Correlation between Spectral Characteristics and Physicochemical Parameters of Soda-Saline Soils in Different States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Locations
2.2. Soil Parameters Measurement
- Na+ and K+ contents were measured using a flame photometer;
- Ca2+ and Mg2+ contents were measured using the complexometric ethylene diamine tetraacetic acid (EDTA) titration method;
- Cl− content was measured using the AgNO3 solution titration method;
- CO32− and HCO3− contents were measured using the double indicator dilution method [26];
- soil pH and EC were measured using the potentiometric method and conductometric method, respectively.
2.3. Soil Cracking Experiment
2.4. Spectra Collection
2.5. Spectral Data Processing
2.6. Crack Ratio (CR) Calculation
2.7. Construction of Regression Models for Soil Physicochemical Parameters
2.7.1. Construction of Simple Linear Regression Model for Soil Physicochemical parameters
2.7.2. Construction of the Multiple Linear Regression Model for Soil Physicochemical Parameters
2.7.3. Method for Validating the Models
3. Results
3.1. Measurement Results of the Physicochemical Parameters
3.2. Crack ratio (CR) of Cracked Soil Samples
3.3. Soil Spectral Analysis and Determination of the Feature Wavelengths
3.4. Correlation between Soil Spectral Reflectance and Salt Content
3.5. Determination and Validation of the Regression Models
3.5.1. Determination and Validation of the Simple Linear Regression Model
3.5.2. Determination and Validation of the Multiple Linear Regression Model
4. Discussion
5. Conclusions
- (a)
- The spectral reflectance showed similar tendency for a soil sample in different states, with the feature wavelength appearing at the same position, but the powdered state showed the highest reflectance, followed by the aggregate state and lastly the cracked state.
- (b)
- or soils in the same state, reflectance was inversely proportional to salt content.
- (c)
- The regression models between the spectral reflectance and the soil physicochemical parameters work more effectively for cracked soils than for aggregate and powdered soils.
- (d)
- With the CR parameter added into the spectral mixing models, the MAE decreased by 2–11%, a clear indication that the prediction accuracy improved.
Author Contributions
Funding
Conflicts of Interest
References
- Shahid, S.A.; Zaman, M.; Heng, L. Soil Salinity: Historical Perspectives and a World Overview of the Problem. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Springer: Cham, Switzerland, 2018; pp. 43–53. [Google Scholar] [CrossRef]
- Pichu, R. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [Green Version]
- Sidike, A.; Zhao, S.; Wen, Y. Estimating soil salinity in Pingluo County of China using QuickBird data and soil reflectance spectra. Int. J. Appl. Earth Observ. Geoinf. 2014, 26, 156–175. [Google Scholar] [CrossRef]
- Farifteh, J. Interference of salt and moisture on soil reflectance spectra. Int. J. Remote Sens. 2011, 32, 8711–8724. [Google Scholar] [CrossRef]
- Sharpless, N.E.; Munday, J.S. Infrared Spectra of Some Heteropoly Acid Salts. Anal. Chem. 1957, 29, 1619–1622. [Google Scholar] [CrossRef]
- Hunt, G.R.; Salisbury, J.W. Visible and near-infrared spectra of minerals and rocks. II. Carbonates. Mod. Geol. 1971, 2, 23–30. [Google Scholar]
- Hunt, G.R.; Salisbury, J.W.; Lenhoff, C.J. Visible and near-infrared spectra of minerals and rocks. IV. Sulphides and sulphates. Mod. Geol. 1971, 4, 1–14. [Google Scholar]
- Hunt, G.R.; Salisbury, J.W.; Lenhoff, C.J. Visible and near-infrared spectra of minerals and rocks. V. halides, phosphates, arsenates, vanadates and borates. Mod. Geol. 1972, 3, 121–132. [Google Scholar]
- Howari, F.M.; Goodell, P.C.; Miyamoto, S. Spectral properties of salt crusts formed on saline soils. J. Environ. Quant. 2002, 31, 1453–1461. [Google Scholar] [CrossRef]
