Uncertainty Analysis of Remotely-Acquired Thermal Infrared Data to Extract the Thermal Properties of Active Lava Surfaces
Abstract
:1. Introduction
2. Background
3. Data
3.1. Study Area
3.2. Remote Sensing Data
3.2.1. Instruments
3.2.2. Data Calibration
4. Methods
4.1. Kinetic Temperature and Emissivity
4.2. Thermally-Mixed Pixel (TMP) Separation Analysis
4.3. Accuracy and Uncertainty Assessment
5. Results
5.1. ASTER Data
5.2. MASTER and HyTES Data
5.3. MMT-Cam Data
5.4. Mixed Pixel Derivation
5.5. Comparisons and Trends
6. Discussion
6.1. Emissivity
6.2. Kinetic Temperature
6.3. Accuracy Assessment
6.4. Implications and Reasons for Uncertainty
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Spampinato, L.; Calvari, S.; Oppenheimer, C.; Boschi, E. Volcano Surveillance Using Infrared Cameras. Earth-Sci. Rev. 2011, 106, 63–91. [Google Scholar] [CrossRef]
- Cashman, K.V.; Stephen, R.; Sparks, R.S.J. How Volcanoes Work: A 25 Year Perspective. Bull. Geol. Soc. Am. 2013, 125, 664–690. [Google Scholar] [CrossRef]
- Ramsey, M.S.; Harris, A.J.L. Volcanology 2020: How Will Thermal Remote Sensing of Volcanic Surface Activity Evolve over the next Decade? J. Volcanol. Geotherm. Res. 2013, 249, 217–233. [Google Scholar] [CrossRef]
- Calvari, S.; Lodato, L.; Steffke, A.; Cristaldi, A.; Harris, A.J.L.; Spampinato, L.; Boschi, E. The 2007 Stromboli Eruption: Event Chronology and Effusion Rates Using Thermal Infrared Data. J. Geophys. Res. Solid Earth 2010, 115, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Murphy, S.W.; Wright, R.; Oppenheimer, C.; Filho, C.R.S. MODIS and ASTER Synergy for Characterizing Thermal Volcanic Activity. Remote Sens. Environ. 2013, 131, 195–205. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Kahle, A.B.; Tsu, H.; Kawakami, T.; Pniel, M. Overview of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). IEEE Trans. Geosci. Remote Sens. 1998. [Google Scholar] [CrossRef] [Green Version]
- Flynn, L.P.; Harris, A.J.L.; Wright, R. Improved Identification of Volcanic Features Using Landsat 7 ETM+. Remote Sens. Environ. 2001, 78, 180–193. [Google Scholar] [CrossRef]
- Handcock, R.N.; Gillespie, A.R.; Cherkauer, K.A.; Kay, J.E.; Burges, S.J.; Kampf, S.K. Accuracy and Uncertainty of Thermal-Infrared Remote Sensing of Stream Temperatures at Multiple Spatial Scales. Remote Sens. Environ. 2006, 100, 427–440. [Google Scholar] [CrossRef]
- Roberts, D.A.; Quattrochi, D.A.; Hulley, G.C.; Hook, S.J.; Green, R.O. Synergies between VSWIR and TIR Data for the Urban Environment: An Evaluation of the Potential for the Hyperspectral Infrared Imager (HyspIRI) Decadal Survey Mission. Remote Sens. Environ. 2012, 117, 83–101. [Google Scholar] [CrossRef]
- Western, L.M.; Watson, M.I.; Francis, P.N. Uncertainty in Two-Channel Infrared Remote Sensing Retrievals of a Well-Characterised Volcanic Ash Cloud. Bull. Volcanol. 2015, 77. [Google Scholar] [CrossRef] [Green Version]
- Guanter, L.; Brell, M.; Chan, J.C.W.; Giardino, C.; Gomez-Dans, J.; Mielke, C.; Morsdorf, F.; Segl, K.; Yokoya, N. Synergies of Spaceborne Imaging Spectroscopy with Other Remote Sensing Approaches. Surv Geophys 2019, 40, 657–687. [Google Scholar] [CrossRef]
- Walker, G.P.L. Basaltic-Volcano Systems. Geol. Soc. Lond. Spec. Publ. 1993, 76, 3–38. [Google Scholar] [CrossRef] [Green Version]
- Global Volcanism Program. Report on Kilauea. In Bulletin of the Global Volcanism Network; Crafford, A.E., Venzke, E., Eds.; Smithsonian Institution: Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- USGS Hawaiian Volcano Observatory. Overview of Kīlauea Volcano’s 2018 Lower East Rift Zone Eruption and Summit Collapse. U.S. Geol. Surv. Gen. Inf. Prod. 2019, 1, 1–2. [Google Scholar]
- Harris, A.J.L.; Rowland, S.K. FLOWGO: A Kinematic Thermo-Rheological Model for Lava Flowing in a Channel. Bull. Volcanol. 2001, 63, 20–44. [Google Scholar] [CrossRef]
- Crisci, G.M.; Rongo, R.; Di Gregorio, S.; Spataro, W. The Simulation Model SCIARA: The 1991 and 2001 Lava Flows at Mount Etna. J. Volcanol. Geotherm. Res. 2004, 132, 253–267. [Google Scholar] [CrossRef]
