Bibliometric Analysis of Remote Sensing Research Trend in Crop Growth Monitoring: A Case Study in China
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Time of Publication
3.2. Research Focus
3.3. Research Front
4. Discussion
4.1. Basic Research and Method Development
4.2. Research Trend
5. Conclusions
- (1)
- From 1996 to 2016, the number of peer-reviewed journal papers on crop growth monitoring published in Chinese and English journals by Chinese scholars increased steadily, and the rate of increase showed an accelerating trend.
- (2)
- “Vegetation index”, “crop growth”, “winter wheat”, “LAI”, “yield”, and “model” were high-frequency keywords or keywords with strong centrality among Chinese scholars.
- (3)
- “UAV”, “LAI”, and other popular words represent the current research frontier of remote sensing growth monitoring.
Author Contributions
Funding
Conflicts of Interest
References
- Yang, B.J.; Pei, Z.Y. Definition of crop condition and crop monitoring using remote sensing. Trans. Chin. Soc. Agric. Eng. 1999, 15, 214–218. [Google Scholar] [CrossRef]
- Cheng, T.; Yang, Z.W.; Inoue, Y.; Zhu, Y.; Cao, W.X. Preface: Recent Advances in Remote Sensing for Crop Growth Monitoring. Remote Sens. 2016, 8, 116. [Google Scholar] [CrossRef]
- Li, W.G.; Li, B.B.; Wang, Z.M.; Zhang, Y.X.; Huang, X.J. Current situation and prospect of crop growth monitoring by remote sensing. Jiangsu Agric. Sci. 2006, 12–15. [Google Scholar] [CrossRef]
- Meng, J.H. Research to Crop Growth Monitoring Indicators with Remote Sensing. Ph.D. Dissertations, Graduate School of Chinese Academy of Sciences (Institute of Remote Sensing Applications), Beijing, China, 2006. [Google Scholar]
- Hank, T.B.; Bach, H.; Mauser, W. Using a remote sensing-supported hydro-agroecological model for field-scale simulation of heterogeneous crop growth and yield: Application for wheat in central Europe. Remote Sens. 2015, 7, 3934–3965. [Google Scholar] [CrossRef]
- Du, M.M.; Noguchi, N. Monitoring of Wheat Growth Status and Mapping of Wheat Yield’s within-Field Spatial Variations Using Color Images Acquired from UAV-camera System. Remote Sens. 2017, 9, 289. [Google Scholar] [CrossRef]
- Yang, G.J.; Liu, J.G.; Zhao, C.J.; Li, Z.H.; Huang, Y.B.; Yu, H.Y.; Xu, B.; Yang, X.D.; Zhu, D.M.; Zhang, X.Y.; et al. Unmanned Aerial Vehicle Remote Sensing for Field-Based Crop Phenotyping: Current Status and Perspectives. Front. Plant Sci. 2017, 8, 1111. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Liu, S.; Baret, F.; Hemerlé, M.; Comar, A. Estimates of plant density of wheat crops at emergence from very low altitude UAV imagery. Remote Sens. Environ. 2017, 198, 105–114. [Google Scholar] [CrossRef]
- Bendig, J.; Yu, K.; Aasen, H.; Bolten, A.; Bennertz, S.; Broscheit, J.; Gnyp, M.L.; Bareth, G. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley. Int. J. Appl. Earth Obs. Geoinf. 2015, 39, 79–87. [Google Scholar] [CrossRef]
- Wu, J.J.; Yang, Q.Y. Crop monitoring and yield estimation using synthetic methods in arid land. Geogr. Res. 2002, 21, 593–598. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, S.; Li, Z.; Hou, Y.; Zhuang, L.; He, Y.; Wang, F. Monitoring winter wheat growth in North China by combining a crop model and remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 426–437. [Google Scholar] [CrossRef]
- Wu, B.; Meng, J.; Li, Q.; Yan, N.; Du, X.; Zhang, M. Remote sensing-based global crop monitoring: Experiences with China’s CropWatch system. Int. J. Digit. Earth 2014, 7, 113–137. [Google Scholar] [CrossRef]
- Chen, J.; Lin, H.; Pei, Z. Application of ENVISAT ASAR data in mapping rice crop growth in Southern China. IEEE Geosci. Remote Sens. Lett. 2007, 4, 431–435. [Google Scholar] [CrossRef]
- Yang, B.J.; Pei, Z.Y.; Zhou, Q.B.; Liu, H.Q. Key technologies of crop monitoring using remote sensing at a national scale: Progress and problems. Trans. Chin. Soc. Agric. Eng. 2002, 18, 191–194. [Google Scholar] [CrossRef]
- Shang, J.; Liu, J.; Ma, B.; Zhao, T.; Jiao, X.; Geng, X.; Huffman, T.; Kovacs, J.M.; Walters, D. Mapping spatial variability of crop growth conditions using RapidEye data in Northern Ontario, Canada. Remote Sens. Environ. 2015, 168, 113–125. [Google Scholar] [CrossRef]
- Chen, H.L.; Li, Y.; Zhang, H.W. Operational application and research review of crop growth monitoring with remote sensing. Meteorol. Environ. Sci. 2015, 38, 95–102. [Google Scholar] [CrossRef]
- Baker, M. Is there a reproducibility crisis? A Nature survey lifts the lid on how researchers view the crisis rocking science and what they think will help. Nature 2016, 53, 452–454. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X. Systematic review: A more scientific and objective overview method. Doc. Inf. Knowl. 2010, 1, 15–19. [Google Scholar]
- Chen, C.; Leydesdorff, L. Patterns of connections and movements in dual-map overlays: A new method of publication portfolio analysis. J. Assoc. Inf. Sci. Technol. 2014, 65, 334–351. [Google Scholar] [CrossRef]
- Hu, K.; Qi, K.; Guan, Q.; Guan, Q.; Wu, C.; Yu, J.; Qing, Y.; Zheng, J.; Wu, H.; Li, X. A scientometric visualization analysis for night-time light remote sensing research from 1991 to 2016. Remote Sens. 2017, 9, 802. [Google Scholar] [CrossRef]
- Li, J.; Guo, X.H.; Jiang, K.; Lv, P.H. Preliminary study of knowledge map of safety science-based on data of safety science. China Saf. Sci. J. 2013, 23, 152–158. [Google Scholar]
- Li, J.; Chen, C.M. Mining and Visualization of Scientific Texts; Capital University of Economics & Business Press: Beijing, China, 2016; ISBN 9787563824649. [Google Scholar]
- Zhao, R.Y.; Guo, F.J.; Zhao, Y.H. Study of mainstream research fields and hot spots in the field of scientometrics. Lib. Inf. Serv. 2015, 59(2), 66–74. [Google Scholar]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. China Soc. Sci. Tech. Inf. 2009, 28, 401–421. [Google Scholar] [CrossRef]
- Persson, O. The intellectual base and research fronts of JASIS 1986–1990. J. Am. Soc. Inf. Sci. Technol. 2010, 45, 31–38. [Google Scholar] [CrossRef]
- Sun, H.S. Extracting Planting Area and Growth Information of Paddy Rice Using Multi-Temporal MODIS Data in China. Ph.D. Dissertations, Zhejiang University, Hangzhou, China, 2009. [Google Scholar]
- Lv, J.M.; Chen, X.; Wang, X.P.; Bao, A.M. Analyses and practice on monitoring the growth of large-area cotton with MODIS data. Arid Land Geogr. 2004, 27, 118–123. [Google Scholar] [CrossRef]
- Wu, B.F.; Zhang, F.; Liu, C.L.; Zhang, L.; Luo, Z.M. An integrated method for crop condition monitoring. J. Remote Sens. 2004, 8, 498–514. [Google Scholar] [CrossRef]
- Wang, K.R. Monitoring and Application of Cotton Growth based on Remote Sensing Satellite. Ph.D. Dissertations, Chinese Academy of Agricultural Sciences, Beijing, China, 2008. [Google Scholar]
- Yan, Y.; Liu, Q.H.; Liu, Q.; Jing, L.I.; Chen, L.F. Methodolagy of winter wheat yield prediction based on assimilation of remote sensing data with crop growth model. J. Remote Sens. 2006, 10, 804–811. [Google Scholar]
- Huang, Q.; Tang, H.J.; Zhou, Q.B.; Wu, W.B.; Wang, L.M.; Zhang, L. Remote sensing based monitoring of planting structure and growth condition of major crops in Northeast China. Trans. Chin. Soc. Agric. Eng. 2010, 26, 218–223. [Google Scholar] [CrossRef]
- Dong, Y.Y.; Zhao, C.J.; Yang, G.J.; Chen, L.P.; Wang, J.H.; Feng, H.K. Integrating a very fast simulated annealing optimization algorithm for crop leaf area index variational assimilation. Math. Comput. Model. 2013, 58, 877–885. [Google Scholar] [CrossRef]
- Huang, J.X.; Sedano, F.; Huang, Y.B.; Ma, H.Y.; Li, X.L.; Liang, S.L.; Tian, L.Y.; Zhang, X.D.; Fan, J.L.; Wu, W.B. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agric. For. Meteorol. 2016, 216, 188–202. [Google Scholar] [CrossRef]
- Chen, Y.T.; Cournède, P.H. Data assimilation to reduce uncertainty of crop model prediction with Convolution Particle Filtering. Ecol. Model. 2014, 290, 165–177. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, G.; Wang, J.; Song, X.; Feng, H. Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements. Comput. Electron. Agric. 2014, 100, 51–59. [Google Scholar] [CrossRef]
- Wu, S.X.; Mao, R.Z.; Li, H.J.; Hou, M.T.; Yang, F. Review of crop condition monitoring using remote sensing in China. Chin. Agric. Sci. Bull. 2005, 21, 319–322. [Google Scholar] [CrossRef]
- Beck, P.S.A.; Atzberger, C.; Høgda, K.A.; Johansen, B.; Skidmore, A.K. Improved monitoring of vegetation dynamics at very high latitudes: A new method using MODIS NDVI. Remote Sens. Environ. 2006, 100, 321–334. [Google Scholar] [CrossRef]
- Martínez, B.; Gilabert, M.A. Vegetation dynamics from NDVI time series analysis using the wavelet transform. Remote Sens. Environ. 2009, 113, 1823–1842. [Google Scholar] [CrossRef]
- Li, D.; Lv, J.; Wang, C.; Liu, W.; Jiang, H.; Chen, S.S. Winter Wheat Leaf Area Index (LAI) Inversion Combining with HJ-1/CCD1 and GF-1/WFV1 Data. In Geo-Spatial Knowledge and Intelligence; Yuan, H., Geng, J., Bian, F., Eds.; GRMSE 2016, Communications in Computer and Information Science; Springer: Singapore, 2017; Volume 698. [Google Scholar]
- Zhou, Q.B.; Yu, Q.Y.; Jia, L.; Wu, W.B.; Tang, H.J. Perspective of Chinese GF-1 high-resolution satellite data in agricultural remote sensing monitoring. J. Integr. Agric. 2017, 16, 242–251. [Google Scholar] [CrossRef]
- Zhao, C.J. Advances of Research and Application in Remote Sensing for Agriculture. Trans. Chin. Soc. Agric. Mach. 2014, 45, 277–293. [Google Scholar] [CrossRef]
- Chen, Z.X.; Ren, J.Q.; Tang, H.J.; Shi, Y.; Leng, P.; Liu, J.; Wang, L.M.; Wu, W.B.; Yao, Y.M.; Hasiyuya. Progress and perspectives on agricultural remote sensing research and applications in China. J. Remote Sens. 2016, 20, 748–767. [Google Scholar]
- Xu, G.H.; Liu, Q.H.; Chen, L.F.; Liu, L.Y. Remote sensing for China’s sustainable development: Opportunities and challenges. J. Remote Sens. 2016, 20, 679–688. [Google Scholar]
- Shi, Z.; Liang, Z.Z.; Yang, Y.Y.; Guo, Y. Status and prospect of agricultural remote sensing. Trans. Chin. Soc. Agric. Mach. 2015, 46, 247–260. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Li, C.H. Application of Unmanned Aerial Vehicle Technology in Modern Agriculture. Agric. Eng. 2016, 6, 23–25. [Google Scholar] [CrossRef]
- Liu, J.G.; Zhao, C.J.; Yang, G.J.; Yu, H.Y.; Zhao, X.Q.; Xu, B.; Niu, Q.L. Review of field-based phenotyping by unmanned aerial vehicle remote sensing platform. Trans. Chin. Soc. Agric. Eng. 2016, 32, 98–106. [Google Scholar] [CrossRef]
- Meng, J.H.; Wu, B.F.; Du, X.; Zhang, F.F.; Zhang, M.; Dong, T.F. A review and outlook of applying remote sensing to precision agriculture. Remote Sens. Land Resour. 2011, 1–7. [Google Scholar] [CrossRef]
- Wang, L.J.; Dong, T.F.; Zhang, G.M.; Niu, Z. LAI retrieval using PROSAIL model and optimal angle combination of multi-angular data in wheat. IEEE J.-STARS 2013, 6, 1730–1736. [Google Scholar] [CrossRef]
- Song, Q.; Zhou, Q.B.; Wu, W.B.; Hu, Q.; Yu, Q.Y.; Tang, H.J. Recent progresses in research of integrating multi-source remote sensing data for crop mapping. Sci. Agric. Sin. 2015, 48, 1122–1135. [Google Scholar] [CrossRef]
No. | Words | Frequency | Betweenness Centrality |
---|---|---|---|
1 | Vegetation index | 126 | 0.33 |
2 | Winter wheat | 65 | 0.14 |
3 | Leaf area index | 59 | 0.18 |
4 | Hyperspectral | 53 | 0.08 |
5 | Crop growth | 43 | 0.58 |
6 | Remote sensing monitoring | 40 | 0.08 |
7 | MODIS | 36 | 0.06 |
8 | Crop | 25 | 0.09 |
9 | Remote sensing technology | 25 | 0.67 |
10 | Satellite remote sensing | 21 | 0.18 |
No. | Words | Frequency | Betweenness Centrality |
---|---|---|---|
1 | Wheat | 151 | 0.3 |
2 | Growth | 131 | 0.45 |
3 | Yield | 102 | 0.32 |
4 | Corn | 73 | 0.15 |
5 | Plant | 63 | 0.15 |
6 | Soil | 58 | 0.02 |
7 | Model | 57 | 0.32 |
8 | Management | 53 | 0.02 |
9 | China | 52 | 0.09 |
10 | Nitrogen | 48 | 0.08 |
Key Words | Intensity | Starting | Ending | 1996–2017 |
---|---|---|---|---|
96 97 98 99 00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 | ||||
LAI | 7.8119 | 2012 | 2017 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ ▃ ▃ ▃ ▃ |
UAV | 4.9679 | 2015 | 2017 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ ▃ |
GIS | 4.9641 | 1998 | 2002 | ▂ ▂ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
Winter wheat | 4.5336 | 2010 | 2012 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ |
MODIS | 4.3406 | 2006 | 2011 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ |
TM | 3.7735 | 2007 | 2010 | ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
Crop yield estimation | 3.17 | 1998 | 2002 | ▂ ▂ ▃ ▃ ▃ ▃ ▃ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ ▂ |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhang, G.; Wang, Z.; Liu, J.; Shang, J.; Liang, L. Bibliometric Analysis of Remote Sensing Research Trend in Crop Growth Monitoring: A Case Study in China. Remote Sens. 2019, 11, 809. https://doi.org/10.3390/rs11070809
Wang L, Zhang G, Wang Z, Liu J, Shang J, Liang L. Bibliometric Analysis of Remote Sensing Research Trend in Crop Growth Monitoring: A Case Study in China. Remote Sensing. 2019; 11(7):809. https://doi.org/10.3390/rs11070809
Chicago/Turabian StyleWang, Lijuan, Guimin Zhang, Ziyi Wang, Jiangui Liu, Jiali Shang, and Liang Liang. 2019. "Bibliometric Analysis of Remote Sensing Research Trend in Crop Growth Monitoring: A Case Study in China" Remote Sensing 11, no. 7: 809. https://doi.org/10.3390/rs11070809
APA StyleWang, L., Zhang, G., Wang, Z., Liu, J., Shang, J., & Liang, L. (2019). Bibliometric Analysis of Remote Sensing Research Trend in Crop Growth Monitoring: A Case Study in China. Remote Sensing, 11(7), 809. https://doi.org/10.3390/rs11070809