- Farifteh, J.F.; Van der Meer, F.; Van der Meijde, M.; Atzberger, C. Spectral characteristics of salt-affected soils: A laboratory experiment. Geoderma 2008, 145, 196–206. [Google Scholar] [CrossRef]
- Pessoa, L.G.; Freire, M.B.; Wilcox, B.P.; Green, C.H.M.; De Araújo, R.J.T.; De Araújo Filho, J.C. Spectral reflectance characteristics of soils in northeastern Brazil as influenced by salinity levels. Environ. Monit. Assess. 2016, 188, 616. [Google Scholar] [CrossRef]
- Matinfar, H.R.; Alavipanah, S.K.; Sarmadian, F. Soil spectral properties of arid region, Kashan area, IRAN. BIABAN J. 2006, 11, 9–17. [Google Scholar] [CrossRef]
- Bellinaso, H.; Demattê, J.A.M.; Romeiro, S.A. Soil spectral library and its use in soil classification. Revista Brasileira Ciência Solo 2010, 34, 861–870. [Google Scholar] [CrossRef] [Green Version]
- Viscarra, R.A.; Rossel, B.T.; Ben-Dor, E.; Brown, D.J. A global spectral library to characterize the world’s soil. Earth-Sci. Rev. 2016, 155, 198–230. [Google Scholar] [CrossRef]
- Shi, Z.; Wang, Q.; Peng, J.; Ji, W.; Liu, H. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations. Sci. China Earth Sci. 2014, 57, 1671–1680. [Google Scholar] [CrossRef]
- Shepherd, K.D.; Walsh, M.G. Development of Reflectance Spectral Libraries for Characterization of Soil Properties. Soil Sci. Soc. Am. J. 2002, 66, 988–998. [Google Scholar] [CrossRef]
- Tang, C.; Cui, Y.; Tang, A.; Shi, B. Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils. Eng. Geol. 2010, 114, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Tang, C.; Shi, B.; Liu, C.; Gao, L.; Inyang, H. Experimental investigation on the desiccation cracking behavior of soil layer during drying. J. Mater. Civ. Eng. 2010, 23, 873–878. [Google Scholar] [CrossRef]
- Li, J.; Lu, Z.; Guo, L.; Zhang, L. Experimental study on soil-water characteristic curve for silty clay with desiccation cracks. Eng. Geol. 2017, 218, 70–76. [Google Scholar] [CrossRef]
- Krisnanto, S.; Rahardjo, H.; Fredlund, D.G.; Leong, E.C. Mapping of cracked soils and lateral water flow characteristics through a network of cracks. Eng. Geol. 2014, 172, 12–25. [Google Scholar] [CrossRef]
- Wan, Y.; Wu, C.; Xue, Q.; Hui, X. Effects of plastic contamination on water evaporation and desiccation cracking in soil. Sci. Total Environ. 2019, 654, 576–582. [Google Scholar] [CrossRef]
- Ren, J.; Li, X.; Zhao, K.; Fu, B.; Jiang, T. Study of an on-line measurement method for the salt parameters of soda-saline soils based on the texture features of cracks. Geoderma 2016, 263, 60–69. [Google Scholar] [CrossRef]
- Mishra, P.N.; Scheuermann, A.; Li, L. Salinity effects on soil shrinkage characteristic curves of fine-grained geomaterials. J. Rock Mech. Geotech. Eng. 2018. [Google Scholar] [CrossRef]
- Liang, L.; Li, L.; Liu, Q. Precipitation variability in Northeast China from 1961 to 2008. J. Hydrol. 2011, 404, 67–76. [Google Scholar] [CrossRef]
- Liu, Q.; Cui, B.; Yang, Z. Dynamics of the soil water and solute in the sodic saline soil in the Songnen Plain, China. Environ. Earth Sci. 2009, 59, 837–845. [Google Scholar] [CrossRef]
- Ishibe, Y.; Suekane, K.; Nakamura, M.; Izumi, T.; Umeda, T.; Sagawa, Y.; Satoh, K.; Ohi, M. Measurement of lung water with double indicator dilution method using heat and sodium ions in dogs. Jpn. Anaesth. J. Rev. 1987, 2, 5–7. [Google Scholar]
- Battistoni, C.; Mattogno, G.; Righini, G. Spectral noise removal by new digital smoothing routine. J. Electron. Spectrosc. Relat. Phenom. 1995, 74, 159–166. [Google Scholar] [CrossRef]
- Zanotta, D.C.; Haertel, V.; Shimabukuro, Y.E.; Rennó, C.D. Linear Spectral Mixing Model for Identifying Potential Missing Endmembers in Spectral Mixture Analysis. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3005–3012. [Google Scholar] [CrossRef]
- Richards, L.A. (Ed.) Diagnosis and Improvement of Saline Alkali Soils; USDA Handbook No. 60; USDA: Washington, DC, USA, 1954.