- Negro, C.; Fortuna, L.; Herault, A.; Vicari, A. Simulations of the 2004 Lava Flow at Etna Volcano Using the Magflow Cellular Automata Model. Bull. Volcanol. 2008, 70, 805–812. [Google Scholar] [CrossRef] [Green Version]
- Ramsey, M.S.; Chevrel, M.O.; Coppola, D.; Harris, A.J.L. The Influence of Emissivity on the Thermo-Rheological Modeling of the Channelized Lava Flows at Tolbachik Volcano. Ann. Geophys. 2019, 62. [Google Scholar] [CrossRef]
- Thompson, J.O.; Ramsey, M.S.; Hall, J.L. MMT-Cam: A New Miniature Multispectral Thermal Infrared Camera System for Capturing Dynamic Earth Processes. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7438–7446. [Google Scholar] [CrossRef]
- Johnson, W.R.; Hook, S.J.; Mouroulis, P.; Wilson, D.W.; Gunapala, S.D.; Realmuto, V.; Lamborn, A.; Paine, C.; Mumolo, J.M.; Eng, B.T. HyTES: Thermal Imaging Spectrometer Development. In Proceedings of the IEEE Aerospace Conference, Big Sky, MT, USA, 5–12 March 2011. [Google Scholar] [CrossRef]
- Hook, S.J.; Myers, J.J.; Thome, K.J.; Fitzgerald, M.; Kahle, A.B. The MODIS/ASTER Airborne Simulator (MASTER)—A New Instrument for Earth Science Studies. Remote Sens. Environ. 2001, 76, 93–102. [Google Scholar] [CrossRef]
- Ramsey, M.S.; Harris, A.J.L.; Crown, D.A. What Can Thermal Infrared Remote Sensing of Terrestrial Volcanoes Tell Us about Processes Past and Present on Mars? J. Volcanol. Geotherm. Res. 2016, 311, 198–216. [Google Scholar] [CrossRef]
- Wright, R.; Flynn, L.P. On the Retrieval of Lava-Flow Surface Temperatures from Infrared Satellite Data. Geology 2003, 31, 893–896. [Google Scholar] [CrossRef]
- Favalli, M.; Pareschi, M.T.; Neri, A.; Isola, I. Forecasting Lava Flow Paths by a Stochastic Approach. Geophys. Res. Lett. 2005. [Google Scholar] [CrossRef]
- Hall, J.L.; Boucher, R.H.; Buckland, K.N.; Gutierrez, D.J.; Hackwell, J.A.; Johnson, B.R.; Keim, E.R.; Moreno, N.M.; Ramsey, M.S.; Sivjee, M.G.; et al. MAGI: A New High-Performance Airborne Thermal-Infrared Imaging Spectrometer for Earth Science Applications. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5447–5457. [Google Scholar] [CrossRef]
- Planck, M. On the Law of Distribution of Energy in the Normal Spectrum On the Law of Distribution of Energy in the Normal Spectrum. Ann. Phys. 1901, 4, 553–563. [Google Scholar] [CrossRef]
- Realmuto, V.J. Separating the Effects of Temperature and Emissivity: Emissivity Spectrum Normalization. In Proceedings of the 2nd TIMS Workshop; Abbott, E.A., Ed.; Jet Propulsion Laboratory: Pasadena, CA, USA, 1990; pp. 31–37. [Google Scholar]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Steven Cothern, J.; Hook, S.J.; Kahle, A.B. A Temperature and Emissivity Separation Algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Ramsey, M.S.; Christensen, P.R. Mineral Abundance Determination Quantitative Deconvolution of Thermal Emission Spectra. J. Geophys. Res. 1998, 103, 577–596. [Google Scholar] [CrossRef]
- Ramsey, M.S.; Fink, J.H. Estimating Silicic Lava Vesicularity with Thermal Remote Sensing: A New Technique for Volcanic Mapping and Monitoring. Bull. Volcanol. 1999, 61, 32–39. [Google Scholar] [CrossRef]
- Carter, A.J.; Ramsey, M.S.; Durant, A.J.; Skilling, I.P.; Wolfe, A. Micron-Scale Roughness of Volcanic Surfaces from Thermal Infrared Spectroscopy and Scanning Electron Microscopy. J. Geophys. Res. Solid Earth 2009, 114, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Rose, S.R.; Watson, I.M.; Ramsey, M.S.; Hughes, C.G. Thermal Deconvolution: Accurate Retrieval of Multispectral Infrared Emissivity from Thermally-Mixed Volcanic Surfaces. Remote Sens. Environ. 2014, 140, 690–703. [Google Scholar] [CrossRef]
- Holcomb, R.T. Eruptive History and Long-Term Behavior of Kilauea Volcano. US Geol. Surv. Prof. Pap. 1987, 1350, 261–350. [Google Scholar]
- Patrick, M.R.; Orr, T.R.; Sutton, A.J.; Elias, T.; Swanson, D.A. The First Five Years of Kīlauea’s Summit Eruption in Halema’uma’u Crater 2008–2013; Fact Sheet 2013–3116; US Geological Survey: Reston, VA, USA, 2013. [CrossRef]
- Orr, T.R.; Heliker, C.; Patrick, M.R. The Ongoing Pu̒u ̒Ō̒ō eruption of Kīlauea Volcano, Hawai̒i—30 Years of Eruptive Activity; Fact Sheet 2012–3127; US Geological Survey: Reston, VA, USA, 2013; p. 6.
