Cloud Observation and Cloud Cover Calculation at Nighttime Using the Automatic Cloud Observation System (ACOS) Package
Abstract
:1. Introduction
2. Data and Research Method
3. ACOS Cloud Cover Calculation Method
3.1. Obstacle Removal and Distortion Correction
3.2. Nighttime Cloud Cover Calculation Algorithm
4. Results
5. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heinle, A.; Macke, A.; Srivastav, A. Automatic cloud classification of whole sky images. Atmos. Meas. Technol. 2010, 3, 557–567. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zhang, L.; Zhang, Z.; Wang, C.; Xiao, B. Automatic cloud detection for all-sky images using superpixel segmentation. IEEE Geosci. Remote Sens. Lett. 2015, 12, 354–358. [Google Scholar]
- Yang, J.; Min, Q.; Lu, W.; