Early Identification of Seed Maize and Common Maize Production Fields Using Sentinel-2 Images
Abstract
:1. Introduction
2. Study Regions
3. Data Sets
3.1. Satellite Data
3.2. Field Sample Data
4. Methods
4.1. Selection of Time Series Vegetation Indexes
4.2. Selection of Classification Algorithms
4.3. Experiment Design
5. Results
5.1. Early identification of Seed Maize Based on the Current Samples
5.1.1. Early Identification by Different Algorithms
5.1.2. Classification Comparison of Sentinel-2 and GF-1
5.2. Early Identification of Seed Maize Based on Historical Samples
6. Discussion
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zan, X.; Zhao, Z.; Liu, W.; Zhang, X.; Liu, Z.; Li, S.; Zhu, D. The Layout of Maize Variety Test Sites Based on the Spatiotemporal Classification of the Planting Environment. Sustainability 2019, 11, 3741. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Zhe, L.; Zhang, X.; Zan, X.; Yao, X.; Wang, S.; Ye, S.; Li, S.; Zhu, D. Spatial Layout of Multi-Environment Test Sites: A Case Study of Maize in Jilin Province. Sustainability 2018, 10, 1424. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Li, Z.; Zhang, Y.; Zhang, C.; Huang, J.X.; Zhu, D.H. Seed Maize Identification Based on Time-Series EVI Decision Tree Classification and High-Resolution Remote Sensing Texture Analysis. Trans. CSAM 2015, 46, 321–327. [Google Scholar]
- Zhang, C.; Jin, H.; Liu, Z.; Li, Z.; Ning, M.; Sun, H. Seed maize identification based on texture analysis of GF remote sensing data. Trans. CSAE 2016, 32, 183–188. [Google Scholar]
- Zhang, C.; Tong, L.; Liu, Z.; Qiao, M.; Liu, D.; Huang, J. Identification Method of Seed Maize Plot Based on Multi-temporal GF-1 WFV and Kompsat-3 Texture. Trans. CSAM 2019, 50, 163–168, 226. [Google Scholar]
- Lin, Z.; Zhe, L.; Ren, T.; Liu, D.; Ma, Z.; Tong, L.; Zhang, C.; Zhou, T.; Zhang, X.; Li, S. Identification of Seed Maize Fields with High Spatial Resolution and Multiple Spectral Remote Sensing Using Random Forest Classifier. Remote Sens. 2020, 12, 362. [Google Scholar]
- Zhang, C.; Liu, J.; Su, W.; Qiao, M.; Yang, J.; Zhu, D. Optimal scale of crop classification using unmanned aerial vehicle remote sensing imagery based on wavelet packet transform. Trans. CSAE 2016, 32, 95–101. [Google Scholar]
- Liu, L.; Jiang, X.; Li, X.; Tang, L.L. Study on classification of agricultural crop by hyperspectral remote sensing data. J. Grad. Sch. Chin. Acad. Sci. 2006, 23, 484–488. [Google Scholar]
- Hao, P. Crop Classification Using Time Series Remote Sensing Data. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2017. [Google Scholar]
- Yang, N.; Liu, D.; Feng, Q.; Xiong, Q.; Zhang, L.; Ren, T.; Zhao, Y.; Zhu, D.; Huang, J. Large-Scale Crop Mapping Based on Machine Learning and Parallel Computation with Grids. Remote Sens. 2019, 11, 1500. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; White, J.; Wulder, M. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Immitzer, M.; Neuwirth, M.; Böck, S.; Brenner, H.; Vuolo, F.; Atzberger, C. Optimal Input Features for Tree Species Classification in Central Europe Based on Multi-Temporal Sentinel-2 Data. Remote Sens. 2019, 11, 2599. [Google Scholar] [CrossRef] [Green Version]
- Derksen, D.; Inglada, J.; Michel, J. Geometry Aware Evaluation of Handcrafted Superpixel-Based Features and Convolutional Neural Networks for Land Cover Mapping Using Satellite Imagery. Remote Sens. 2020, 12, 513. [Google Scholar] [CrossRef] [Green Version]
- Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep learning classification of land cover and crop types using remote sensing data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [Google Scholar] [CrossRef]
- Zhang, Y. Research on the Method of Crop Area Measurement Based on GF-1 Remote Sensed Data. Master’s Thesis, Jilin University, Changchun, China, 2017. [Google Scholar]
- Zheng, L. Crop Classification Using Multi-Features of Chinese Gaofen-1/6 Satellite Remote Sensing Images. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2017. [Google Scholar]
- Chang, D. Study on Temporal and Spatial Variation of Net Irrigation Water Demand of Regional Crops Based on Object-Oriented Classification of Remote Sensing. Master’s Thesis, Chinese Academy of Agricultural Sciences, Beijing, China, 2018. [Google Scholar]
