rodríguez-Rodríguez, M. Hydrogeology of ponds, pools, and playa-lakes of southern Spain. Wetlands 2007, 27, 819–830. [Google Scholar] [CrossRef]
- Phiri, D.; Morgenroth, J. Developments in Landsat Land Cover Classification Methods: A Review. Remote Sens. 2017, 9, 967. [Google Scholar] [CrossRef]
- McFeeters, S.K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Li, W.; Du, Z.; Ling, F.; Zhou, D.; Wang, H.; Gui, Y.; Sun, B.; Zhang, X. A comparison of land surface water mapping using the normalized difference water index from TM, ETM+ and ALI. Remote Sens. 2013, 5, 5530–5549. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Yang, H.; Li, H.; Thompson, J.R.; Li, L.; Song, K.; Chen, B.; Gao, H.; Wu, J. Impacts of climate change on Tibetan lakes: Patterns and processes. Remote Sens. 2018, 10, 358. [Google Scholar] [CrossRef]
- Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L. A multidirectional and multiscale morphological index for automatic building extraction from multispectral Geoeye-1 imagery. Photogramm. Eng. Remote Sens. 2011, 77, 721–732. [Google Scholar] [CrossRef]
- Liu, J.; Tian, H.; Liu, M.; Zhuang, D.; Melillo, J.M.; Zhang, Z. China’s changing landscape during the 1990s: Large-scale land transformations estimated with satellite data. Geophys. Res. Lett. 2005, 32, L02405. [Google Scholar] [CrossRef]
- Hall, D.K.G.; Riggs, A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Rem Sens Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Du, W.; Li, J. Mapping changes in the glaciers of the eastern Tienshan Mountains during 1977–2013 using multitemporal remote sensing. J. Appl. Remote Sens. 2014, 8, 689–697. [Google Scholar] [CrossRef]
- Anderson, J.C.; Gerbing, D.W. Structural equation modeling in practice: A review and recommended two-step approach. Psych. Bull. 1988, 103, 411–423. [Google Scholar] [CrossRef]
- Sobel, M.E. A symptotic confidence intervals for indirect effects in structural equation models. Sociol. Methodol. 1982, 13, 290–312. [Google Scholar] [CrossRef]
- Hooper, D.; Coughlan, J.; Mullen, M. Structural Equation Modelling: Guidelines for Determining Model Fit. Electron. J. Bus. Res. Methods 2008, 6, 53–60. [Google Scholar]
- Carmines, E.G.; McIver, J.P. Analyzing models with unobserved variables. Analyzing models with unobserved variables. Soc. Meas. Curr. Issues 1981, 80, 65. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 5th ed.; Allyn&Bacon/Pearson Education: Boston, MA, USA, 2007; pp. 748–752. [Google Scholar]
- Bentler, P.M.; Bonnet, D.C. Significance Tests and Goodness of Fit in the Analysis of Covariance Structures. Psycholog. Bull. 1980, 88, 588–606. [Google Scholar] [CrossRef]
- Schreiber, J.B.; Nora, A.; Stage, F.K.; Barlow, E.A.; King, J. Reporting structural equation modeling and confirmatory factor analysis results: A review. J. Educ. Res. 2006, 99, 323–337. [Google Scholar] [CrossRef]
- Hu, L.T.; Bentler, P.M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Model.-Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 2nd ed.; The Guilford Press: New York, NY, USA, 2005; pp. 277–278. [Google Scholar]
- Tahil, W. The Trouble with Lithium; Meridian International Research: Martainville, France, 2007; Available online: http://meridian-int-res.com/Projects/Lithium_Problem_2.pdf (accessed on 17 June 2010).