- Xu, W.; Jericho, M.; Meinertzhagen, I.; Kreuzer, H. Water absorption spectrum. Proc. Natl. Acad. Sci. USA 2001, 98, 11301–11305. [Google Scholar] [CrossRef] [PubMed]
- Bartholomeusa, H.M.; Schaepmana, M.E.; Kooistraa, A.; Stevensb, W.B.; Hoogmoedc, O.; Spaargarend, S.P. Spectral reflectance based indices for soil organic carbon quantification. Geoderma 2008, 145, 28–36. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P. Moisture Effects on Soil Reflectance. Soil Sci. Soc. Am. J. 2002, 66, 722–727. [Google Scholar] [CrossRef]
- Etienne, M.; Henri, D. Modeling soil moisture-reactance. Remote Sens. Environ. 2001, 76, 173–180. [Google Scholar]
- Yang, X.; Yu, Y. Estimating Soil Salinity Under Various Moisture Conditions: An Experimental Study. IEEE Trans. Geoscience Remote Sens. 2017, 55, 2525–2533. [Google Scholar] [CrossRef]
- Weng, Y.; Gong, P.; Zhu, Z. A Spectral Index for Estimating Soil Salinity in the Yellow River Delta Region of China Using EO-1 Hyperion Data. Pedosphere 2010, 20, 378–388. [Google Scholar] [CrossRef]
- Xu, C.; Zeng, W.; Huang, J.; Wu, J.; Van Leeuwen, W.J. Prediction of Soil Moisture Content and Soil Salt Concentration from Hyperspectral Laboratory and Field Data. Remote Sens. 2016, 8, 42. [Google Scholar] [CrossRef]
- Amarasiri, A.L.; Kodikara, J.K.; Costa, S. Numerical modeling of desiccation cracking. Int. J. Numer. Anal. Methods Geomech. 2011, 35, 82–96. [Google Scholar] [CrossRef]
- Trabelsi, H.; Jamei, M.; Zenzri, H.; Olivella, S. Crack patterns in clayey soils: Experiments and modeling. Int. J. Numer. Anal. Methods Geomech. 2012, 36, 1410–1433. [Google Scholar] [CrossRef]
- Zhang, G.; Yu, Q.; Wei, G.; Chen, B.; Yang, L.; Hu, C.; Li, J.; Chen, H. Study on the basic properties of the soda-saline soils in Songnen plain. Hydrogeol. Eng. Geol. 2007, 2, 37–40. [Google Scholar]
- Wagner, J.F. Mechanical properties of clays and clay minerals. Dev. Clay Sci. 2013, 5, 347–381. [Google Scholar] [CrossRef]
- Seed, H.B.; Woodward, R.J.; Lundgren, R. Clay mineralogical aspects of the Atterberg limits. J. Soil Mech. Found. Divis. 1964, 90, 107–131. [Google Scholar]
- Wang, W.; Wang, Q.; Zhang, J.; Chen, H. Study on the basic properties of soda-saline soils in Western Jilin province. J. Beijing Univ. Technol. 2011, 37, 217–224. [Google Scholar]
- Zhang, G.; Li, J.; Yu, Q.; Zhang, B.; Yang, R.; Chen, H. Effects of salinity on shear strength of saline alkali soils in Songnen plain. Chin. J. Geol. Hazard Contr. 2008, 19, 128–131. [Google Scholar]
- Aksenov, V.I.; Kal’bergenov, R.G.; Leonov, A.R. Strength characteristics of frozen saline soils. Soil Mech. Found. Eng. 2003, 40, 55–59. [Google Scholar] [CrossRef]
- Jeong, S.W.; Locat, J.; Leroueil, S. The effects of salinity and shear history on the rheological characteristics of illite-rich and Na-montmorillonite-rich clays. Clay Clay Miner. 2012, 60, 108–120. [Google Scholar] [CrossRef]
- Leblon, B.; Gallant, L.; Granberg, H. Effects of shadowing types on ground-measured visible and near-infrared shadow reflectances. Remote Sens. Environ. 1996, 58, 322–328. [Google Scholar] [CrossRef]
