Digital Aerial Photogrammetry (DAP) and Airborne Laser Scanning (ALS) as Sources of Information about Tree Height: Comparisons of the Accuracy of Remote Sensing Methods for Tree Height Estimation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field-Based Measurements
2.3. Remote Sensing Data Acquisition
2.4. ALS Data Processing
2.5. Image Data Processing
2.6. Tree Height Estimation
- i.
- The first stage of determining the height of trees based on CHMs involved delineating tree crowns (tree segmentation). Individual trees were detected using the CHM generated based on ALS data. The applied segmentation method was described in detail by Stereńczak et al. [78]. The obtained data processing result was in the form of a vector layer representing the ranges of tree crowns; this information was used in subsequent stages to determine the heights of trees and perform data analysis.
- ii.
- The next stage included the processing of field data and assigning the field-collected information (tree height and species) to polygons, which represented the crowns of trees generated in the segmentation process. Based on precise information about the locations of trees measured in the field, a point layer illustrating the location of each tree in the sample plot was generated. In the next step, the layer was linked (spatially joined) to segments representing tree crowns. Then, the matching accuracy was verified to eliminate errors related to oversegmentation or undersegmentation that could cause mismatch between field measurements and measurements based on RS data. The evaluation consisted of a visual assessment of the quality of the segmentation process and verification of the tree species assigned to the segment based on high-resolution aerial photographs and field data. Each segment was manually checked. In subsequent steps, only the segments for which tree-to-tree comparisons of RS-based height estimates and direct field-based measurements was possible were selected.
- iii.
- In the final step, statistics for selected segments were calculated based on the CHMs generated from ALS data and aerial photos. The height of the highest pixel in the CHM model within a given segment was considered the tree height determined based on RS data. The heights were determined in a similar way for both CHMs (ALS and image-derived CHMs). The tree heights calculated from RS data were then compared with the heights measured in the field.
2.7. Statistical Analysis
2.7.1. Accuracy Assessment of RS Tree Height Estimation Methods
2.7.2. Analysis of Differences Between ALS- and DAP-Derived Tree Heights
3. Results
3.1. Accuracy of ALS and DAP as Tree Height Estimation Methods
3.2. Differences in Tree Heights Estimated Based on DAP and ALS and the Factors that Influence These Differences
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilkie, M.L.; Holmgren, P.; Castaneda, F. Sustainable Forest Management and the Ecosystem Approach: Two Concepts, One Goal; Forest Management Working Paper; FAO: Rome, Italy, 2003. [Google Scholar]
- Holopainen, M.; Vastaranta, M.; Hyyppä, J. Outlook for the Next Generation’s Precision Forestry in Finland. Forests 2014, 5, 1682–1694. [Google Scholar] [CrossRef] [Green Version]
- Wulder, M.A.; Bater, C.W.; Coops, N.C.; Hilker, T.; White, J.C. The role of LiDAR in sustainable forest management. For. Chron. 2008, 84, 807–826. [Google Scholar] [CrossRef] [Green Version]
- Kangas, A.; Maltamo, M. Forest Inventory: Methodology and Applications; Springer Science & Business Media: New York, NY, USA, 2006; ISBN 978-1-4020-4381-9. [Google Scholar]
- Fournier, R.; Mailly, D.; Walter, J.-M.; Soudani, K. Indirect Measurement of Forest Canopy Structure from In Situ Optical Sensors; Springer: New York, NY, USA, 2003; pp. 77–113. ISBN 978-1-4613-5014-9. [Google Scholar]
- Maltamo, M.; Packalén, P.; Peuhkurinen, J.; Suvanto, A.; Pesonen, A.; Hyyppä, J. Experiences and possibilities of ALS based forest inventory in Finland. In Proceedings of the ISPRS Workshop on Laser Scanning, Espoo, Finland, 12–14 September 2007; pp. 12–14. [Google Scholar]
- Vastaranta, M.; Holopainen, M.; Yu, X.; Haapanen, R.; Melkas, T.; Hyyppä, J.; Hyyppä, H. Individual tree detection and area-based approach in retrieval of forest inventory characteristics from low-pulse airborne laser scanning data. Photogramm. J. Finl. 2011, 22, 1–13. [Google Scholar]
- White, J.C.; Wulder, M.A.; Varhola, A.; Vastaranta, M.; Coops, N.C.; Cook, B.D.; Pitt, D.; Woods, M. A best practices guide for generating forest inventory attributes from airborne laser scanning data using an area-based approach. For. Chron. 2013, 89, 722–723. [Google Scholar] [CrossRef] [Green Version]
