A Review of the Sustainability Concept and the State of SDG Monitoring Using Remote Sensing
Abstract
:1. Introduction
2. Review Approach
3. From the Conceptualization of Sustainability to the Formulation of the SDGs
4. The Role of Remote Sensing for SDG Monitoring
5. Current Status, Challenges, and Opportunities
5.1. Status of the 2030 Agenda
5.2. Status of the RS-Based Indicators and Their Inclusion in the SDG Index 2019
5.3. Challenges, Opportunities, and Insights
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Satellite | Sensor and Number of Bands | Spatial Resolution | Revisit Interval | Reference |
---|---|---|---|---|
Landsat 4/5 TM | MS 6; T 1 | MS &T: 30 m | 16 days | [111] |
Landsat 7 ET+/ 8 OLI/TIRS | MS 6/8; T 1/2; Pan 1 | MS & T: 30 m Pan: 15 m | 16 days | [111] |
SPOT 1/2/3 (2 HRVs) | MS 3; Pan 1 | MS: 20 m Pan: 10 m | 1 to 3 days | [112] |
SPOT 4 (2 HRVIRs) | MS 4; Pan 1 | MS: 20 m Pan: 10 m | 2 to 3 days | [112] |
SPOT 5 (2 HRGs) | MS 4; Pan 2 | VNIR: 10 m; SWIR: 20 m Pan: 5 m (2.5 m) | 2 to 3 days | [112] |
SPOT 6/7 (2 NAOMI) | MS 4; Pan 1 | MS: 8 m Pan: 2 m | Daily | [113] |
NOAA AVHRR | MS & T 4–5 | 1.1 km | Daily (Vis), 2×/day (IR) | [114] |
OrbView 2 (SeaWiFS) | MS 8 | 1 km | Daily | [113] |
IKONOS 2 | MS 4; Pan 1 | MS: 3.20 m Pan: 0.82 m | 1 to 3 days | [113] |
Terra ASTER | MS up to 10; T 5 | VNIR: 15 m; SWIR: 30 m, T: 90 m | All bands: at least 1×/16 days, VNIR: 5 days | [115] |
MODIS Terra/Aqua | MS & T 36 | Bands 1–2: 250 m, Bands 3–7: 500 m, Bands 8–36: 1 km | 1 to 2 days | [116] |
Envisat MERIS | MS 15 | Ocean: 1040 m × 1200 m; Land: 260 m × 300 m | 3 days | [117] |
QuickBird | MS 4; Pan 1 | MS: 2.40 m Pan: 0.60 m | 1.5 to 2.8 days | [117] |
GeoEye | MS 4; Pan 1 | MS: 1.64 m Pan: 0.41 m | ≤ 3 days | [113] |
RapidEye | MS 5 | MS: ~6.5 m | 1 to 5.5 days | [117] |
WorldView 2 | MS 8; Pan 1 | MS: 1.80 m, Pan: 0.46 m | 1.1 days | [113] |
Sentinel 2A/2B | MS 13 | MS: 10 m, 20 m, 60 m | A or B: 10 days A & B: 5 days | [118] |
Satellite | Sensor | Spatial Resolution | Revisit Interval | Reference |
---|---|---|---|---|
ERS 1/2 | C-band SAR | 30 m to 50 km | 35 days | [113] |
JERS 1 | L-band SAR | 18 m | 44 days | [113] |
RADARSAT 1/2 | C-band SAR | 10–100 m/ 3–100 m | 24 days | [117] |
Envisat ASAR | C-band SAR | 28–980 m | 35 days | [117] |
ALOS PALSAR | L-band SAR | 7–100 m | 46 days | [119] |
TerraSAR-X | X-band SAR | 1–16 m | 11 days | [117] |
TanDEM-X | X-band SAR | 12 m | 11 days | [117] |
ALOS-2 | L-band SAR | 3–100 m | 14 days | [119] |
Sentinel 1/2 SAR | C-band SAR | 5–100 m | 1/2: 6 days; 1 or 2: 12 days | [118] |
References
- WCED (World Commission on Environment and Development). Our Common Future; Oxford University Press: New York, NY, USA, 1987; ISBN 978-0-19-282080-8. [Google Scholar]
- UN General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development. Resolution Adopted by the General Assembly on 25 September 2015. Available online: https://unstats.un.org/sdgs/indicators/Global%20Indicator%20Framework%20after%202020%20review_Eng.pdf (accessed on 19 March 2020).