- Poland, M.P. Time-Averaged Discharge Rate of Subaerial Lava at Kīlauea Volcano, Hawai’i, Measured from TanDEM-X Interferometry: Implications for Magma Supply and Storage during 2011-2013. J. Geophys. Res. Solid Earth 2014. [Google Scholar] [CrossRef]
- Dietterich, H.R.; Poland, M.P.; Schmidt, D.A.; Cashman, K.V.; Sherrod, D.R.; Espinosa, A.T. Tracking Lava Flow Emplacement on the East Rift Zone of Klauea, Hawaii, with Synthetic Aperture Radar Coherence. Geochem. Geophys. Geosyst. 2012. [Google Scholar] [CrossRef]
- Koeppen, W.C.; Patrick, M.; Orr, T.; Sutton, A.J.; Dow, D.; Wright, R. Constraints on the Partitioning of Kīlauea’s Lavas between Surface and Tube Flows, Estimated from Infrared Satellite Data, Sulfur Dioxide Emission Rates, and Field Observations. Bull. Volcanol. 2013. [Google Scholar] [CrossRef]
- Tonooka, H. An Atmospheric Correction Algorithm for Thermal Infrared Multispectral Data over Land-a Water-Vapor Scaling Method. IEEE Trans. Geosci. Remote Sens. 2001, 39, 682–692. [Google Scholar] [CrossRef]
- Young, S.J.; Johnson, B.R.; Hackwell, J.A. An In-Scene Method for Atmospheric Compensation of Thermal Hyperspectral Data. J. Geophys. Res. Atmos. 2002, 107, 1–20. [Google Scholar] [CrossRef]
- Harris, A.J.L. Thermal Remote Sensing of Active Volcanoes: A User’s Manual, 1st ed.; Cambridge University Press: New York, NY, USA, 2013. [Google Scholar]
- Dozier, J. A Method for Satellite Identification of Surface Temperature Fields of Subpixel Resolution. Remote Sens. Environ. 1981, 11, 221–229. [Google Scholar] [CrossRef]
- Matson, M.; Dozier, J. Identification of Subresolution High Temperature Sources Using a Thermal IR Sensor. Photogramm. Eng. Remote Sens. Eng. Remote Sens. 1981, 47, 1311–1318. [Google Scholar]
- Abtahi, A.A.; Kahle, A.B.; Abbott, E.A.; Gillespie, A.R.; Sabol, D.; Yamada, G.; Pieri, D.C. Emissivity Changes in Basalt Cooling after Eruption from Puu Oo, Kilauea, Hawaii. Trans. Am. Geophys. Union 2002, 83, F1442. [Google Scholar]
- Lee, C.T.A.; Luffi, P.; Plank, T.; Dalton, H.; Leeman, W.P. Constraints on the Depths and Temperatures of Basaltic Magma Generation on Earth and Other Terrestrial Planets Using New Thermobarometers for Mafic Magmas. Earth Planet. Sci. Lett. 2009, 279, 20–33. [Google Scholar] [CrossRef]
- Lee, R.J.; Ramsey, M.S.; King, P.L. Development of a New Laboratory Technique for High-Temperature Thermal Emission Spectroscopy of Silicate Melts. J. Geophys. Res. Solid Earth 2013, 118, 1968–1983. [Google Scholar] [CrossRef] [Green Version]
- Davies, A.G.; Calkins, J.; Scharenbroich, L.; Vaughan, R.G.; Wright, R.; Kyle, P.; Castańo, R.; Chien, S.; Tran, D. Multi-Instrument Remote and in Situ Observations of the Erebus Volcano (Antarctica) Lava Lake in 2005: A Comparison with the Pele Lava Lake on the Jovian Moon Io. J. Volcanol. Geotherm. Res. 2008, 177, 705–724. [Google Scholar] [CrossRef]
- Harris, A.J.L.; Dehn, J.; Patrick, M.; Calvari, S.; Ripepe, M.; Lodato, L. Lava Effusion Rates from Hand-Held Thermal Infrared Imagery: An Example from the June 2003 Effusive Activity at Stromboli. Bull. Volcanol. 2005, 68, 107–117. [Google Scholar] [CrossRef]