- Teimouri, N.; Dyrmann, M.; Jørgensen, R. A Novel Spatio-Temporal FCN-LSTM Network for Recognizing Various Crop Types Using Multi-Temporal Radar Images. Remote Sens. 2019, 11, 990. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Pan, J.; Han, T.; Wei, S. Planting area extraction of winter wheat based on multi-temporal SAR data and optical imagery. Trans. CSAE 2017, 33, 215–221. [Google Scholar]
- Guo, J.; Wei, P.; Liu, J.; Jin, B.; Su, B.; Zhou, Z. Crop Classification Based on Differential Characteristics of H/α Scattering Parameters for Multitemporal Quad-and Dual-Polarization SAR Images. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6111–6123. [Google Scholar] [CrossRef]
- Zhou, Y.; Luo, J.; Feng, L. DCN-Based Spatial Features for Improving Parcel-Based Crop Classification Using High-Resolution Optical Images and Multi-Temporal SAR Data. Remote Sens. 2019, 11, 1619. [Google Scholar]
- Sun, L.; Chen, J.; Guo, S.; Deng, X.; Han, Y. Integration of Time Series Sentinel-1 and Sentinel-2 Imagery for Crop Type Mapping over Oasis Agricultural Areas. Remote Sens. 2020, 12, 158. [Google Scholar] [CrossRef] [Green Version]
- Inoue, S.; Ito, A.; Yonezawa, C. Mapping Paddy Fields in Japan by Using a Sentinel-1 SAR Time Series Supplemented by Sentinel-2 Images on Google Earth Engine. Remote Sens. 2020, 12, 1622. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, H.; Wang, C.; Zhang, B.; Liu, M. Crop Classification Based on Temporal Information Using Sentinel-1 SAR Time-Series Data. Remote Sens. 2019, 11, 53. [Google Scholar] [CrossRef] [Green Version]
- Zhong, L.; Gong, P.; Biging, G.S. Efficient corn and soybean mapping with temporal extendability: A multi-year experiment using Landsat imagery. Remote Sens. Environ. 2014, 140, 1–13. [Google Scholar] [CrossRef]
- Ozdogan, M. The spatial distribution of crop types from MODIS data: Temporal unmixing using Independent Component Analysis. Remote Sens. Environ. 2010, 114, 1190–1204. [Google Scholar] [CrossRef]
- Brown, J.C.; Kastens, J.H.; Coutinho, A.C.; de Castro Victoria, D.; Bishop, C.R. Classifying multiyear agricultural land use data from Mato Grosso using time-series MODIS vegetation index data. Remote Sens. Environ. 2013, 130, 39–50. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Y.; Shakir, M.; Hao, P.; Zheng, N. The effect of EVI time series density on crop classification accuracy. Optik—Int. J. Light Electron. Opt. 2018, 157, 1065–1072. [Google Scholar] [CrossRef]
- Hao, P.; Zhan, Y.; Li, W.; Zheng, N.; Shakir, M. Feature Selection of Time Series MODIS Data for Early Crop Classification Using Random Forest: A Case Study in Kansas, USA. Remote Sens. 2015, 7, 5347–5369. [Google Scholar] [CrossRef] [Green Version]
- Hao, P.; Li, W.; Zheng, N.; Aablikim, A.; Ni, H.; Xu, S.; Fang, C. The Potential of Time Series Merged from Landsat-5 TM and HJ-1 CCD for Crop Classification: A Case Study for Bole and Manas Counties in Xinjiang, China. Remote Sens. 2014, 6, 7610–7631. [Google Scholar] [CrossRef] [Green Version]
- Hao, P.; Tang, H.; Chen, Z. Early season crop type recognition based on historical EVI time series. Trans. CSAE 2018, 34, 179–186. [Google Scholar]
- Cai, Y.; Guan, K.; Peng, J.; Wang, S.; Seifert, C.; Wardlow, B.; Li, Z. A high-performance and in-season classification system of field-level crop types using time-series Landsat data and a machine learning approach. Remote Sens. Environ. 2018, 210, 35–47. [Google Scholar] [CrossRef]
- Vorobiova, N.; Chernov, A. Curve fitting of MODIS NDVI time series in the task of early crops identification by satellite images. Procedia Eng. 2017, 201, 184–195. [Google Scholar] [CrossRef]
- Wang, Y. Development of Maize Seed Industry in Liangzhou District. China Seed Ind. 2015, 10, 40–41. [Google Scholar]
- Jiang, H.L.; Yang, H.; Chen, X.P.; Wang, S.D.; Li, X.K.; Liu, K.; Cen, Y. Research on Accuracy and Stability of Inversing Vegetation Chlorophyll Content by Spectral Index Method. Spectrosc. Spect. Anal. 2015, 35, 975–981. [Google Scholar]
- Wang, H.; Liu, C.; Cong, P.; Fu, Q. Agriculture drought monitoring remote sensing based on enhanced temperature vegetation dryness index. J. Arid Land Resour. Environ. 2018, 32, 165–170. [Google Scholar]
- Rouse, J.W. Monitoring the Vernal Advancements and Retrogradation of Natural Vegetation; NASA/GSFC: Prince George’s County, MD, USA; Texas A&M University: College Station, TX, USA, 1974; pp. 1–137.