- UN IAEG-SDGs. Global Indicator Framework for the Sustainable Development Goals and Targets of the 2030 Agenda for Sustainable Development. Available online: https://unstats.un.org/sdgs/indicators/GlobalIndicatorFrameworkafter2020review_Eng.pdf (accessed on 19 March 2020).
- UN General Assembly. Work of the Statistical Commission Pertaining to the 2030 Agenda for Sustainable Development. Resolution Adopted by the General Assembly on 6 July 2017. Available online: https://undocs.org/A/RES/71/313 (accessed on 19 March 2020).
- Barbier, E.B. The concept of sustainable economic development. Environ. Conserv. 1987, 14, 101–110. [Google Scholar] [CrossRef]
- Elkington, J. Towards the sustainable corporation: Win-win-win business strategies for sustainable development. Calif. Manage. Rev. 1994, 36, 90–100. [Google Scholar] [CrossRef]
- Elkington, J. Cannibals with Forks. The Triple Bottom Line of 21st Century Business; Capston, Publishing Ltd.: Oxford, UK, 1997; ISBN 1-900961-27-X. [Google Scholar]
- Estoque, R.C.; Murayama, Y. Social-ecological status index: A preliminary study of its structural composition and application. Ecol. Indic. 2014, 43, 183–194. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. A worldwide country-based assessment of social-ecological status (c. 2010) using the social-ecological status index. Ecol. Indic. 2017, 72, 605–614. [Google Scholar] [CrossRef]
- Ostrom, E. A diagnostic approach for going beyond panaceas. Proc. Natl. Acad. Sci. USA 2007, 104, 15181–15187. [Google Scholar] [CrossRef] [Green Version]
- Ostrom, E. A general framework for analyzing sustainability of social-ecological systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef]
- McGinnis, M.D.; Ostrom, E. Social-ecological system framework: Initial changes and continuing. Ecol. Soc. 2014, 19, 30. [Google Scholar] [CrossRef] [Green Version]
- Gallopin, G.C. Environmental and sustainability indicators and the concept of situational indicators. A systems approach. Environ. Model. Assess. 1996, 1, 101–117. [Google Scholar] [CrossRef]
- Heink, U.; Kowarik, I. What are indicators? On the definition of indicators in ecology and environmental planning. Ecol. Indic. 2010, 10, 584–593. [Google Scholar] [CrossRef]
- Lehtonen, M. Indicators: Tools for informing, monitoring or controlling? In The Tools of Policy Formulation: Actors, Capacities, Venues and Effects. New Horizons in Public Policy; Jordan, A.J., Turnpenny, J.R., Eds.; Edward Elgar: Cheltenham, UK; Northampton, MA, USA, 2015; pp. 76–99. ISBN 9781783477036. [Google Scholar]
- Estoque, R.C. GIS-Based Multi-Criteria Decision Analysis in Natural Resource Management; University of Tsukuba: Tsukuba, Japan, 2011. [Google Scholar]
- Essex, B.; Koop, S.H.A.; Van Leeuwen, C.J. Proposal for a national blueprint framework to monitor progress on water-related Sustainable Development Goals in Europe. Environ. Manag. 2020, 65, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Boulanger, P.-M. Sustainable development indicators: A scientific challenge, a democratic issue. Surv. Perspect. Integrating Environ. Soc. 2008, 1, 45–59. [Google Scholar] [CrossRef]
- Maurice, J. Measuring progress towards the SDGs — A new vital science. Lancet 2016, 388, 1455–1458. [Google Scholar] [CrossRef] [Green Version]
- UN IAEG-SDGs. Tier Classification for Global SDG Indicators (as of 17 April 2020). Available online: https://unstats.un.org/sdgs/iaeg-sdgs/tier-classification/ (accessed on 2 May 2020).
- UN Statistics Division. SDG Indicators. Available online: https://unstats.un.org/sdgs/indicators/indicators-list/ (accessed on 19 March 2020).