- Holopainen, M.; Vastaranta, M.; Karjalainen, M.; Karila, K.; Kaasalainen, S.; Honkavaara, E.; Hyyppa, J. Forest Inventory Attribute Estimation Using Airborne Laser Scanning, Aerial Stereo Imagery, Radargrammetry and Interferometry-Finnish Experiences of the 3D Techniques. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. 2015, II-3/W4, 63–69. [Google Scholar] [CrossRef] [Green Version]
- Goodbody, T.R.; Coops, N.C.; Marshall, P.L.; Tompalski, P.; Crawford, P. Unmanned aerial systems for precision forest inventory purposes: A review and case study. For. Chron. 2017, 93, 71–81. [Google Scholar] [CrossRef] [Green Version]
- White, J.C.; Wulder, M.A.; Vastaranta, M.; Coops, N.C.; Pitt, D.; Woods, M. The utility of image-based point clouds for forest inventory: A comparison with airborne laser scanning. Forests 2013, 4, 518–536. [Google Scholar] [CrossRef] [Green Version]
- Naesset, E. Estimating timber volume of forest stands using airborne laser scanner data. Remote Sens. Environ. 1997, 61, 246–253. [Google Scholar] [CrossRef]
- Næsset, E. Determination of mean tree height of forest stands using airborne laser scanner data. ISPRS J. Photogramm. Remote Sens. 1997, 52, 49–56. [Google Scholar] [CrossRef]
- Nelson, R. Modeling forest canopy heights: The effects of canopy shape. Remote Sens. Environ. 1997, 60, 327–334. [Google Scholar] [CrossRef]
- Magnussen, S.; Boudewyn, P. Derivations of stand heights from airborne laser scanner data with canopy-based quantile estimators. Can. J. For. Res. 1998, 28, 1016–1031. [Google Scholar] [CrossRef]
- Hyyppa, J. Detecting and estimating attributes for single trees using laser scanner. Photogramm. J. Finl. 1999, 16, 27–42. [Google Scholar]
- Baltsavias, E.P. Airborne laser scanning: Existing systems and firms and other resources. ISPRS J. Photogramm. Remote Sens. 1999, 54, 164–198. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Cohen, W.B.; Acker, S.A.; Parker, G.G.; Spies, T.A.; Harding, D. Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests. Remote Sens. Environ. 1999, 70, 339–361. [Google Scholar] [CrossRef]
- St-Onge, B.A. Estimating individual tree heights of the boreal forest using airborne laser altimetry and digital videography. Int. Arch. Photogramm. Remote Sens. 1999, 32, W14. [Google Scholar]
- Magnussen, S.; Eggermont, P.; LaRiccia, V.N. Recovering tree heights from airborne laser scanner data. For. Sci. 1999, 45, 407–422. [Google Scholar]
- Means, J.E.; Acker, S.A.; Fitt, B.J.; Renslow, M.; Emerson, L.; Hendrix, C.J. Predicting forest stand characteristics with airborne scanning lidar. Photogramm. Eng. Remote Sens. 2000, 66, 1367–1372. [Google Scholar]
- Lim, K. Estimation of individual tree heights using LiDAR remote sensing. In Proceedings of the Twenty-Third Annual Canadian Symposium on Remote Sensing, Quebec, QC, Canada, 20–24 August 2001. [Google Scholar]
- Koch, B.; Heyder, U.; Weinacker, H. Detection of individual tree crowns in airborne lidar data. Photogramm. Eng. Remote Sens. 2006, 72, 357–363. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.A.; Burke, I.C.; Box, D.O.; Kaufmann, M.R.; Stoker, J.M. Estimating stand structure using discrete-return lidar: An example from low density, fire prone ponderosa pine forests. For. Ecol. Manag. 2005, 208, 189–209. [Google Scholar] [CrossRef]
- Persson, A.; Holmgren, J.; Soderman, U. Detecting and measuring individual trees using an airborne laser scanner. Photogramm. Eng. Remote Sens. 2002, 68, 925–932. [Google Scholar]
- Holmgren, J.; Persson, A. Identifying species of individual trees using airborne laser scanner. Remote Sens. Environ. 2004, 90, 415–423. [Google Scholar] [CrossRef]
- Kamińska, A.; Lisiewicz, M.; Stereńczak, K.; Kraszewski, B.; Sadkowski, R. Species-related single dead tree detection using multi-temporal ALS data and CIR imagery. Remote Sens. Environ. 2018, 219, 31–43. [Google Scholar] [CrossRef]
- Maltamo, M.; Eerikäinen, K.; Pitkänen, J.; Hyyppä, J.; Vehmas, M. Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sens. Environ. 2004, 90, 319–330. [Google Scholar] [CrossRef]
- Hyyppä, J.; Yu, X.; Hyyppä, H.; Maltamo, M. Methods of airborne laser scanning for forest information extraction. In Proceedings of the Workshop on 3D Remote Sensing in Forestry, Vienna, Austria, 14–15 February 2006; pp. 14–15. [Google Scholar]
