Producing Urban Aerobiological Risk Map for Cupressaceae Family in the SW Iberian Peninsula from LiDAR Technology
Abstract
:1. Introduction
2. Material and Methods
2.1. Sampling Site
2.2. Species of Cupressaceae Famzily Studied, Characteristics and Their Uses
2.3. LiDAR Data
2.4. Adaptation of the Risk Index AIROT for Cupressaceae Family
- PDi = potential Dispersibility (0, 10);
- Ni = number of specimens by distance (specimens/ha) (from 0 to 10);
- αi = pollen production according to the species and use (0.001, 0.01, 0.05, 0.1, 1);
- Mi = maturity degree for each specimen (1, 5, 10);
- Shi = incidence and presence of high buildings, narrow streets and squares (1, 2, 4, 6, 8, 10);
- Hi = height above sea level (1, 2);
- ST = total surface of the city in km2;
- i = each street considered.
2.4.1. Potential Dispersibility (PD)
2.4.2. Number of Specimens by Surface (specimens/ha) (N)
2.4.3. Pollen Production according to the Species and Use (α)
2.4.4. Degree of Maturity for Each Specimen (M)
2.4.5. Incidence and Presence of High Buildings and the Size of Streets (Sh)
2.4.6. Height above Sea Level (H)
2.5. Kriging and Risk Maps
2.6. Healthy Maps
3. Results
3.1. Values for the AIROT
3.2. Risk Maps
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Hoesly, R.M.; Smith, S.J.; Feng, L.; Klimont, Z.; Janssens-Maenhout, G.; Pitkanen, T.; Seibert, J.J.; Vu, L.; Andres, R.J.; Bolt, R.M.; et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 2018, 11, 369–408. [Google Scholar] [CrossRef] [Green Version]
- Chan, C.K.; Yao, X. Air pollution in mega cities in China. Atmos. Environ. 2008, 42, 1–42. [Google Scholar] [CrossRef]
- Duinker, P.N.; Ordez, C.; Steenberg, J.W.N.; Miller, K.H.; Toni, S.A.; Nitoslawski, S.A. Trees in canadian cities: Indispensable life form for urban sustainability. Sustainability 2015, 7, 7379–7396. [Google Scholar] [CrossRef] [Green Version]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Urban woodlands: Their role in reducing the effects of particulate pollution. Environ. Pollut. 1998, 99, 347–360. [Google Scholar] [CrossRef]
- Maimaitiyiming, M.; Ghulam, A.; Tiyip, T.; Pla, F.; Latorre-Carmona, P.; Halik, T.; Sawut, M.; Caetano, M. Effects of green space spatial pattern on land surface temperature: Implications for sustainable urban planning and climate change adaptation. ISPRS J. Photogramm. Remote Sens. 2014, 89, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Chiesura, A. The role of urban parks for the sustainable city. Landsc. Urban Plan. 2004, 68, 129–138. [Google Scholar] [CrossRef]
- Chaphekar, S.B. Botanist in urban environments. Environ. Int. Soc. Environ. Bot. 2009, 15, 4–6. [Google Scholar]
- Mack, R.N.; Simberloff, D.; Lonsdale, W.M.; Evans, H.; Clout, M.; Bazzaz, F.A. Biotic invasions: Causes, epidemiology, global consequences, and control. Ecol. Appl. 2000, 10, 689–710. [Google Scholar] [CrossRef]
- Domm, J.; Drew, R.; Greene, A.; Ripley, E.; Smardon, R.; Tordesillas, J. Recommended urban forest mixtures to optimize selected environmental benefits. Environ. Int. Soc. Environ. Bot. 2008, 14, 7–10. [Google Scholar]
- Pawankar, R. Allergic diseases and asthma: A global public health concern and a call to action. World Allergy Organ. J. 2014, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Bunne, J.; Moberg, H.; Hedman, L.; Andersson, M.; Bjerg, A.; Lundbäck, B.; Rönmark, E. Increase in Allergic Sensitization in Schoolchildren: Two Cohorts Compared 10 Years Apart. J. Allergy Clin. Immunol. Pract. 2017, 5, 457–463.e1. [Google Scholar] [CrossRef] [PubMed]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. The capture of particulate pollution by trees at five contrasting urban sites. Arboric. J. 2000, 24, 209–230. [Google Scholar] [CrossRef]