- Cai, Y. Exploitation and Utilization of Salt Lake Mineral Resources in the Basin of Chaidamu. CHN. Geol. Min. Econ. 2003, 2, 11–13. [Google Scholar]
- Lu, N. Changes of lake area in Qaidam basin and the influence factors. J. Arid Land Resour. Environ. 2014, 8, 15. (In Chinese) [Google Scholar]
- Duan, S. Lake evolution in the Qaidam Basin during 1976–2015 and their changes in response to climate and anthropogenic factors. J. Lake Sci. 2018, 30, 256–265. (In Chinese) [Google Scholar]
- Wei, S.; Jin, X.; Wang, K. Response of lake area variation to climate change in Qaidam Basin based on remote sensing. Earth Sci. Front. 2017, 24, 427–433. (In Chinese) [Google Scholar]
- Zhu, Z.; Fu, Y.; Woodcock, C.E.; Olofsson, P.; Vogelmann, J.E.; Holden, C.; Wang, M.; Dai, S.; Yu, Y. Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000–2014). Remote Sens. Environ. 2016, 185, 243–257. [Google Scholar] [CrossRef]
- Li, M.; Zang, S.Y.; Zhang, B.; Li, S.S.; Wu, C.S. A review of remote sensing image classification techniques: The role of spatio-contextual information. Eur. J. Remote Sens. 2014, 47, 389–411. [Google Scholar] [CrossRef]
- Yang, K.; Lu, H.; Yue, S.; Zhang, G.; Lei, Y.; La, Z.; Wang, W. Quantifying recent precipitation change and predicting lake expansion in the Inner Tibetan Plateau. Clim. Chang. 2018, 147, 149–163. [Google Scholar] [CrossRef]
- Ma, Y.; Ma, W.; Zhong, L.; Hu, Z.; Li, M.; Zhu, Z.; Han, C.; Wang, B.; Liu, X. Monitoring and Modeling the Tibetan Plateau’s climate system and its impact on East Asia. Sci Rep. 2017, 7, 44574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, L.; Zheng, M. The response of lake variations to climate change in the past forty years: A case study of the northeastern Tibetan Plateau and adjacent areas, China. Quat. Int. 2015, 371, 31–48. [Google Scholar] [CrossRef]
- Lehner, B.; Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 2004, 296, 1–22. [Google Scholar] [CrossRef]
- Wan, W.; Long, D.; Hong, Y.; Ma, Y.; Yuan, Y.; Xiao, P.; Duan, H.; Han, Z.; Gu, X. A lake data set for the Tibetan Plateau from the 1960s, 2005, and 2014. Sci. Data 2016, 3, 160039. [Google Scholar] [CrossRef]
- Arendt, A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.S.; Hagen, J.O.; Hock, R.; Huss, M.; Kaser, G.; Kienholz, C.; et al. Randolph Glacier Inventory—A Dataset of Global Glacier Outlines: Version 5.0; Technical Report; Global Land Ice Measurements from Space: Boulder, CO, USA, 2015. [Google Scholar]
- Jiao, J.J.; Zhang, X.; Liu, Y.; Kuang, X. Increased water storage in the Qaidam Basin, the North Tibet Plateau from GRACE gravity data. PloS ONE 2015, 10, e0141442. [Google Scholar] [CrossRef]
- Goodman, D.S. The campaign to “Open up the West”: National, provincial-level and local perspectives. China Q. 2004, 178, 317–334. [Google Scholar] [CrossRef]
- Chen, K.; Bowler J, M. Late Pleistocene evolution of salt lakes in the Qaidam Basin, Qinghai Province, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1986, 54, 87–104. [Google Scholar]
- Zheng, M. An Introduction to Saline Lakes on the Qinghai—Tibet Plateau; Springer: Berlin, Germany, 1997; p. 125. [Google Scholar]
- Du, Y.; Liu, B.; He, W.; Duan, S.; Hou, F.; Wang, Z. Dynamic change and cause analysis of Salt Lake area in Hoh Xil on Qinghai-Tibet Plateau during 1976–2017. J. Glaciol. Geocryol. 2018, 40, 47–54. [Google Scholar]
- Li, Y.; Li, H.; Liu, Z.; Miao, C. Spatial Assessment of Cancer Incidences and the Risks of Industrial Wastewater Emission in China. Sustainability 2016, 8, 480. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Lee, M.K.; Liu, Z.; Miao, C. Spatiotemporal analysis of heavy metal water pollution in transitional China. Sustainability 2015, 7, 9067–9087. [Google Scholar] [CrossRef]
- Tibet’s Resource Curse. Available online: https://www.chinadialogue.net/article/show/single/en/4696-Tibet-s-resource-curse (accessed on 19 December 2011).
Year | Total Samples | Lake | Glacier | Others |
---|---|---|---|---|
1977 | 635 | 276 | 177 | 182 |
1990 | 654 | 289 | 168 | 197 |
2000 | 621 | 284 | 161 | 176 |
2015 | 671 | 318 | 150 | 203 |
Measure | Name | Description | Values | References |
---|---|---|---|---|