- Lim, K.S.; Treitz, P.M. Estimation of above ground forest biomass from airborne discrete return laser scanner data using canopy-based quantile estimators. Scand. J. For. Res. 2004, 19, 558–570. [Google Scholar] [CrossRef] [Green Version]
- Popescu, S.C. Estimating biomass of individual pine trees using airborne lidar. Biomass Bioenergy 2007, 31, 646–655. [Google Scholar] [CrossRef]
- Olpenda, A.S.; Stereńczak, K.; Będkowski, K. Estimation of sub-canopy solar radiation from LiDAR discrete returns in mixed temporal forest of Białowieża, Poland. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 116–132. [Google Scholar] [CrossRef]
- Næsset, E. Airborne laser scanning as a method in operational forest inventory: Status of accuracy assessments accomplished in Scandinavia. Scand. J. For. Res. 2007, 22, 433–442. [Google Scholar] [CrossRef]
- Hyyppä, J.; Hyyppä, H.; Leckie, D.; Gougeon, F.; Yu, X.; Maltamo, M. Review of methods of small-footprint airborne laser scanning for extracting forest inventory data in boreal forests. Int. J. Remote Sens. 2008, 29, 1339–1366. [Google Scholar] [CrossRef]
- Breidenbach, J.; Næsset, E.; Lien, V.; Gobakken, T.; Solberg, S. Prediction of species specific forest inventory attributes using a nonparametric semi-individual tree crown approach based on fused airborne laser scanning and multispectral data. Remote Sens. Environ. 2010, 114, 911–924. [Google Scholar] [CrossRef]
- Nilsson, M.; Nordkvist, K.; Jonzén, J.; Lindgren, N.; Axensten, P.; Wallerman, J.; Egberth, M.; Larsson, S.; Nilsson, L.; Eriksson, J.; et al. A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory. Remote Sens. Environ. 2017, 194, 447–454. [Google Scholar] [CrossRef]
- Kangas, A.; Astrup, R.; Breidenbach, J.; Fridman, J.; Gobakken, T.; Korhonen, K.T.; Maltamo, M.; Nilsson, M.; Nord-Larsen, T.; Næsset, E.; et al. Remote sensing and forest inventories in Nordic countries—Roadmap for the future. Scand. J. For. Res. 2018, 33, 397–412. [Google Scholar] [CrossRef] [Green Version]
- Vastaranta, M.; Wulder, M.A.; White, J.C.; Pekkarinen, A.; Tuominen, S.; Ginzler, C.; Kankare, V.; Holopainen, M.; Hyyppä, J.; Hyyppä, H. Airborne laser scanning and digital stereo imagery measures of forest structure: Comparative results and implications to forest mapping and inventory update. Can. J. Remote Sens. 2013, 39, 382–395. [Google Scholar] [CrossRef]
- Rahlf, J.; Breidenbach, J.; Solberg, S.; Næsset, E.; Astrup, R. Comparison of four types of 3D data for timber volume estimation. Remote Sens. Environ. 2014, 155, 325–333. [Google Scholar] [CrossRef]
- White, J.; Stepper, C.; Tompalski, P.; Coops, N.; Wulder, M. Comparing ALS and image-based point cloud metrics and modelled forest inventory attributes in a complex coastal forest environment. Forests 2015, 6, 3704–3732. [Google Scholar] [CrossRef]
- Goodbody, T.R.; Coops, N.C.; White, J.C. Digital Aerial Photogrammetry for Updating Area-Based Forest Inventories: A Review of Opportunities, Challenges, and Future Directions. Curr. For. Rep. 2019, 5, 55–75. [Google Scholar] [CrossRef] [Green Version]
- Leberl, F.; Irschara, A.; Pock, T.; Meixner, P.; Gruber, M.; Scholz, S.; Wiechert, A. Point Clouds: Lidar versus 3D Vision. Photogramm. Eng. 2010, 76, 1123–1134. [Google Scholar] [CrossRef]
- Baltsavias, E.; Gruen, A.; Eisenbeiss, H.; Zhang, L.; Waser, L.T. High-quality image matching and automated generation of 3D tree models. Int. J. Remote Sens. 2008, 29, 1243–1259. [Google Scholar] [CrossRef]
- Waser, L.T.; Baltsavias, E.; Ecker, K.; Eisenbeiss, H.; Feldmeyer-Christe, E.; Ginzler, C.; Küchler, M.; Zhang, L. Assessing changes of forest area and shrub encroachment in a mire ecosystem using digital surface models and CIR aerial images. Remote Sens. Environ. 2008, 112, 1956–1968. [Google Scholar] [CrossRef]
- Hirschmugl, M. Derivation of Forest Parameters from UltracamD Data. Ph.D. Thesis, Graz University of Technology, Graz, Austria, 2008. [Google Scholar]
- Haala, N. Comeback of digital image matching. Photogramm. Week 2009, 9, 289–301. [Google Scholar]
- Järnstedt, J.; Pekkarinen, A.; Tuominen, S.; Ginzler, C.; Holopainen, M.; Viitala, R. Forest variable estimation using a high-resolution digital surface model. ISPRS J. Photogramm. Remote Sens. 2012, 74, 78–84. [Google Scholar] [CrossRef]
- Straub, C.; Stepper, C. Using Digital Aerial Photogrammetry and the Random Forest Approach to Model Forest Inventory Attributes in Beech- and Spruce-Dominated Central European Forests. Available online: https://www.ingentaconnect.com/content/schweiz/pfg/2016/00002016/00000003/art00001 (accessed on 26 November 2019).