- Wright, R.; Garbeil, H.; Harris, A.J.L. Using Infrared Satellite Data to Drive a Thermo-Rheological/Stochastic Lava Flow Emplacement Model: A Method for near-Real-Time Volcanic Hazard Assessment. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Harris, A.J.L.; Favalli, M.; Steffke, A.; Fornaciai, A.; Boschi, E. A Relation between Lava Discharge Rate, Thermal Insulation, and Flow Area Set Using Lidar Data. Geophys. Res. Lett. 2010, 37, 1–6. [Google Scholar] [CrossRef]
- Putirka, K. Magma Transport at Hawaii: Inferences Based on Igneous Thermobarometry. Geology 1997, 25, 69–72. [Google Scholar] [CrossRef]
Acquisition Data | Time (HST) | No Data | Temperature (°C) | Humidity (%) | Target |
---|---|---|---|---|---|
01/19/2017 | 20:32 | HyTES | 27.9 | 59.8 | Lava Lake |
01/26/2017 | 10:59 | HyTES | 17.3 | 82.4 | Lava Lake |
01/30/2018 | 10:59 | - | 40.0 | 25.3 | Lava Flows |
02/06/2018 | 11:06 | - | 28.5 | 47.9 | Lava Lake |
02/08/2018 | 22:42 | - | 26.4 | 49.8 | Lava Flows |
MMT-Cam (Ground) | MASTER TIR (Airborne) | HyTES (Airborne) | ASTER TIR (Orbital) | |
---|---|---|---|---|
Detector | VOX microbolometer | HgCdTe photoconductive | QWIP | HgCdTe photoconductive |
Field of View | 45° × 37° | 85.92° | 50° | |
Spatial Resolution (m) | 0.04/0.3 | 50 | 35 | 90 |
Spectral Resolution | 6 | 9 (7) | 186 | 5 |
Temporal Resolution | 1 second | Daily during campaign | Daily during campaign | 5–15 days |
Radiometric Range (K) | 233 to 832 | 245 to 480 | 240 to 455 | 200 to 370 |
Radiometric Accuracy | 5% | <5% | <1% | <3% |
ASTER TIR | MASTER TIR | HyTES | MMT-Cam | ||
---|---|---|---|---|---|
Radiance (Wm−2sr−1µm−1) | Pre-TMP | 19.74 (5.85) | 25.77 (8.98) | 34.83 (13.81) | 162.91 (76.31) |
Post-TMP | 493.22 (191.57) | 300.59 (111.48) | 402.64 (146.68) | 454.27 (158.12) | |
Change | 2400% | 1070% | 1060% | 180% | |
Emissivity | Pre-TMP | 0.898 (0.077) | 0.723 (0.130) | 0.805 (0.114) | 0.739 (0.087) |
Post-TMP | 0.752 (0.099) | 0.584 (0.141) | 0.604 (0.260) | 0.711 (0.078) | |
Change | 19% | 23% | 33% | 4% | |
Temperature (K) | Pre-TMP | 354.1 (23.8) | 425.2 (64.3) | 407.8 (32.5) | 736.2 (163.0) |
Post-TMP | 1242.3 (337.0) | 1128.2 (408.0) | 1266.1 (404.0) | 1225.9 (329.6) | |
Change | 250% | 170% | 210% | 70% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thompson, J.O.; Ramsey, M.S. Uncertainty Analysis of Remotely-Acquired Thermal Infrared Data to Extract the Thermal Properties of Active Lava Surfaces. Remote Sens. 2020, 12, 193. https://doi.org/10.3390/rs12010193
Thompson JO, Ramsey MS. Uncertainty Analysis of Remotely-Acquired Thermal Infrared Data to Extract the Thermal Properties of Active Lava Surfaces. Remote Sensing. 2020; 12(1):193. https://doi.org/10.3390/rs12010193
Chicago/Turabian StyleThompson, James O., and Michael S. Ramsey. 2020. "Uncertainty Analysis of Remotely-Acquired Thermal Infrared Data to Extract the Thermal Properties of Active Lava Surfaces" Remote Sensing 12, no. 1: 193. https://doi.org/10.3390/rs12010193