- Beckett, K.P.; Freer-Smith, P.H.; Taylor, G. Particulate pollution capture by urban trees: Effect of species and windspeed. Glob. Chang. Biol. 2000, 6, 995–1003. [Google Scholar] [CrossRef]
- Freer-Smith, P.H.; Beckett, K.P.; Taylor, G. Deposition velocities to Sorbus aria, Acer campestre, Populus deltoides × trichocarpa ’Beaupré’, Pinus nigra and × Cupressocyparis leylandii for coarse, fine and ultra-fine particles in the urban environment. Environ. Pollut. 2005, 133, 157–167. [Google Scholar] [CrossRef]
- Charpin, D.; Pichot, C.; Belmonte, J.; Sutra, J.; Zidkova, J.; Chanez, P.; Shahali, Y.; Sénéchal, H.; Poncet, P. Cypress Pollinosis: From Tree to Clinic. Clin. Rev. Allergy Immunol. 2019, 56, 174–195. [Google Scholar] [CrossRef]
- Hidalgo, P.J.; Galán, C.; Domínguez, E. Male phenology of three species of Cupressus: Correlation with airborne pollen. Trees Struct. Funct. 2003, 17, 336–344. [Google Scholar] [CrossRef]
- Caiaffa, M.F.; Macchia, L.; Strada, S.; Bariletto, G.; Scarpelli, F.; Tursi, A. Airborne Cupressaceae pollen in Southern Italy. Ann. Allergy 1993, 71, 45–50. [Google Scholar]
- Shahali, Y.; Pourpak, Z.; Moin, M.; Zare, A.; Majd, A. Impacts of air pollution exposure on the allergenic properties of Arizona cypress pollens. J. Phys. Conf. Ser. 2009, 151, 012027. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Morita, J.; Nakamura, S.; Wu, D.; Gong, X.; Suzuki, M.; Miwa, M.; Nakajima, D. Field investigation on modification of Japanese cedar pollen allergen in urban air-polluted area. World Acad. Sci. Eng. Technol. 2010, 70, 624–629. [Google Scholar]
- Shahali, Y.; Poncet, P.; Sénéchal, H. Cupressaceae pollinosis and air pollution. Rev. Fr. D’allergologie 2013, 53, 468–472. [Google Scholar] [CrossRef]
- Laaidi, K.; Carli, P.M. Detecting emerging risks in environmental health: The example of cypress pollinosis in Burgundy. Environ. Risques Et Sante 2002, 1, 217–222. [Google Scholar]
- Conway, T.M.; Vander Vecht, J. Growing a diverse urban forest: Species selection decisions by practitioners planting and supplying trees. Landsc. Urban Plan. 2015, 138, 1–10. [Google Scholar] [CrossRef]
- Cariñanos, P.; Casares-Porcel, M.; Quesada-Rubio, J. Estimating the allergenic potential of urban green spaces: A case-study in Granada, Spain. Landsc. Urban Plan. 2014, 123, 134–144. [Google Scholar] [CrossRef]
- Pecero-Casimiro, R.; Fernández-Rodríguez, S.; Tormo-Molina, R.; Monroy-Colín, A.; Silva-Palacios, I.; Cortés-Pérez, J.P.; Gonzalo-Garijo, Á.; Maya-Manzano, J.M. Urban aerobiological risk mapping of ornamental trees using a new index based on LiDAR and Kriging: A case study of plane trees. Sci. Total Environ. 2019, 693, 133576. [Google Scholar] [CrossRef]
- Alcázar, P.; Galán, C.; Torres, C.; Domínguez-Vilches, E. Detection of airborne allergen (Pla a 1) in relation to Platanus pollen in Córdoba, South Spain. Ann. Agric. Environ. Med. 2015, 22, 96–101. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, S.; Cortés-Pérez, J.P.; Muriel, P.P.; Tormo-Molina, R.; Maya-Manzano, J.M. Environmental impact assessment of Pinaceae airborne pollen and green infrastructure using BIM. Autom. Constr. 2018, 96, 494–507. [Google Scholar] [CrossRef]