- St-Onge, B.; Véga, C. Combining Stereo-Photogrammetry and Lidar to Map Forest Canopy Height. 2003. Available online: https://www.researchgate.net/publication/242073042_COMBINING_STEREOPHOTOGRAMMETRY_AND_LIDAR_TO_MAP_FOREST_CANOPY_HEIGHT (accessed on 26 May 2020).
- Straub, C.; Stepper, C.; Seitz, R.; Waser, L.T. Potential of UltraCamX stereo images for estimating timber volume and basal area at the plot level in mixed European forests. Can. J. Res. 2013, 43, 731–741. [Google Scholar] [CrossRef]
- St-Onge, B.; Vega, C.; Fournier, R.A.; Hu, Y. Mapping canopy height using a combination of digital stereo-photogrammetry and lidar. Int. J. Remote Sens. 2008, 29, 3343–3364. [Google Scholar] [CrossRef]
- Baltsavias, E. A comparison between photogrammetry and laser scanning. ISPRS J. Photogramm. Remote Sens. 1999, 54, 83–94. [Google Scholar] [CrossRef]
- Petzold, B.; Reiss, P.; Stössel, W. Laser scanning—Surveying and mapping agencies are using a new technique for the derivation of digital terrain models. ISPRS J. Photogramm. Remote Sens. 1999, 54, 95–104. [Google Scholar] [CrossRef]
- Hill, R.A.; Broughton, R.K. Mapping the understorey of deciduous woodland from leaf-on and leaf-off airborne LiDAR data: A case study in lowland Britain. ISPRS J. Photogramm. Remote Sens. 2009, 64, 223–233. [Google Scholar] [CrossRef]
- Nuijten, R.J.G.; Coops, N.C.; Goodbody, T.R.H.; Pelletier, G. Examining the Multi-Seasonal Consistency of Individual Tree Segmentation on Deciduous Stands Using Digital Aerial Photogrammetry (DAP) and Unmanned Aerial Systems (UAS). Remote Sens. 2019, 11, 739. [Google Scholar] [CrossRef] [Green Version]
- St-Onge, B.; Audet, F.-A.; Bégin, J. Characterizing the Height Structure and Composition of a Boreal Forest Using an Individual Tree Crown Approach Applied to Photogrammetric Point Clouds. Forests 2015, 6, 3899–3922. [Google Scholar] [CrossRef]
- Gobakken, T.; Bollandsås, O.M.; Næsset, E. Comparing biophysical forest characteristics estimated from photogrammetric matching of aerial images and airborne laser scanning data. Scand. J. For. Res. 2015, 30, 73–86. [Google Scholar] [CrossRef]
- Božić, M.; Čavlović, J.; Lukić, N.; Teslak, K.; Kos, D. Efficiency of ultrasonic Vertex III hypsometer compared to the most commonly used hypsometers in Croatian forestry. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2005, 26, 91–99. [Google Scholar]
- Holmgren, J. Prediction of tree height, basal area and stem volume in forest stands using airborne laser scanning. Scand. J. For. Res. 2004, 19, 543–553. [Google Scholar] [CrossRef]
- Panagiotidis, D.; Abdollahnejad, A.; Surovỳ, P.; Chiteculo, V. Determining tree height and crown diameter from high-resolution UAV imagery. Int. J. Remote Sens. 2017, 38, 2392–2410. [Google Scholar] [CrossRef]
- Vaglio Laurin, G.; Ding, J.; Disney, M.; Bartholomeus, H.; Herold, M.; Papale, D.; Valentini, R. Tree height in tropical forest as measured by different ground, proximal, and remote sensing instruments, and impacts on above ground biomass estimates. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101899. [Google Scholar] [CrossRef]
- Luoma, V.; Saarinen, N.; Wulder, M.; White, J.; Vastaranta, M.; Holopainen, M.; Hyyppä, J. Assessing precision in conventional field measurements of individual tree attributes. Forests 2017, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- Bragg, D.C. Accurately Measuring the Height of (Real) Forest Trees. J. For. 2014, 112, 51–54. [Google Scholar] [CrossRef] [Green Version]
- Popescu, S.C.; Wynne, R.H.; Nelson, R.F. Estimating plot-level tree heights with lidar: Local filtering with a canopy-height based variable window size. Comput. Electron. Agric. 2002, 37, 71–95. [Google Scholar] [CrossRef]
- Holmgren, J.; Nilsson, M.; Olsson, H. Estimation of Tree Height and Stem Volume on Plots Using Airborne Laser Scanning. For. Sci. 2003, 49, 419–428. [Google Scholar] [CrossRef]