- Zhai, H.; Zhang, H.; Zhang, L.; Li, P. Cloud/shadow detection based on spectral indices for multi/hyperspectral optical remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 2018, 144, 235–253. [Google Scholar] [CrossRef]
- Wang, Q.; Li, P.; Chen, X. Modeling salinity effects on soil reflectance under various moisture conditions and its inverse application: A laboratory experiment. Geoderma 2012, 170, 103–111. [Google Scholar] [CrossRef]
- Farifteh, J.; Farshad, A.; George, R.J. Assessing salt-affected soils using remote sensing solute modeling, and geophysics. Geoderma 2006, 130, 191–206. [Google Scholar] [CrossRef]
- Farifteh, J.; van der Meer, F.; Carranze, E.J.M. Similarity measures for spectral discrimination of salt-affected soils. Int. J. Remote Sens. 2007, 28, 5273–5293. [Google Scholar] [CrossRef]
- Farifteh, J.; Van der Meer, F.; Atzberger, C.; Carranze, E.J.M. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sens. Environ. 2007, 110, 59–78. [Google Scholar] [CrossRef]
- Wang, Q.; Li, P.; Maina, J.N.; Chen, X. Study of how salt types greatly shape soil reflectance spectra versus salt concentrations. Commun. Soil Sci. Plant Anal. 2013, 44, 1503–1510. [Google Scholar] [CrossRef]
- Masoud, A.A. Predicting salt abundance in slightly saline soils from Landsat ETM+ imagery using Spectral Mixture Analysis and soil spectrometry. Geoderma 2014, 217–218, 45–56. [Google Scholar] [CrossRef]
- Dehaan, R.L.; Taylor, G.R. Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil salinization. Remote Sens. Environ. 2002, 80, 406–417. [Google Scholar] [CrossRef]
- Tits, L.; Heylen, R.; Somers, B.; Scheunders, P.; Coppin, P. A Geometric Unmixing Concept for the Selection of Optimal Binary Endmember Combinations. IEEE Geosci. Remote Sens. Lett. 2015, 12, 82–86. [Google Scholar] [CrossRef]
Physicochemical Parameters | Min | Max | Mean | Standard | Coefficient of Variation (CV) (%) | Skewness | Kurtosis |
---|---|---|---|---|---|---|---|
Na+ (mg/g) | 0.1 | 14.1 | 3.4 | 3.3 | 97.6 | 1.5 | 2.1 |
K+ (mg/g) | 0.0 | 0.1 | 0.0 | 0.0 | 64.7 | 2.2 | 5.5 |
Ca2+ & Mg2+ (mg/g) | 0.0 | 1.6 | 0.5 | 0.3 | 59.0 | 1.2 | 1.7 |
Cl (mg/g) | 0.1 | 5.3 | 1.3 | 1.5 | 109.1 | 1.3 | 0.8 |
CO32 (mg/g) | 0.0 | 5.5 | 1.8 | 1.6 | 88.0 | 1.0 | 0.1 |
HCO3 (mg/g) | 0.2 | 5.0 | 1.6 | 1.0 | 61.7 | 1.2 | 1.4 |
EC (dS/m) | 0.1 | 3.4 | 1.0 | 0.8 | 84.9 | 1.0 | 0.5 |
pH (-) | 8.0 | 10.8 | 9.9 | 0.7 | 7.2 | −1.2 | 0.5 |
Salt content (mg/g) | 1.1 | 29.7 | 8.6 | 6.4 | 74.6 | 1.2 | 1.4 |
Clay (%) | 25.4 | 32.0 | 28.0 | 1.5 | 5.5 | 0.4 | −0.3 |
Silt (%) | 28.7 | 40.4 | 35.2 | 3.2 | 9.0 | −0.1 | −0.8 |
Sand (%) | 28.3 | 43.9 | 36.9 | 3.6 | 9.9 | −0.2 | −0.9 |
Sample No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
CR | 0.136 | 0.013 | 0.082 | 0.041 | 0.067 | 0.011 | 0.141 | 0.095 | 0.039 | 0.04 |
Sample No. | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
CR | 0.082 | 0.143 | 0.014 | 0.065 | 0.023 | 0.035 | 0.028 | 0.077 | 0.181 | 0.122 |
Sample No. | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
CR | 0.138 | 0.109 | 0.098 | 0.077 | 0.123 | 0.086 | 0.044 | 0.151 | 0.041 | 0.102 |
Sample No. | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
CR | 0.071 | 0.029 | 0.11 | 0 | 0.144 | 0.009 | 0.131 | 0 | 0.087 | 0.012 |
Sample No. | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 |