- Thompson, R.S. Building amplification factors for sources near buildings: A wind-tunnel study. Atmos. Environ. Part A Gen. Top. 1993, 27, 2313–2325. [Google Scholar] [CrossRef]
- Cariñanos, P.; Alcázar, P.; Galán, C.; Domínguez, E. Privet pollen (Ligustrum sp.) as potential cause of pollinosis in the city of Cordoba, south-west Spain. Allergy Eur. J. Allergy Clin. Immunol. 2002, 57, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Farzinmoghadam, M.; Mostafavi, N.; Infield, E.H.; Hoque, S. Developing an automated method for the application of lidar in iumat land-use model: Analysis of land-use changes using building-form parameterization, GIS, and artificial neural networks. J. Green Build. 2019, 14, 1–30. [Google Scholar] [CrossRef]
- Kanja, K.; Karahalil, U.; Çil, B. Modeling stand parameters for Pinus brutia (Ten.) using airborne LiDAR data: A case study in Bergama. J. Appl. Remote Sens. 2020, 14, 022205. [Google Scholar] [CrossRef]
- Ishida, T.; Ando, H. Computer-assisted mapping of paddy-field soils: 1. production of closely spaced data from sparse data relating to soil chemical properties. Soil Sci. Plant Nutr. 1994, 40, 391–402. [Google Scholar] [CrossRef]
- León Ruiz, E.J.; García Mozo, H.; Domínguez Vilches, E.; Galán, C. The use of geostatistics in the study of floral phenology of Vulpia geniculata (L.) Link. Sci. World J. 2012, 2012, 624247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hien, P.D.; Men, N.T.; Tan, P.M.; Hangartner, M. Impact of urban expansion on the air pollution landscape: A case study of Hanoi, Vietnam. Sci. Total Environ. 2020, 702, 134635. [Google Scholar] [CrossRef] [PubMed]
- Maya Manzano, J.M.; Tormo Molina, R.; Fernández Rodríguez, S.; Silva Palacios, I.; Gonzalo Garijo, Á. Distribution of ornamental urban trees and their influence on airborne pollen in the SW of Iberian Peninsula. Landsc. Urban Plan. 2017, 157, 434–446. [Google Scholar] [CrossRef]
- NSI. Population by Cities. National Institute of Statistics, Madrid, Spain. 2018. Available online: https://www.ine.es/ (accessed on 21 December 2019).
- AEMET (2018) Valores climatológicos normales: Badajoz Aeropuerto—Agencia Estatal de Meteorología—AEMET; AEMET: Gobierno de España, Spain, 2019.
- Charpin, D.; Calleja, M.; Pichot, C.; Penel, V.; Hugues, B.; Poncet, P. Cypress pollen allergy. Rev. Fr. D’allergologie 2016, 56, 248–250. [Google Scholar] [CrossRef]
- IGN. CORINE Land Cover. Instituto Geográfico Nacional del Gobierno de España, 2019. Available online: http://www.ign.es/ign/main/index.do (accessed on 11 November 2019).
- Gamba, P.; Houshmand, B. Digital surface models and building extraction: A comparison of IFSAR and LIDAR data. IEEE Trans. Geosci. Remote Sens. 2000, 38, 1959–1968. [Google Scholar] [CrossRef]
- Bartie, P.; Reitsma, F.; Kingham, S.; Mills, S. Incorporating vegetation into visual exposure modelling in urban environments. Int. J. Geogr. Inf. Sci. 2011, 25, 851–868. [Google Scholar] [CrossRef]
- Skjøth, C.A.; Ørby, P.V.; Becker, T.; Geels, C.; Schl€unssen, V.; Sigsgaard, T.; Bønløkke, J.H.; Sommer, J.; Søgaard, P.; Hertel, O. Identifying urban sources as cause of elevated grass pollen concentrations using GIS and remote sensing. Biogeosciences 2013, 10, 541–554. [Google Scholar] [CrossRef] [Green Version]
- Talhouk, S.N.; Fabian, M.; Dagher, R. Landscape Plant Database. Department of Landscape Design & Ecosystem Management; American University of Beirut: Beirut, Lebanon, 2015; Volume 2019. [Google Scholar]