- Kwak, D.-A.; Lee, W.-K.; Lee, J.-H.; Biging, G.S.; Gong, P. Detection of individual trees and estimation of tree height using LiDAR data. J. For. Res. 2007, 12, 425–434. [Google Scholar] [CrossRef]
- Mielcarek, M.; Stereńczak, K.; Khosravipour, A. Testing and evaluating different LiDAR-derived canopy height model generation methods for tree height estimation. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 132–143. [Google Scholar] [CrossRef]
- Sibona, E.; Vitali, A.; Meloni, F.; Caffo, L.; Dotta, A.; Lingua, E.; Motta, R.; Garbarino, M. Direct Measurement of Tree Height Provides Different Results on the Assessment of LiDAR Accuracy. Forests 2017, 8, 7. [Google Scholar] [CrossRef]
- Ganz, S.; Käber, Y.; Adler, P. Measuring Tree Height with Remote Sensing—A Comparison of Photogrammetric and LiDAR Data with Different Field Measurements. Forests 2019, 10, 694. [Google Scholar] [CrossRef] [Green Version]
- Bohlin, J.; Wallerman, J.; Fransson, J.E.; Olsson, H. Species-specific forest variable estimation using non-parametric modeling of multi-spectral photogrammetric point cloud data. Int. Soc. Photogramm. Remote Sens. 2012, XXXIX-B8, 387–391. [Google Scholar] [CrossRef] [Green Version]
- Nurminen, K.; Karjalainen, M.; Yu, X.; Hyyppä, J.; Honkavaara, E. Performance of dense digital surface models based on image matching in the estimation of plot-level forest variables. ISPRS J. Photogramm. Remote Sens. 2013, 83, 104–115. [Google Scholar] [CrossRef]
- Miller, D.R.; Quine, C.P.; Hadley, W. An investigation of the potential of digital photogrammetry to provide measurements of forest characteristics and abiotic damage. For. Ecol. Manag. 2000, 135, 279–288. [Google Scholar] [CrossRef]
- Balenović, I.; Simic Milas, A.; Marjanović, H. A Comparison of Stand-Level Volume Estimates from Image-Based Canopy Height Models of Different Spatial Resolutions. Remote Sens. 2017, 9, 205. [Google Scholar] [CrossRef] [Green Version]
- Pierzgalski, E.; Boczoń, A.; Tyszka, J. Zmienność opadów i położenia wód gruntowych w Białowieskim Parku Narodowym. Kosmos 2002, 4, 415–425. [Google Scholar]
- Tomiałojć, L.; Wesołowski, T. Diversity of the Białowieża Forest avifauna in space and time. J. Ornithol. 2004, 145, 81–92. [Google Scholar] [CrossRef]
- Jędrzejewski, W.; Jędrzejewska, B.; Okarma, H.; Ruprecht, A.L. Wolf predation and snow cover as mortality factors in the ungulate community of the Bialowieża National Park, Poland. Oecologia 1992, 90, 27–36. [Google Scholar] [CrossRef]
- Keczyński, A. Lasy Rezerwatu Ścisłego Białowieskiego Parku Narodowego; Białowieski Park Narodowy: Białowieża, Poland, 2017; ISBN 978-83-64513-12-1. [Google Scholar]
- Stereńczak, K.; Kraszewski, B.; Mielcarek, M.; Piasecka, Ż. Inventory of standing dead trees in the surroundings of communication routes—The contribution of remote sensing to potential risk assessments. For. Ecol. Manag. 2017, 402, 76–91. [Google Scholar] [CrossRef]
- Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2008, 77, 802–813. [Google Scholar] [CrossRef]
- Mezei, P.; Grodzki, W.; Blaženec, M.; Škvarenina, J.; Brandýsová, V.; Jakuš, R. Host and site factors affecting tree mortality caused by the spruce bark beetle ( Ips typographus ) in mountainous conditions. For. Ecol. Manag. 2014, 331, 196–207. [Google Scholar] [CrossRef]
- R Development Core Team. The R Project for Statistical Computing; R Development Core Team: Vienna, Australia, 2019. [Google Scholar]
- Ridgeway, G. Generalized Boosted Models: A Guide to the gbm Package. Documentation on the R Package ‘gbm’, version 1.6-3. Upadate 2007, 1, 2017. [Google Scholar]
- Elith, J.; Leathwick, J. Boosted Regression Trees for Ecological Modeling. R Documentation. Available online: https://cran.r-project.org/web/packages/dismo/vignettes/brt.pdf (accessed on 2 February 2020).