CR | 0.196 | 0.091 | 0.16 | 0.017 | 0.208 | 0.11 | 0.246 | 0.255 | 0.07 | 0.014 |
Sample No. | 51 | 52 | 53 | 54 | 55 | 56 | 57 | |||
CR | 0.201 | 0.037 | 0.02 | 0.056 | 0.049 | 0.087 | 0.23 |
Physicochemical Parameters | Soil State | a | b | R2 (Determination Coefficient) | Significance Level α = 0.05 |
---|---|---|---|---|---|
Salt content (mg/g) | Powdered | −44.89 | 29.47 | 0.39 | 2.19 × 10−7 |
Aggregate | −73.73 | 41.09 | 0.71 | 9.4 × 10−17 | |
Cracked | −77.79 | 36.19 | 0.84 | 2.4 × 10−23 | |
Na+ (mg/g) | Powdered | −22.23 | 13.70 | 0.37 | 5.9 × 10−7 |
Aggregate | −37.66 | 19.96 | 0.73 | 4.4 × 10−17 | |
Cracked | −38.52 | 17.03 | 0.81 | 1.6 × 10−20 | |
pH (-) | Powdered | −2.10 | 10.81 | 0.07 | 0.053 |
Aggregate | −4.20 | 11.69 | 0.18 | 8.8 × 10−4 | |
Cracked | −5.54 | 11.74 | 0.31 | 6.8 × 10−6 | |
EC (dS/m) | Powdered | −5.38 | 3.49 | 0.33 | 3.7 × 10−6 |
Aggregate | −9.34 | 5.10 | 0.67 | 4.4 × 10−15 | |
Cracked | −9.75 | 4.45 | 0.78 | 3.4 × 10−19 |
Physicochemical Parameters | |||||||
---|---|---|---|---|---|---|---|
Salt content (mg/g) | |||||||
Na+ (mg/g) | |||||||
pH (-) | |||||||
EC (dS/m) |
Physicochemical Parameters | Soil State | a0 | a1 | a2 | a3 | a4 | R2 (Determination Coefficient) | Significance Level α = 0.05 |
---|---|---|---|---|---|---|---|---|
Salt content (mg/g) | Powdered | 2.71 | −35.38 | 214.74 | −105.13 | −106.92 | 0.46 | 2.4 × 10−6 |
Aggregate | 39.15 | −20.36 | 64.64 | −78.47 | −36.65 | 0.73 | 5.7 × 10−13 | |
Cracked | 33.89 | −19.06 | 59.62 | −180.59 | 61.64 | 0.86 | 6.7 × 10−19 | |
Na+ (mg/g) | Powdered | 12.85 | −11.31 | 94.99 | −56.53 | −43.09 | 0.43 | 9.0 × 10−6 |
Aggregate | 19.87 | 3.4 | 0 | −46.23 | 5.4 | 0.75 | 5.7 × 10−13 | |
Cracked | 15.78 | 1.62 | 11.53 | −126.32 | 73.98 | 0.83 | 1.8 × 10−17 | |
pH (-) | Powdered | 10.62 | 0.67 | 12.47 | −12.55 | −1.46 | 0.11 | 0.20 |
Aggregate | 11.48 | −4.13 | 3.26 | −3.07 | −0.38 | 0.22 | 0.017 | |
Cracked | 11.43 | −0.88 | −1.68 | −24.84 | 21.62 | 0.37 | 0.00011 | |
EC (dS/m) | Powdered | 3.16 | −3.83 | 30.46 | −19.25 | −10.82 | 0.41 | 2.0 × 10−5 |
Aggregate | 4.8 | −0.25 | 4.13 | −17.77 | 4.76 | 0.68 | 2.0 × 10−11 | |
Cracked | 3.89 | −1.88 | 10.74 | −42.14 | 23.34 | 0.83 | 1.2 × 10−17 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Ren, J.; Zhao, K.; Liang, Z. Correlation between Spectral Characteristics and Physicochemical Parameters of Soda-Saline Soils in Different States. Remote Sens. 2019, 11, 388. https://doi.org/10.3390/rs11040388
Li X, Ren J, Zhao K, Liang Z. Correlation between Spectral Characteristics and Physicochemical Parameters of Soda-Saline Soils in Different States. Remote Sensing. 2019; 11(4):388. https://doi.org/10.3390/rs11040388
Chicago/Turabian StyleLi, Xiaojie, Jianhua Ren, Kai Zhao, and Zhengwei Liang. 2019. "Correlation between Spectral Characteristics and Physicochemical Parameters of Soda-Saline Soils in Different States" Remote Sensing 11, no. 4: 388. https://doi.org/10.3390/rs11040388
APA StyleLi, X., Ren, J., Zhao, K., & Liang, Z. (2019). Correlation between Spectral Characteristics and Physicochemical Parameters of Soda-Saline Soils in Different States. Remote Sensing, 11(4), 388. https://doi.org/10.3390/rs11040388