- WGGI (Working Group on Geospatial Information). Terms of Reference; Inter-Agency and Expert Group on SDG Indicators, United Nations: New York, NY, USA, 2019. [Google Scholar]
- Anderson, K.; Ryan, B.; Sonntag, W.; Kavvada, A.; Friedl, L. Earth observation in service of the 2030 Agenda for Sustainable Development. Geo-Spat. Inf. Sci. 2017, 20, 77–96. [Google Scholar] [CrossRef]
- Paganini, M.; Petiteville, I.; Ward, S.; Dyke, G.; Steventon, M.; Harry, J.; Kerblat, F. Satellite Earth Observations in Support of the Sustainable Development Goals: The CEOS Earth Observation Handbook; Special 2018 Edition; The Committee on Earth Observation Satellites and the European Space Agency: Paris, France, 2018. [Google Scholar]
- GEO. EO4SDG: Earth Observations in Service of the 2030 Agenda for Sustainable Development. Strategic Implementation Plan 2020–2024; Group on Earth Observations: Geneva, Switzerland, 2019. [Google Scholar]
- Grant, M.J.; Booth, A. A typology of reviews: An analysis of 14 review types and associated methodologies. Health Inf. Libr. J. 2009, 26, 91–108. [Google Scholar] [CrossRef]
- Kidd, C.V. The evolution of sustainability. J. Agric. Environ. Ethics 1992, 5, 1–26. [Google Scholar] [CrossRef]
- Grober, U. Deep Roots: A Conceptual History of “Sustainable Development” (Nachhaltigkeit); WZB Discussion Paper, No. P 2007-002; Wissenschaftszentrum Berlin für Sozialforschung (WZB): Berlin, Germany, 2007. [Google Scholar]
- Warde, P. The Invention of Sustainability: Nature and Destiny; Cambridge University Press: Cambridge, UK, 2018; ISBN 1-107-15114-7. [Google Scholar]
- Purvis, B.; Mao, Y.; Robinson, D. Three pillars of sustainability: In search of conceptual origins. Sustain. Sci. 2019, 14, 681–695. [Google Scholar] [CrossRef] [Green Version]
- Du Pisani, J.A. Sustainable development – historical roots of the concept. Environ. Sci. 2006, 3, 83–96. [Google Scholar] [CrossRef]
- IUCN. World Conservation Strategy: Living Resource Conservation for Sustainable Development; IUCN-UNEP-WWF: Gland, Switzerland, 1980. [Google Scholar]
- Hardin, G. The tragedy of the commons. Science 1968, 162, 1243–1248. [Google Scholar]
- Gómez-Pompa, A.; Vázquez-Yanes, C.; Guevara, S. The tropical rain forest: A nonrenewable resource. Science 1972, 177, 762–765. [Google Scholar] [CrossRef] [Green Version]
- Westman, W.E. How much are nature’s services worth? Science 1977, 197, 960–964. [Google Scholar] [CrossRef]
- Ehrlich, P.R.; Ehrlich, A.H. Extinction: The Causes and Consequences of the Disappearance of Species; Random House: New York, NY, USA, 1981; ISBN 0-394-51312-6. [Google Scholar]
- de Groot, R.S. Environmental functions as a unifying concept for ecology and economics. Environmentalist 1987, 7, 105–109. [Google Scholar] [CrossRef]
- Gómez-Baggethun, E.; de Groot, R.; Lomas, P.L.; Montes, C. The history of ecosystem services in economic theory and practice: From early notions to markets and payment schemes. Ecol. Econ. 2010, 69, 1209–1218. [Google Scholar] [CrossRef]
- Diaz, S.; Demissew, S.; Carabias, J.; Joly, C.; Lonsdale, M.; Ash, N.; Larigauderie, A.; Adhikari, J.R.; Arico, S.; Baldi, A.; et al. The IPBES conceptual framework - connecting nature and people. Curr. Opin. Environ. Sustain. 2015, 14, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Diaz, S.; Pascual, U.; Stenseke, M.; Martín-López, B.; Watson, R.T.; Molnár, Z.; Hill, R.; Chan, K.M.A.; Baste, I.A.; Brauman, K.A.; et al. Assessing nature’s contributions to people. Science 2018, 359, 270–272. [Google Scholar] [CrossRef] [Green Version]
- Daily, G.C. (Ed.) Nature’s Services. Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997; ISBN 1-55963-476-6. [Google Scholar]