- Næsset, E. Determination of Mean Tree Height of Forest Stands by Digital Photogrammetry. Scand. J. For. Res. 2002, 17, 446–459. [Google Scholar] [CrossRef]
- Wallace, L.; Lucieer, A.; Malenovský, Z.; Turner, D.; Vopěnka, P. Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds. Forests 2016, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Moe, K.T.; Owari, T.; Furuya, N.; Hiroshima, T. Comparing Individual Tree Height Information Derived from Field Surveys, LiDAR and UAV-DAP for High-Value Timber Species in Northern Japan. Forests 2020, 11, 223. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lehtomäki, M.; Liang, X.; Pyörälä, J.; Kukko, A.; Jaakkola, A.; Liu, J.; Feng, Z.; Chen, R.; Hyyppä, J. Is field-measured tree height as reliable as believed—A comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest. ISPRS J. Photogramm. Remote Sens. 2019, 147, 132–145. [Google Scholar] [CrossRef]
- Stereńczak, K.; Mielcarek, M.; Wertz, B.; Bronisz, K.; Zajączkowski, G.; Jagodziński, A.M.; Ochał, W.; Skorupski, M. Factors influencing the accuracy of ground-based tree-height measurements for major European tree species. J. Environ. Manag. 2019, 231, 1284–1292. [Google Scholar] [CrossRef]
- Halbritter, K. Remote Sensing for Quantifying Structural Diversity in Forests for Forest Biodiversity Assessment; The Research Program BEAR: Indicators for Monitoring and Evaluation of Forest Biodiversity in Europe, BEAR (European Union Project) Tech. Rep. No. 6; European Union: Brussels, Belgium, 2000; Available online: https://www.nna.niedersachsen.de/download/101825/B99-S2_Forests_in_Focus_Biodiversity_-_Treasures_in_the_World_s_Forests.pdf (accessed on 10 February 2020).
- Korpela, I.; Anttila, P. Appraisal of the mean height of trees by means of image matching of digitised aerial photographs. Photogramm. J. Finl. 2004, 19, 23–36. [Google Scholar]
- Heurich, M.; Schadeck, S.; Weinacker, H.; Krzystek, P. Forest parameter deriviation from DTM/DSM generated from lidar and digital modular camera (DMC). In Proceedings of the XX ISPRS Congress, Istanbul, Turkey, 12–23 July 2004. [Google Scholar]
- Hese, S.; Lehmann, F. Comparison of Digital Stand Surface Models of HRSC-A (High Resolution Stereo Camera-Airborne) and Laser Scanner for Forest Stand Characteristics; ISPRS: Amsterdam, The Netherlands, 2000; Volume 33, Part B7/2, pp. 525–532. Available online: https://pdfs.semanticscholar.org/9dfa/15a761ab33eeecd324ea079b896741b465f5.pdf?_ga=2.243792517.1278116803.1590915032-617531384.1588429633 (accessed on 10 February 2020).
- Tompalski, P.; White, J.C.; Coops, N.C.; Wulder, M.A. Quantifying the contribution of spectral metrics derived from digital aerial photogrammetry to area-based models of forest inventory attributes. Remote Sens. Environ. 2019, 234, 111434. [Google Scholar] [CrossRef]
- Reutebuch, S.E.; McGaughey, R.J.; Andersen, H.-E.; Carson, W.W. Accuracy of a high-resolution lidar terrain model under a conifer forest canopy. Can. J. Remote Sens. 2003, 29, 527–535. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Chen, Q.; Gormanson, D.D.; Walters, B.F. The shelf-life of airborne laser scanning data for enhancing forest inventory inferences. Remote Sens. Environ. 2018, 206, 254–259. [Google Scholar] [CrossRef]
- Véga, C.; St-Onge, B. Height growth reconstruction of a boreal forest canopy over a period of 58 years using a combination of photogrammetric and lidar models. Remote Sens. Environ. 2008, 112, 1784–1794. [Google Scholar] [CrossRef] [Green Version]
- Giannetti, F.; Chirici, G.; Gobakken, T.; Næsset, E.; Travaglini, D.; Puliti, S. A new approach with DTM-independent metrics for forest growing stock prediction using UAV photogrammetric data. Remote Sens. Environ. 2018, 213, 195–205. [Google Scholar] [CrossRef]
- Puliti, S.; Ørka, H.O.; Gobakken, T.; Næsset, E. Inventory of small forest areas using an unmanned aerial system. Remote Sens. 2015, 7, 9632–9654. [Google Scholar] [CrossRef] [Green Version]