χ2/df | Chi-Square/degree of freedom | Assess overall fit and the discrepancy between the sample and fitted covariance matrices. | Less than 3, p-value > 0.05 | Carmines and McIver (1981) [46] |
GFI | Goodness of Fit | A measure of fit between the hypothesized model and the observed covariance matrix. | 0.90 and Above | Tabachnick and Fidell (2007) [47] |
NFI | Normed fit index and non-normed fit index | The discrepancy between the chi-squared value of the hypothesized model and the chi-squared value of the null model | 0.90 and Above | Bentler and Bonnet (1980) [48] |
CFI | Comparative Fit Index | Examining the discrepancy between the data and the hypothesized model | 0.90 and Above | Schermelleh (2003) [49] |
RMSEA | Root Mean Square Error of Approximation | Analyzing the discrepancy between the hypothesized model, with optimally chosen parameter estimates, and the data | Less than 0.08 | Hu and Bentler (1999) [50] |
SRMR | Standardized Root Mean Square Residual | The square root of the discrepancy between the sample covariance matrix and the model covariance matrix | Less than 0.08 | Kline, (2011) [51] |
Date | Categories | User’s Accuracy | Producer’s Accuracy | Overall Accuracy |
---|---|---|---|---|
1977 | lake | 0.91 ± 0.04 | 0.89 ± 0.03 | 0.90 ± 0.02 |
glacier | 0.86 ± 0.03 | 0.83 ± 0.04 | 0.86 ± 0.04 | |
1990 | lake | 0.89 ± 0.05 | 0.92 ± 0.01 | 0.91 ± 0.03 |
glacier | 0.87 ± 0.02 | 0.89 ± 0.05 | 0.88 ± 0.05 | |
2000 | lake | 0.92 ± 0.03 | 0.94 ± 0.04 | 0.93 ± 0.03 |
glacier | 0.89 ± 0.05 | 0.88 ± 0.02 | 0.87 ± 0.05 | |
2015 | lake | 0.95 ± 0.03 | 0.94 ± 0.05 | 0.94 ± 0.05 |
glacier | 0.89 ± 0.02 | 0.91 ± 0.04 | 0.90 ± 0.04 |
Area Classes (km2) | 0.5–1 | 1–10 | 10–50 | 50–100 | >100 | Total | |
---|---|---|---|---|---|---|---|
Number of lakes | 1977 | 10 | 18 | 12 | 4 | 6 | 50 |
1990 | 13 | 23 | 15 | 4 | 7 | 62 | |
2000 | 7 | 24 | 15 | 3 | 7 | 56 | |
2015 | 13 | 28 | 13 | 6 | 8 | 68 | |
Change in number (%) | 1976–1990 | 30.0 | 27.8 | 25.0 | 0.0 | 16.7 | 24.0 |
1990–2000 | −46.2 | 4.3 | 0.0 | −25.0 | 0.0 | −9.7 | |
2000–2015 | 85.7 | 16.7 | −13.3 | 100.0 | 14.3 | 21.4 | |
1976–2015 | 30.0 | 55.6 | 8.3 | 50.0 | 33.3 | 36.0 | |
Lake area (km2) | 1976 | 6.5 ± 0.3 | 63.9 ± 3.2 | 314.3 ± 15.7 | 354.4 ± 17.7 | 1022.4 ± 51.1 | 1761.5 ± 88.1 |
1990 | 9.0 ± 0.4 | 88.3 ± 3.5 | 429.0 ± 17.2 | 257.3 ± 10.3 | 1106.6 ± 44.3 | 1890.2 ± 75.6 | |
2000 | 2.8 ± 0.1 | 71.4 ± 3.6 | 386.6 ± 19.3 | 174.4 ± 8.7 | 1020.4 ± 51.0 | 1655.5 ± 82.8 | |
2015 | 9.0 ± 0.4 | 73.8 ± 3.0 | 481.8 ± 19.3 | 279.9 ± 11.2 | 1441.3 ± 57.7 | 2285.9 ± 91.4 | |
Change in area (%) | 1976–1990 | 38.5 | 38.2 | 36.5 | −27.4 | 8.2 | 7.3 |
1990–2000 | −68.9 | −19.1 | −9.9 | −32.2 | −7.8 | −12.4 | |
2000–2015 | 221.4 | 3.4 | 24.6 | 60.5 | 41.2 | 38.1 | |
1976–2015 | 38.5 | 15.5 | 53.3 | −21.0 | 41.0 | 29.8 |
Year | λ2/df | GFI | NFI | CFI | RMSEA | SRMR |
---|---|---|---|---|---|---|
1977–2000 | 1.530 | 0.989 | 0.951 | 0.962 | 0.071 | 0.050 |
1977–2015 | 7.299 | 0.869 | 0.765 | 0.899 | 1.191 | 0.091 |
Year | Lake Number | Lake Area (km2) | Reference | ||
---|---|---|---|---|---|
Dataset | Lake Number | Lake Area | |||
1977 | 50 | 1761.5 | Wan (1960s) [63] | 39 | 1200.7 |
Duan (1977) [55] | 45 | 1793.1 | |||
1990 | 62 | 1890.2 | Duan (1990) [55] | 46 | 1979.7 |
2000 | 56 | 1655.54 | Global Lakes and Wetlands Databases (GLWD) (2000) [62] | 44 | 1699.2 |
Wan (2005) [63] | 34 | 1217.0 | |||
Duan (2000) [55] | 47 | 1665.4 | |||
2015 | 68 | 2285.9 | Wan (2014) [63] | 34 | 1242.4 |
Duan (2015) [55] | 57 | 2058.6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Mao, D.; Li, X.; Wang, Z.; Wang, C. Monitoring 40-Year Lake Area Changes of the Qaidam Basin, Tibetan Plateau, Using Landsat Time Series. Remote Sens. 2019, 11, 343. https://doi.org/10.3390/rs11030343
Li H, Mao D, Li X, Wang Z, Wang C. Monitoring 40-Year Lake Area Changes of the Qaidam Basin, Tibetan Plateau, Using Landsat Time Series. Remote Sensing. 2019; 11(3):343. https://doi.org/10.3390/rs11030343
Chicago/Turabian StyleLi, Huiying, Dehua Mao, Xiaoyan Li, Zongming Wang, and Cuizhen Wang. 2019. "Monitoring 40-Year Lake Area Changes of the Qaidam Basin, Tibetan Plateau, Using Landsat Time Series" Remote Sensing 11, no. 3: 343. https://doi.org/10.3390/rs11030343