- Costanza, R.; D’Arge, R.; de Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Measuring sustainability based upon various perspectives: A case study of a hill station in Southeast Asia. AMBIO 2014, 43, 943–956. [Google Scholar] [CrossRef] [Green Version]
- Costanza, R. (Ed.) Ecological Economics: The Science and Management of Sustainability; Columbia University Press: New York, NY, USA, 1991; ISBN 0-231-07562-6. [Google Scholar]
- Røpke, I. The early history of modern ecological economics. Ecol. Econ. 2004, 50, 293–314. [Google Scholar] [CrossRef]
- Rees, W.E. Ecological footprints and appropriated carrying capacity: What urban economics leaves out. Environ. Urban. 1992, 4, 121–130. [Google Scholar] [CrossRef]
- Kates, R.W.; Clark, W.C.; Corell, R.; Hall, J.M.; Jaeger, C.C.; Lowe, I.; McCarthy, J.J.; Schellnhuber, H.J.; Bolin, B.; Dickson, N.M.; et al. Sustainability science. Science 2001, 292, 641–642. [Google Scholar] [CrossRef]
- NRC USA. Our Common Journey: A Transition Toward Sustainability; Athens Center of Ekistics: New York, NY, USA, 1999. [Google Scholar]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, A.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. Planetary boundaries: Exploring the safe operating space for humanity. Ecol. Soc. 2009, 14, 32. [Google Scholar] [CrossRef]
- Wu, J. Landscape sustainability science: Ecosystem services and human well-being in changing landscapes. Landsc. Ecol. 2013, 28, 999–1023. [Google Scholar] [CrossRef]
- UN General Assembly. The Future We Want. Resolution Adopted by the General Assembly on 27 July 2012. Available online: https://sustainabledevelopment.un.org/futurewewant.html (accessed on 19 March 2020).
- Beckerman, W. “Sustainable development”: Is it a useful concept? Environ. Values 2013, 3, 191–209. [Google Scholar] [CrossRef] [Green Version]
- Connelly, S. Mapping sustainable development as a contested concept. Local Environ. 2007, 12, 259–278. [Google Scholar] [CrossRef]
- Bell, S.; Morse, S. Sustainability Indicators: Measuring the Immeasurable; Earthscan: London, UK, 2008; ISBN 1-84407-299-1. [Google Scholar]
- Pesqueux, Y. Sustainable development: A vague and ambiguous “theory”. Soc. Bus. Rev. 2009, 4, 231–245. [Google Scholar] [CrossRef]
- Salas-Zapata, W.A.; Ortiz-Muñoz, S.M. Analysis of meanings of the concept of sustainability. Sustain. Dev. 2019, 27, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Daly, H.E. On Wilfred Beckerman’s critique of sustainable development. Environ. Values 1995, 4, 49–55. [Google Scholar] [CrossRef]
- Salomonson, V.V. Remote sensing, historical perspective. In Encyclopedia of Remote Sensing; Njoku, E.G., Ed.; Springer Science+Business Media: New York, NY, USA, 2014; pp. 684–691. [Google Scholar]
- Moore, G.K. What is a picture worth? A history of remote sensing/ Quelle est la valeur d’une image? Un tour d’horizon de télédétection. Hydrol. Sci. Bull. 1979, 24, 177–485. [Google Scholar] [CrossRef] [Green Version]
- Andries, A.; Morse, S.; Murphy, R.J.; Lynch, J.; Woolliams, E.R. Seeing sustainability from space: Using Earth observation data to populate the UN Sustainable Development Goal indicators. Sustainability 2019, 11, 5062. [Google Scholar] [CrossRef] [Green Version]
- Weng, Q. (Ed.) Remote Sensing for Sustainability; CRS Press: Boca Raton, FL, USA, 2016; ISBN 1-4987-0071-3. [Google Scholar]
- Rao, U.R. Remote sensing for sustainable development. J. Indian Soc. Remote Sens. 1991, 19, 217–235. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- de Araujo Barbosa, C.C.; Atkinson, P.M.; Dearing, J.A. Remote sensing of ecosystem services: A systematic review. Ecol. Indic. 2015, 52, 430–443. [Google Scholar] [CrossRef]