- Iglhaut, J.; Cabo, C.; Puliti, S.; Piermattei, L.; O’Connor, J.; Rosette, J. Structure from Motion Photogrammetry in Forestry: A Review. Curr. Rep. 2019, 5, 155–168. [Google Scholar] [CrossRef] [Green Version]
- Tang, L.; Shao, G. Drone remote sensing for forestry research and practices. J. For. Res. 2015, 26, 791–797. [Google Scholar] [CrossRef]
- Dempewolf, J.; Nagol, J.; Hein, S.; Thiel, C.; Zimmermann, R. Measurement of within-season tree height growth in a mixed forest stand using UAV imagery. Forests 2017, 8, 231. [Google Scholar] [CrossRef] [Green Version]
- Puliti, S.; Gobakken, T.; Ørka, H.O.; Næsset, E. Assessing 3D point clouds from aerial photographs for species-specific forest inventories. Scand. J. For. Res. 2017, 32, 68–79. [Google Scholar] [CrossRef]
Parameter | ALS | Aerial Imagery |
---|---|---|
Platform | Vulcanair P-68 Observer | Cessna 206 |
Scanning system | Riegl LMS-Q680i | UltraCam Eagle |
Point density/GSD | 7 pts/m2 | 0.20 m |
Sensor type | Full-Waveform | Large format |
Strip overlapping | 40% | 90/40% |
Altitude (AGL) [m] | 500 m | 3040 m |
Acquisition date | 2–5 July 2015 | 2–5 July 2015 |
Accuracy for Control Points | Accuracy for Check Points | |||||
---|---|---|---|---|---|---|
x | y | z | x | y | z | |
RMSE [m] | 0.125 | 0.092 | 0.158 | 0.255 | 0.203 | 0.541 |
Variable Type | Variable | Description |
---|---|---|
Plot-related variables | mean plot height [m] | mean tree height in a sample plot estimated based on the ALS-derived CHM considering all the segments delineated in a particular sample plot |
maximum plot height [m] | maximum tree height in a sample plot estimated based on the ALS-derived CHM considering all the segments delineated in a particular sample plot | |
minimum plot height [m] | minimum tree height in a sample plot estimated based on the ALS-derived CHM considering all the segments delineated in a particular sample plot | |
coefficient of variation of plot height [m] | coefficient of variation of tree height in a sample plot estimated based on the ALS-derived CHM considering all the segments delineated in a particular sample plot | |
height difference [m] | the difference between the reference tree height (measured in the field) and mean tree height in a sample plot (computed based on the ALS-derived CHM for all segments delineated in a particular sample plot) | |
crown cover [%] | the proportion of a sample plot area covered by the segments representing tree crowns | |
crown cover deciduous [%] | the proportion of a sample plot covered by the segments representing deciduous tree crowns (based on visual observations of CIR imagery) | |
crown cover coniferous [%] | the proportion of a sample plot covered by the segments representing coniferous tree crowns (based on the visual observation of CIR imagery) | |
number of trees | number of trees with dbh > 7 cm located in a sample plot (determined based on field measurements) | |
forest type | based on the percent coverage of the sample plot by segments representing coniferous and deciduous trees, the sample plots were classified into 3 forest types: (i) coniferous—the share of conifers in the plot is over 90%, (ii) deciduous—the share of deciduous trees in the plot is over 90%, and (iii) mixed stands - neither coniferous nor coniferous species exceed 90% of the total crown coverage in the sample plot | |
Individual tree-related parameters | tree height [m] tree species | the height of trees measured in the field the species of trees measured in the field |
Species | n | Field | ALS | DAP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
min [m] | max [m] | avg [m] | SD [m] | min [m] | max [m] | avg [m] | SD [m] | min [m] | max [m] | avg [m] | SD [m] | ||
pine | 117 | 12.20 | 38.90 | 24.21 | 6.15 | 14.92 | 37.45 | 23.61 | 5.98 | 15.25 | 37.00 | 23.05 | 5.78 |
spruce | 180 | 7.90 | 39.50 | 24.52 | 6.41 | 6.99 | 38.42 | 23.70 | 6.55 | 7.88 | 36.13 | 22.65 | 5.90 |