- Liu, H.; Huete, A. A Feedback Based Modification of the NDVI to Minimize Canopy Background and Atmospheric Noise. IEEE Trans. Geosci. Remote Sens. 1995, 33, 457–465. [Google Scholar] [CrossRef]
- Pearson, R.L.; Miller, L.D. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie. In Remote Sensing of Environment VIII; Willow Run Laboratories, Environmental Research Institute of Michigan: Ann Arbor, MI, USA, 1972; 1355p. [Google Scholar]
- Gitelson, A.; Kaufman, Y.; Merzlyak, N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Broge, H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2000, 76, 156–172. [Google Scholar] [CrossRef]
- Jordan, F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Huete, R. A Soil Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- McFeeters, K. The use of the normalized difference water index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Rahman, M.; Di, L.; Yu, E.; Zhang, C.; Mohiuddin, H. In-Season Major Crop-Type Identification for US Cropland from Landsat Images Using Crop-Rotation Pattern and Progressive Data Classification. Agriculture 2019, 9, 17. [Google Scholar] [CrossRef] [Green Version]
- Keller, M.; Gray, R.; Givens, A. A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man Cybern. 1985, 15, 580–585. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef] [PubMed]
- Keogh, E.; Ratanamahatana, A. Exact indexing of dynamic time warping. Knowl. Inf. Syst. 2005, 7, 358–386. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Liu, D.; Xiong, Q.; Yang, N.; Ren, T.; Zhang, C.; Zhang, X.; Li, S. Crop Mapping Based on Historical Samples and New Training Samples Generation in Heilongjiang Province, China. Sustainability 2019, 11, 5052. [Google Scholar] [CrossRef] [Green Version]
- Terence, P. GitHub Repository. Available online: https://github.com/parrt/random-forest-importances (accessed on 16 April 2020).
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Networks. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2014; pp. 2672–2680. [Google Scholar]
- Wan, L.; Zhang, H.; Lin, G.; Lin, H. A small-patched convolutional neural network for mangrove mapping at species level using high-resolution remote-sensing image. Ann. GIS 2019, 25, 45–55. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Satellite Type | Band Number | Wavelength Range (µm) | Spectral Region | Spatial Resolution (m) | Year | Scene Acquisition Date (DOY) |
---|---|---|---|---|---|---|
GF-1 WFV | 1 | 0.45–0.52 | Blue | 16 | 2018 | 68,69,72,104,110,122,134,147,192,208,225 |
2 | 0.52–0.59 | Green | ||||
3 | 0.63–0.69 | Red | ||||
4 | 0.77–0.89 | Nir | ||||
Sentinel-2 MSI | 2 | 0.45–0.52 | Blue | 10 | 2017 | 113,163,223,243 |
3 | 0.54–0.58 | Green | 2018 | 63,68,83,98,108,138,148,163,168,173,193,213,238,253,263,268 | ||
4 | 0.65–0.68 | Red | ||||
8 | 0.78–0.90 | Nir | 2019 | 73,83,88,108,138,148,203,213,223,248,263,273 |
Crop | 2017 | 2018 | 2019 | Total | Percent |
---|---|---|---|---|---|
Seed maize | 14 | 71 | 160 | 245 | 23% |