- Estoque, R.C.; Ooba, M.; Avitabile, V.; Hijioka, Y.; DasGupta, R.; Togawa, T.; Murayama, Y. The future of Southeast Asia’s forests. Nat. Commun. 2019, 10, 1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, X.P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Park, T.; Wang, X.; Piao, S.; Xu, B.; Chaturvedi, R.K.; Fuchs, R.; Brovkin, V.; Ciais, P.; Fensholt, R.; et al. China and India lead in greening of the world through land-use management. Nat. Sustain. 2019, 2, 122–129. [Google Scholar] [CrossRef]
- Kerr, J.T.; Ostrovsky, M. From space to species: Ecological applications for remote sensing. Trends Ecol. Evol. 2003, 18, 299–305. [Google Scholar] [CrossRef]
- Wang, K.; Franklin, S.E.; Guo, X.; Cattet, M. Remote sensing of ecology, biodiversity and conservation: A review from the perspective of remote sensing specialists. Sensors 2010, 10, 9647–9667. [Google Scholar] [CrossRef] [PubMed]
- Kwok, R. Ecology’s remote-sensing evolution. Nature 2018, 556, 137–138. [Google Scholar] [CrossRef]
- Yu, H.; Liu, X.; Kong, B.; Li, R.; Wang, G. Landscape ecology development supported by geospatial technologies: A review. Ecol. Inform. 2019, 51, 185–192. [Google Scholar] [CrossRef]
- Schmugge, T.J.; Kustas, W.P.; Ritchie, J.C.; Jackson, T.J.; Rango, A. Remote sensing in hydrology. Adv. Water Resour. 2002, 25, 1367–1385. [Google Scholar] [CrossRef]
- Crow, W.T.; Chen, F.; Reichle, R.H.; Liu, Q. L band microwave remote sensing and land data assimilation improve the representation of prestorm soil moisture conditions for hydrologic forecasting. Geophys. Res. Lett. 2017, 44, 5495–5503. [Google Scholar] [CrossRef]
- Thies, B.; Bendix, J. Satellite based remote sensing of weather and climate: Recent achievements and future perspectives. Meteorol. Appl. 2011, 18, 262–295. [Google Scholar] [CrossRef]
- Yang, J.; Gong, P.; Fu, R.; Zhang, M.; Chen, J.; Liang, S.; Xu, B.; Shi, J.; Dickinson, R. The role of satellite remote sensing in climate change studies. Nat. Clim. Change 2013, 3, 875–883. [Google Scholar] [CrossRef]
- Voogt, J.A.; Oke, T.R. Thermal remote sensing of urban climates. Remote Sens. Environ. 2003, 86, 370–384. [Google Scholar] [CrossRef]
- Weng, Q.; Lu, D.; Schubring, J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 2004, 89, 467–483. [Google Scholar] [CrossRef]
- Weng, Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 2009, 64, 335–344. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y. Monitoring surface urban heat island formation in a tropical mountain city using Landsat data (1987–2015). ISPRS J. Photogramm. Remote Sens. 2017, 133, 18–29. [Google Scholar] [CrossRef]
- Estoque, R.C.; Murayama, Y.; Myint, S.W. Effects of landscape composition and pattern on land surface temperature: An urban heat island study in the megacities of Southeast Asia. Sci. Total Environ. 2017, 577, 349–359. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
- Myint, S.W.; Gober, P.; Brazel, A.; Grossman-Clarke, S.; Weng, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sens. Environ. 2011, 115, 1145–1161. [Google Scholar] [CrossRef]
- Weng, Q. Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sens. Environ. 2012, 117, 34–49. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz, F.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis—Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Estoque, R.C.; Murayama, Y. Classification and change detection of built-up lands from Landsat-7 ETM+ and Landsat- 8 OLI/TIRS imageries: A comparative assessment of various spectral indices. Ecol. Indic. 2015, 56, 205–217. [Google Scholar] [CrossRef]