alder | 112 | 9.30 | 35.00 | 23.44 | 5.17 | 8.15 | 33.78 | 22.42 | 5.24 | 8.92 | 33.46 | 22.06 | 4.97 |
oak | 43 | 18.10 | 40.10 | 31.13 | 4.84 | 17.33 | 36.09 | 29.69 | 4.72 | 17.75 | 36.49 | 29.08 | 4.74 |
lime | 106 | 9.10 | 34.90 | 23.34 | 5.56 | 8.76 | 35.36 | 22.36 | 5.24 | 6.36 | 35.17 | 22.44 | 5.05 |
hornbeam | 158 | 6.50 | 35.10 | 19.43 | 6.06 | 7.33 | 35.69 | 18.41 | 5.84 | 6.69 | 35.36 | 18.55 | 5.85 |
birch | 127 | 9.20 | 35.00 | 20.09 | 4.79 | 7.08 | 31.94 | 19.40 | 4.55 | 7.40 | 31.56 | 19.17 | 4.54 |
all trees | 843 | 6.50 | 40.10 | 22.90 | 6.37 | 6.99 | 38.42 | 22.02 | 6.26 | 6.36 | 37.00 | 21.64 | 5.93 |
Species | Field vs. ALS | Field vs. DAP | ALS vs. DAP | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RMSE [m] | RMSE [%] | bias [m] | bias [%] | RMSE [m] | RMSE [%] | bias [m] | bias [%] | RMSD [m] | RMSD [%] | MD [m] | MD [%] | |
pine | 1.39 | 5.74 | 0.60 | 2.49 | 1.76 | 7.26 | 1.17 | 4.83 | 0.89 | 3.77 | 0.57 | 2.39 |
spruce | 1.27 | 5.20 | 0.82 | 3.34 | 2.34 | 9.54 | 1.87 | 7.62 | 1.74 | 7.33 | 1.05 | 4.42 |
alder | 1.53 | 6.52 | 1.02 | 4.35 | 1.97 | 8.40 | 1.38 | 5.89 | 1.11 | 4.93 | 0.36 | 1.61 |
oak | 1.98 | 6.35 | 1.44 | 4.63 | 2.53 | 8.13 | 2.06 | 6.61 | 0.88 | 2.95 | 0.62 | 2.08 |
lime | 1.43 | 6.14 | 0.98 | 4.20 | 1.76 | 7.55 | 0.90 | 3.87 | 1.03 | 4.59 | -0.08 | 0.34 |
hornbeam | 1.54 | 7.90 | 1.02 | 5.23 | 1.60 | 8.25 | 0.87 | 4.50 | 0.78 | 4.25 | -0.14 | 0.77 |
birch | 1.39 | 6.94 | 0.69 | 3.44 | 1.60 | 7.97 | 0.92 | 4.56 | 1.02 | 5.26 | 0.22 | 1.16 |
all | 1.25 | 5.46 | 0.89 | 3.87 | 1.68 | 7.34 | 1.26 | 5.52 | 1.04 | 4.74 | 0.38 | 1.72 |
Tree Species | ||||||||
---|---|---|---|---|---|---|---|---|
Pine | Spruce | Alder | Oak | Lime | Hornbeam | Birch | All | |
R2 (field vs. ALS) | 0.96 | 0.98 | 0.95 | 0.92 | 0.97 | 0.96 | 0.94 | 0.97 |
R2 (field vs. DAP) | 0.96 | 0.95 | 0.93 | 0.91 | 0.93 | 0.95 | 0.92 | 0.95 |
R2 (ALS vs. DAP) | 0.99 | 0.96 | 0.96 | 0.98 | 0.96 | 0.98 | 0.95 | 0.97 |
Predictor Type | Variable | Response | |
---|---|---|---|
d | |d| | ||
tree-related parameters | Tree species | 24.81 | 25.29 |
Tree height | 8.91 | 7.04 | |
plot-related parameters | Height difference | 32.24 | 25.32 |
Mean plot height | 5.02 | 3.25 | |
Minimum plot height | 5.54 | 6.97 | |
Maximum plot height | 5.02 | 6.78 | |
CV plot height | 3.14 | 6.93 | |
Crown cover | 6.42 | 5.38 | |
Crown cover—deciduous | 5.81 | 6.94 | |
Crown cover—coniferous | 2.02 | 2.30 | |
Number of trees | 2.48 | 3.32 | |
Forest type | 0.47 | 0.47 | |
Training data correlation | 0.69 | 0.69 | |
CV correlation | 0.56 | 0.53 | |
Standard error | 0.05 | 0.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mielcarek, M.; Kamińska, A.; Stereńczak, K. Digital Aerial Photogrammetry (DAP) and Airborne Laser Scanning (ALS) as Sources of Information about Tree Height: Comparisons of the Accuracy of Remote Sensing Methods for Tree Height Estimation. Remote Sens. 2020, 12, 1808. https://doi.org/10.3390/rs12111808
Mielcarek M, Kamińska A, Stereńczak K. Digital Aerial Photogrammetry (DAP) and Airborne Laser Scanning (ALS) as Sources of Information about Tree Height: Comparisons of the Accuracy of Remote Sensing Methods for Tree Height Estimation. Remote Sensing. 2020; 12(11):1808. https://doi.org/10.3390/rs12111808
Chicago/Turabian StyleMielcarek, Miłosz, Agnieszka Kamińska, and Krzysztof Stereńczak. 2020. "Digital Aerial Photogrammetry (DAP) and Airborne Laser Scanning (ALS) as Sources of Information about Tree Height: Comparisons of the Accuracy of Remote Sensing Methods for Tree Height Estimation" Remote Sensing 12, no. 11: 1808. https://doi.org/10.3390/rs12111808
APA StyleMielcarek, M., Kamińska, A., & Stereńczak, K. (2020). Digital Aerial Photogrammetry (DAP) and Airborne Laser Scanning (ALS) as Sources of Information about Tree Height: Comparisons of the Accuracy of Remote Sensing Methods for Tree Height Estimation. Remote Sensing, 12(11), 1808. https://doi.org/10.3390/rs12111808