Common maize | 18 | 162 | 222 | 402 | 36% |
other crops | 16 | 152 | 282 | 450 | 41% |
Total | 48 | 385 | 664 | 1097 |
Vegetation Indexes | Equations |
---|---|
Normalized difference vegetation index (NDVI) | NDVI = (NIR − R) / (NIR + R) [37] |
Enhanced vegetation index (EVI) | EVI = 2.5*(NIR − R) / (NIR + 6R − 7.5B + 1) [38] |
Ratio vegetation index (RVI) | RVI = NIR / R [39] |
Green normalized difference vegetation index (GNDVI) | GNDVI = (NIR − G) / (NIR + G) [40] |
Triangular vegetation index (TVI) | TVI = 60*(NIR − G) − 100*(R − G) [41] |
Difference vegetation index (DVI) | DVI = NIR − R [42] |
Soil regulation vegetation index (SAVI) | SAVI = (1 + L)1(NIR − R) / (NIR + R + L) [43] |
Normalized difference water index (NDWI) | NDWI = (G − NIR) / (G + NIR) [44] |
Classification Algorithm | DTW-KNN | SVC | RF | RNN(LSTM) |
---|---|---|---|---|
PA | ||||
March–April | 80.3% ± 1.2% | 90.7% ± 1.3% | 89.8% ± 1% | 90% ± 1.4% |
March–May | 86.6% ± 1.6% | 94.5% ± 0.8% | 93.5% ± 1.2% | 93% ± 1.9% |
March–June | 90.9% ± 1.2% | 97.7% ± 1.3% | 95.5% ± 1.1% | 95% ± 1.2% |
March–July | 90.7% ± 1.3% | 97.4% ± 2.3% | 95.9% ± 1.1% | 95.3% ± 1.6% |
March–August | 92.6% ± 1.1% | 98.3% ± 1.9% | 95.7% ± 1.3% | 95.7% ± 1.3% |
March–September | 92.5% ± 1.2% | 98.1% ± 2.1% | 95.9% ± 1.2% | 95.8% ± 1.1% |
UA | ||||
March–April | 77.7% ± 1.4% | 82% ± 0.08% | 83.2% ± 1% | 88.2% ± 1.3% |
March–May | 82.9% ± 1% | 79% ± 1.6% | 87% ± 1.5% | 90.9% ± 1.5% |
March–June | 88.8% ± 1.2% | 73.8% ± 1% | 91.7% ± 0.9% | 93.2% ± 1% |
March–July | 89% ± 1.1% | 68.2% ± 1.5% | 91% ± 1.3% | 92.4% ± 1% |
March–August | 90.5% ± 1.1% | 64% ± 1.2% | 93% ± 1.1% | 94.6% ± 1.1% |
March–September | 91.2% ± 1% | 56.3% ± 1.2% | 94.5% ± 1.3% | 95.2% ± 1% |
OA | ||||
March–April | 72.5% ± 1% | 79% ± 1.1% | 79.8% ± 1% | 81.6% ± 1.1% |
March–May | 78.3% ± 0.8% | 81.8% ± 0.8% | 85.4% ± 0.8% | 87.1% ± 2.6% |
March–June | 85.8% ± 0.9% | 82.4% ± 1.6% | 89.1% ± 1.1% | 89.4% ± 1% |
March–July | 85.2% ± 0.9% | 78.8% ± 2.4% | 89% ± 1.2% | 88.9% ± 1% |
March–August | 89% ± 0.8% | 79.7% ± 3.3% | 91.2% ± 0.8% | 92.2% ± 1% |
March–September | 89.3% ± 1.3% | 78.6% ± 1% | 91.7% ± 0.9% | 92.4% ± 0.8% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, T.; Liu, Z.; Zhang, L.; Liu, D.; Xi, X.; Kang, Y.; Zhao, Y.; Zhang, C.; Li, S.; Zhang, X. Early Identification of Seed Maize and Common Maize Production Fields Using Sentinel-2 Images. Remote Sens. 2020, 12, 2140. https://doi.org/10.3390/rs12132140
Ren T, Liu Z, Zhang L, Liu D, Xi X, Kang Y, Zhao Y, Zhang C, Li S, Zhang X. Early Identification of Seed Maize and Common Maize Production Fields Using Sentinel-2 Images. Remote Sensing. 2020; 12(13):2140. https://doi.org/10.3390/rs12132140
Chicago/Turabian StyleRen, Tianwei, Zhe Liu, Lin Zhang, Diyou Liu, Xiaojie Xi, Yanghui Kang, Yuanyuan Zhao, Chao Zhang, Shaoming Li, and Xiaodong Zhang. 2020. "Early Identification of Seed Maize and Common Maize Production Fields Using Sentinel-2 Images" Remote Sensing 12, no. 13: 2140. https://doi.org/10.3390/rs12132140