- Maya-Manzano, J.M.; Fernández-Rodríguez, S.; Monroy-Colín, A.; Silva-Palacios, I.; Tormo-Molina, R.; Gonzalo-Garijo, Á. Allergenic pollen of ornamental plane trees in a Mediterranean environment and urban planning as a prevention tool. Urban For. Urban Green. 2017, 27, 352–362. [Google Scholar] [CrossRef]
- Hidalgo, P.J.; Galán, C.; Domínguez, E. Pollen production of the genus cupressus. Grana 1999, 38, 296–300. [Google Scholar] [CrossRef] [Green Version]
- Charpin, D.; Pichot, C.; Calleja, M. Trimming cypress tree hedges and its effects on subsequent pollination. Ann. Allergy Asthma Immunol. 2011, 106, 259–260. [Google Scholar] [CrossRef] [PubMed]
- Rezanejad, F. Air pollution effects on structure, proteins and flavonoids in pollen grains of Thuja orientalis L. (Cupressaceae). Grana 2009, 48, 205–213. [Google Scholar] [CrossRef]
- Damialis, A.; Fotiou, C.; Halley, J.M.; Vokou, D. Effects of environmental factors on pollen production in anemophilous woody species. Trees Struct. Funct. 2011, 25, 253–264. [Google Scholar] [CrossRef]
- Verdú, M. Age at maturity and diversification in woody angiosperms. Evolution 2002, 56, 1352–1361. [Google Scholar] [CrossRef]
- Huang, L.; Koubek, T.; Weiser, M.; Herben, T. Environmental drivers and phylogenetic constraints of growth phenologies across a large set of herbaceous species. J. Ecol. 2018, 106, 1621–1633. [Google Scholar] [CrossRef]
- Freeman, K.W.; Girma, K.; Arnall, D.B.; Mullen, R.W.; Martin, K.L.; Teal, R.K.; Raun, W.R. By-plant prediction of corn forage biomass and nitrogen uptake at various growth stages using remote sensing and plant height. Agron. J. 2007, 99, 530–536. [Google Scholar] [CrossRef] [Green Version]
- Schirrmann, M.; Hamdorf, A.; Garz, A.; Ustyuzhanin, A.; Dammer, K.-H. Estimating wheat biomass by combining image clustering with crop height. Comput. Electron. Agric. 2016, 121, 374–384. [Google Scholar] [CrossRef]
- Hu, P.; Chapman, S.C.; Wang, X.; Potgieter, A.; Duan, T.; Jordan, D.; Guo, Y.; Zheng, B. Estimation of plant height using a high throughput phenotyping platform based on unmanned aerial vehicle and self-calibration: Example for sorghum breeding. Eur. J. Agron. 2018, 95, 24–32. [Google Scholar] [CrossRef]
- Han, X.; Thomasson, J.A.; Bagnall, G.C.; Pugh, N.A.; Horne, D.W.; Rooney, W.L.; Jung, J.; Chang, A.; Malambo, L.; Popescu, S.C.; et al. Measurement and Calibration of Plant-Height from Fixed-Wing UAV Images. Sensors 2018, 18, 92. [Google Scholar] [CrossRef] [Green Version]
- Scheifinger, H.; Menzel, A.; Koch, E.; Peter, E.; Ahas, C. Atmospheric mechanisms governing the spatial and temporal variability of phenological observations in central Europe. Int. J. Climatol. 2002, 22, 1739–1755. [Google Scholar] [CrossRef]
- Sharma, C.M.; Khanduri, V.P.; Ghildiyal, S.K. Reproductive ecology of male and female strobili and mating system in two different populations of Pinus roxburghii. Sci. World J. 2012, 2012, 271389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. Available online: http://www.R-project.org (accessed on 16 October 2019).
- Baxi, S.N.; Phipatanakul, W. The role of allergen exposure and avoidance in asthma. Adolesc. Med. State Art Rev. 2010, 21, 57–71. [Google Scholar] [PubMed]
- El Periódico Extremadura (2019) Atrio, Entre Los Diez Mejores Restaurantes de Alta Cocina. Available online: https://www.elperiodicoextremadura.com/noticias/caceres/atrio-diez-mejores-restaurantes-alta-cocina_1194675.html (accessed on 28 August 2019).