- Gupta, P.; Christopher, S.A.; Wang, J.; Gehrig, R.; Lee, Y.; Kumar, N. Satellite remote sensing of particulate matter and air quality assessment over global cities. Atmos. Environ. 2006, 40, 5880–5892. [Google Scholar] [CrossRef]
- Martin, R.V. Satellite remote sensing of surface air quality. Atmos. Environ. 2008, 42, 7823–7843. [Google Scholar] [CrossRef]
- Beck, L.R.; Lobitz, B.M.; Wood, B.L. Remote sensing and human health: New sensors and new opportunities. Emerg. Infect. Dis. 2000, 6, 217–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maxwell, S.K.; Meliker, J.R.; Goovaerts, P. Use of land surface remotely sensed satellite and airborne data for environmental exposure assessment in cancer research. J. Expo. Sci. Environ. Epidemiol. 2010, 20, 176–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seltenrich, N. Remote-sensing applications for environmental health. Environ. Health Perspect. 2014, 122, A268–A275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Estoque, R.C.; Ooba, M.; Seposo, X.T.; Togawa, T.; Hijioka, Y.; Takahashi, K.; Nakamura, S. Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators. Nat. Commun. 2020, 11, 1581. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joyce, K.E.; Belliss, S.E.; Samsonov, S.V.; McNeill, S.J.; Glassey, P.J. A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Prog. Phys. Geogr. Earth Environ. 2009, 33, 183–207. [Google Scholar] [CrossRef] [Green Version]
- Kaku, K. Satellite remote sensing for disaster management support: A holistic and staged approach based on case studies in Sentinel Asia. Int. J. Disaster Risk Reduct. 2019, 33, 417–432. [Google Scholar] [CrossRef]
- de Sherbinin, A.; Levy, M.A.; Zell, E.; Weber, S.; Jaiteh, M. Using satellite data to develop environmental indicators. Environ. Res. Lett. 2014, 9, 084013. [Google Scholar] [CrossRef]
- Giuliani, G.; Mazzetti, P.; Santoro, M.; Nativi, S.; Van Bemmelen, J.; Colangeli, G.; Lehmann, A. Knowledge generation using satellite earth observations to support sustainable development goals (SDG): A use case on Land degradation. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102068. [Google Scholar] [CrossRef]
- Adams, B.B.; Judd, K. Global Indicator Framework for SDGs: Value Added or Time to Start Over? Global Policy Forum: New York, NY, USA, 2019. [Google Scholar]
- Sachs, J.; Schmidt-Traub, G.; Kroll, C.; Lafortune, G.; Fuller, G. Sustainable Development Report 2019. Transformations to Achieve the Sustainable Development Goals: Includes the SDG Index and Dashboards; Bertelsmann Stiftung and Sustainable Development Solutions Network (SDSN): New York, NY, USA, 2019. [Google Scholar]
- Independent Group of Scientists appointed by the Secretary-General. Global Sustainable Development Report 2019: The Future is Now—Science for Achieving Sustainable Development; United Nations: New York, NY, USA, 2019. [Google Scholar]
- FAO. Global Forest Resources Assessment 2015: How are the World’s Forests Changing? second ed.; UN Food and Agriculture Organization: Rome, Italy, 2015. [Google Scholar]
- Prince, S.D. Challenges for remote sensing of the Sustainable Development Goal SDG 15.3.1 productivity indicator. Remote Sens. Environ. 2019, 234, 111428. [Google Scholar] [CrossRef]
- Mulligan, M.; van Soesbergen, A.; Hole, D.G.; Brooks, T.M.; Burke, S.; Hutton, J. Mapping nature’s contribution to SDG 6 and implications for other SDGs at policy relevant scales. Remote Sens. Environ. 2020, 239, 111671. [Google Scholar] [CrossRef]