- Stephenson, P.L.; Taylor, M.V. Traveler’s Health Information on the Internet. J. Consum. Health Internet 2013, 17, 410–418. [Google Scholar] [CrossRef]
- Charpin, D.; Calleja, M.; Lahoz, C.; Pichot, C.; Waisel, Y. Allergy to cypress pollen. Allergy Eur. J. Allergy Clin. Immunol. 2005, 60, 293–301. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, S.; Skjøth, C.A.; Tormo-Molina, R.; Brandao, R.; Caeiro, E.; Silva-Palacios, I.; Gonzalo-Garijo Á, Smith, M. Identification of potential sources of airborne Olea pollen in the Southwest Iberian Peninsula. Int. J. Biometeorol. 2014, 58, 337–348. [Google Scholar] [CrossRef]
- Salmond, J.A.; Tadaki, M.; Vardoulakis, S.; Arbuthnott, K.; Coutts, A.; Demuzere, M.; Dirks, K.N.; Heaviside, C.; Lim, S.; MacIntyre, H.; et al. Health and climate related ecosystem services provided by street trees in the urban environment. Environ. Health: A Glob. Access Sci. Source 2016, 15, S36. [Google Scholar] [CrossRef] [Green Version]
- Nowak, M.; Szymanska, A.; Grewling, L. Allergic risk zones of plane tree pollen (Platanus sp.) in Poznan. Postepy Dermatol. I Alergol. 2012, 29, 156–160. [Google Scholar]
- Manzione, R.L.; Castrignanò, A. A geostatistical approach for multi-source data fusion to predict water table depth. Sci. Total Environ. 2019, 696, 133763. [Google Scholar] [CrossRef]
- Oteros, J.; Bergmann, K.C.; Menzel, A.; Damialis, A.; Traidl-Hoffmann, C.; Schmidt-Weber, C.B.; Buters, J. Spatial interpolation of current airborne pollen concentrations where no monitoring exists. Atmos. Environ. 2019, 199, 435–442. [Google Scholar] [CrossRef]
- Werchan, B.; Werchan, M.; Mücke, H.G.; Bergmann, K.C. Spatial distribution of pollen-induced symptoms within a large metropolitan area-Berlin, Germany. Aerobiologia 2018, 34, 539–556. [Google Scholar] [CrossRef]
- Bogawski, P.; Grewling, Ł.; Dziób, K.; Sobieraj, K.; Dalc, M.; Dylawerska, B.; Pupkowski, D.; Nalej, A.; Nowak, M.; Szymańska, A.; et al. Lidar-derived tree crown parameters: Are they new variables explaining local birch (Betula sp.) pollen concentrations? Forests 2019a, 10, 1154. [Google Scholar] [CrossRef] [Green Version]
- Bogawski, P.; Grewling, Ł.; Jackowiak, B. Predicting the onset of Betula pendula flowering in Poznań (Poland) using remote sensing thermal data. Sci. Total Environ. 2019b, 658, 1485–1499. [Google Scholar] [CrossRef] [PubMed]
City | Coordinates | m.a.s.l |
---|---|---|
Badajoz (BA) | 38°53′N, 6°58′W | 184 |
Cáceres (CC) | 39°48′N, 6°20′W | 459 |
Don Benito (DB) | 38°58′N, 5°50′W | 253 |
Plasencia (PL) | 43°10′N, 2°25′W | 253 |
Zafra (ZA) | 38°25′N, 6°25′W | 508 |
Pollination Month | Jan | Feb | Mar | Apr | May | Jun | |
---|---|---|---|---|---|---|---|
Species | |||||||
C. sempervirens | |||||||
C. arizonica | |||||||
C. macrocarpa | |||||||
C. leylandii | |||||||
P. orientalis |
Height (m) | Values “M” (Expressed in Meters Height for Specimens) | ||||
---|---|---|---|---|---|
Species | Spread at Maturity | Maturity | Young (1) | Adults (5) | Mature (10) |
C. sempervirens | 10–15 | 15–23 | <10 | 10–15 | >15 |
C. arizonica | 5–8 | 8–15 | <5 | 5–8 | >8 |
C. macrocarpa | 10–15 | 15–23 | <10 | 10–15 | >15 |
C. leylandii | 5–8 | 8–15 | <5 | 5–8 | >8 |