- Watmough, G.R.; Marcinko, C.L.J.; Sullivan, C.; Tschirhart, K.; Mutuo, P.K.; Palm, C.A.; Svenning, J.C. Socioecologically informed use of remote sensing data to predict rural household poverty. Proc. Natl. Acad. Sci. USA 2019, 116, 1213–1218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyd, D.S.; Jackson, B.; Wardlaw, J.; Foody, G.M.; Marsh, S.; Bales, K. Slavery from Space: Demonstrating the role for satellite remote sensing to inform evidence-based action related to UN SDG number 8. ISPRS J. Photogramm. Remote Sens. 2018, 142, 380–388. [Google Scholar] [CrossRef]
- Macfeely, S. The big (data) bang: Opportunities and challenges for compiling SDG indicators. Glob. Policy 2019, 10, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, P.; Costa, L.; Rybski, D.; Lucht, W.; Kropp, J.P. A systematic study of Sustainable Development Goal (SDG) interactions. Earths Future 2017, 5, 1169–1179. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.G.; Cisneros-Montemayor, A.M.; Swartz, W.; Cheung, W.; Guy, J.A.; Kenny, T.A.; McOwen, C.J.; Asch, R.; Geffert, J.L.; Wabnitz, C.C.C.; et al. A rapid assessment of co-benefits and trade-offs among Sustainable Development Goals. Mar. Policy 2018, 93, 223–231. [Google Scholar] [CrossRef]
- Kroll, C.; Warchold, A.; Pradhan, P. Sustainable Development Goals (SDGs): Are we successful in turning trade-offs into synergies? Palgrave Commun. 2019, 5, 140. [Google Scholar] [CrossRef] [Green Version]
- Biggeri, M.; Clark, D.A.; Ferrannini, A.; Mauro, V. Tracking the SDGs in an ‘integrated’ manner: A proposal for a new index to capture synergies and trade-offs between and within goals. World Dev. 2019, 122, 628–647. [Google Scholar] [CrossRef]
- Xu, Z.; Chau, S.N.; Chen, X.; Zhang, J.; Li, Y.; Dietz, T.; Wang, J.; Winkler, J.A.; Fan, F.; Huang, B.; et al. Assessing progress towards sustainable development over space and time. Nature 2020, 577, 74–78. [Google Scholar] [CrossRef]
- Pettorelli, N.; Schulte toBühne, H.; Shapiro, A.C.; Glover-Kapfer, P. Satellite Remote Sensing for Conservation; WWF Conservation Technology Series 1(4); World Wide Fund for Nature: Gland, Switzerland, 2018. [Google Scholar]
- USGS. What Are the Band Designations for the Landsat Satellites? Available online: https://www.usgs.gov/faqs/what-are-band-designations-landsat-satellites?qt-news_science_products=0#qt-news_science_products (accessed on 19 March 2020).
- Airbus Intelligence. SPOT Image: Spot Satellite Technical Data. Available online: https://www.intelligence-airbusds.com/files/pmedia/public/r329_9_spotsatellitetechnicaldata_en_sept2010.pdf (accessed on 19 March 2020).
- EO Portal Directory. Satellite Missions Database. Available online: https://directory.eoportal.org/web/eoportal/satellite-missions (accessed on 19 March 2020).
- NOAA. AVHRR. Available online: https://www.avl.class.noaa.gov/release/data_available/avhrr/index.htm (accessed on 19 March 2020).
- USGS. AST_L1T Product User’s Guide. Available online: https://lpdaac.usgs.gov/documents/71/AST_L1T_User_Guide_V3.pdf (accessed on 19 March 2020).
- NASA MODIS. Specifications. Available online: https://modis.gsfc.nasa.gov/about/specifications.php (accessed on 19 March 2020).
- ESA (European Space Agency) Earth Online. Earth Observation Information Discovery Platform. Available online: https://earth.esa.int/eogateway (accessed on 19 March 2020).
- Sentinel Online. User Guides Introduction. Available online: https://sentinel.esa.int/web/sentinel/user-guides (accessed on 19 March 2020).
- JAXA (Japan Aerospace Exploration Agency) Earth Observation Research Center. Available online: https://www.eorc.jaxa.jp/en/index.html (accessed on 19 March 2020).