P. orientalis | 3–5 | 5–8 | <3 | 3–5 | >5 |
City | Maps. | Number of Specimens (N) | Maturity of Specimens (M) | Shape of Street (Sh) | Pollen Production (α) | AIROT |
---|---|---|---|---|---|---|
JAN | Badajoz | 1.288 | 2.419 | 6.454 | 0.032 | 0.093 |
Cáceres | 4.856 | 1.072 | 6.381 | 0.009 | 0.022 | |
Don Benito | 2.537 | 1.023 | 9.363 | 0.002 | 0.004 | |
Plasencia | 5.362 | 1.000 | 8.547 | 0.001 | 0.491 | |
Zafra | 4.538 | 1.003 | 6.163 | 0.003 | 0.014 | |
FEB | Badajoz | 1.364 | 4.157 | 7.636 | 0.055 | 0.052 |
Cáceres | 4.083 | 1.921 | 7.213 | 0.019 | 0.018 | |
Don Benito | 3.155 | 2.806 | 9.431 | 0.018 | 0.159 | |
Plasencia | 4.866 | 1.654 | 8.411 | 0.075 | 0.041 | |
Zafra | 4.697 | 2.691 | 6.650 | 0.021 | 0.014 | |
MAR | Badajoz | 1.351 | 4.510 | 7.743 | 0.062 | 0.057 |
Cáceres | 4.114 | 1.985 | 7.195 | 0.020 | 0.019 | |
Don Benito | 2.926 | 3.133 | 9.419 | 0.022 | 0.188 | |
Plasencia | 4.912 | 1.673 | 8.572 | 0.077 | 0.041 | |
Zafra | 4.284 | 3.243 | 6.840 | 0.028 | 0.019 | |
MAYJUN | Badajoz | 1.315 | 1.000 | 8.847 | 0.010 | 0.510 |
Cáceres | 3.325 | 1.264 | 4.241 | 0.002 | 0.041 | |
Don Benito | 3.077 | 1.000 | 8.615 | 0.004 | 0.511 | |
Plasencia | 1.000 | 1.276 | 10.000 | 0.006 | 0.181 | |
Zafra | 2.132 | 1.000 | 5.405 | 0.001 | 0.353 |
Maps | JAN | FEB | MAR | MAY/JUN | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Species City | A* | O* | A* | M* | O* | S* | A* | M* | S* | L* |
Badajoz | 210 | 103 | 210 | 20 | 103 | 691 | 210 | 20 | 691 | 203 |
Cáceres | 1770 | 225 | 1770 | 7 | 225 | 1439 | 1770 | 7 | 1439 | 489 |
Don Benito | 397 | 124 | 397 | - | 124 | 288 | 397 | - | 288 | 13 |
Plasencia | 309 | 20 | 309 | 47 | 20 | 327 | 309 | 47 | 327 | 29 |
Zafra | 806 | 378 | 806 | 12 | 378 | 340 | 806 | 12 | 340 | 206 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecero-Casimiro, R.; Fernández-Rodríguez, S.; Tormo-Molina, R.; Silva-Palacios, I.; Gonzalo-Garijo, Á.; Monroy-Colín, A.; Coloma, J.F.; Maya-Manzano, J.M. Producing Urban Aerobiological Risk Map for Cupressaceae Family in the SW Iberian Peninsula from LiDAR Technology. Remote Sens. 2020, 12, 1562. https://doi.org/10.3390/rs12101562
Pecero-Casimiro R, Fernández-Rodríguez S, Tormo-Molina R, Silva-Palacios I, Gonzalo-Garijo Á, Monroy-Colín A, Coloma JF, Maya-Manzano JM. Producing Urban Aerobiological Risk Map for Cupressaceae Family in the SW Iberian Peninsula from LiDAR Technology. Remote Sensing. 2020; 12(10):1562. https://doi.org/10.3390/rs12101562
Chicago/Turabian StylePecero-Casimiro, Raúl, Santiago Fernández-Rodríguez, Rafael Tormo-Molina, Inmaculada Silva-Palacios, Ángela Gonzalo-Garijo, Alejandro Monroy-Colín, Juan Francisco Coloma, and José María Maya-Manzano. 2020. "Producing Urban Aerobiological Risk Map for Cupressaceae Family in the SW Iberian Peninsula from LiDAR Technology" Remote Sensing 12, no. 10: 1562. https://doi.org/10.3390/rs12101562
APA StylePecero-Casimiro, R., Fernández-Rodríguez, S., Tormo-Molina, R., Silva-Palacios, I., Gonzalo-Garijo, Á., Monroy-Colín, A., Coloma, J. F., & Maya-Manzano, J. M. (2020). Producing Urban Aerobiological Risk Map for Cupressaceae Family in the SW Iberian Peninsula from LiDAR Technology. Remote Sensing, 12(10), 1562. https://doi.org/10.3390/rs12101562