RS-based SDG Indicator | Custodian | Tier | Available Data | ||
---|---|---|---|---|---|
No. and Name of Data Variables | Year | No. of Countries/Territories/ Regions | |||
3.9.1 Mortality rate attributed to household and ambient air pollution | WHO | I | 6 The 6th variable is the crude death rate attributed to household and ambient air pollution | 2016 | 219 |
5.a.1 (a) Proportion of total agricultural population with ownership or secure rights over agricultural land, by sex; and (b) share of women among owners or rights-bearers of agricultural land, by type of tenure | FAO | II | 2 The 1st variable is proportion of people with ownership or secure rights over agricultural land, by sex | 2009–2019 (varies by country/territory) | 10 (total for all data years) |
6.3.1 Proportion of wastewater safely treated | WHO, UN-Habitat, UNSD | II | 1 Proportion of safely treated domestic wastewater flows | 2018 | 79 |
6.3.2 Proportion of bodies of water with good ambient water quality | UNEP | II | 4 The 1st variable is proportion of bodies of water with good ambient water quality | 2017 | 52 |
6.4.2 Level of water stress: freshwater withdrawal as a proportion of available freshwater resources | FAO | I | 1 Level of water stress: freshwater withdrawal as a proportion of available freshwater resources | 2000, 2005, 2010, 2015 | 269 (2015) |
6.5.1 Degree of integrated water resources management implementation (0–100) | UNEP | I | 2 The 1st variable is degree of integrated water resources management implementation | 2018 | 182 |
6.6.1 Change in the extent of water-related ecosystems over time | UNEP, Ramsar | I | 16 The 4th variable is nationally derived proportion of water bodies with good quality | 2017 | 28 |
7.1.1 Proportion of population with access to electricity | World Bank | I | 1 Proportion of population with access to electricity, by urban/rural | 2000–2017 (annual) | 236 (2017) |
9.4.1 CO2 emission per unit of value added | UNIDO, IEA | I | 3 The 3rd variable is CO2 emissions per unit of manufacturing value added | 2000–2017 (annual) | 182 (2017) |
11.1.1 Proportion of urban population living in slums, informal settlements or inadequate housing | UN-Habitat | I | 1 Proportion of urban population living in slums | 2000, 2005, 2010, 2014, 2016 | 126 (2016) |
11.6.2 Annual mean levels of fine particulate matter (e.g. PM2.5 and PM10) in cities (population weighted) | WHO | I | 1 Annual mean levels of fine particulate matter in cities, urban population | 2016 | 215 |
13.1.1 Number of deaths, missing persons and directly affected persons attributed to disasters per 100,000 population | UNDRR | II | 10 The 2nd variable is number of deaths and missing persons attributed to disasters per 100,000 population | 2005–2018 (annual) | 43 (2018) |
14.3.1 Average marine acidity (pH) measured at agreed suite of representative sampling stations | IOC-UNESCO | II | 1 Average marine acidity (pH) measured at agreed suite of representative sampling stations | 2010–2019 (annual) | 3 (2019) |
14.4.1 Proportion of fish stocks within biologically sustainable levels | FAO | I | 1 Proportion of fish stocks within biologically sustainable levels (not overexploited) | 2000–2017 (varied interval) | 1 (global) |
14.5.1 Coverage of protected areas in relation to marine areas | UNEP-WCMC, UNEP, IUCN | I | 3 The 2nd variable is coverage of protected areas in relation to marine areas (Exclusive Economic Zones) | 2018 | 192 |
15.1.1 Forest area as a proportion of total land area | FAO | I | 3 The 2nd variable is forest area as a proportion of total land area | 2000, 2005, 2010, 2015 | 292 (2015) |
15.2.1 Progress towards sustainable forest management | FAO | I | 5 The 4th variable is proportion of forest area with a long-term management plan | 2000, 2005, 2010 | 292 (2010) |
15.3.1 Proportion of land that is degraded over total land area | UNCCD | I | 1 Proportion of land that is degraded over total land area | 2015 | 294 |
15.4.1 Coverage by protected areas of important sites for mountain biodiversity | UNEP-WCMC, UNEP, IUCN | I | 1 Average proportion of Mountain Key Biodiversity Areas covered by protected areas | 2000–2019 (annual) | 197 (2019) |
15.4.2 Mountain Green Cover Index | FAO | I | 3 The 1st variable is Mountain Green Cover Index | 2017 | 276 |
17.6.1 Fixed Internet broadband subscriptions per 100 inhabitants, by speed | ITU | I | 2 The 1st variable is fixed Internet broadband subscriptions per 100 inhabitants, by speed | 2000–2018 (annual) | 179 (2018) |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estoque, R.C. A Review of the Sustainability Concept and the State of SDG Monitoring Using Remote Sensing. Remote Sens. 2020, 12, 1770. https://doi.org/10.3390/rs12111770
Estoque RC. A Review of the Sustainability Concept and the State of SDG Monitoring Using Remote Sensing. Remote Sensing. 2020; 12(11):1770. https://doi.org/10.3390/rs12111770
Chicago/Turabian StyleEstoque, Ronald C. 2020. "A Review of the Sustainability Concept and the State of SDG Monitoring Using Remote Sensing" Remote Sensing 12, no. 11: 1770. https://doi.org/10.3390/rs12111770
APA StyleEstoque, R. C. (2020). A Review of the Sustainability Concept and the State of SDG Monitoring Using Remote Sensing. Remote Sensing, 12(11), 1770. https://doi.org/10.3390/rs12111770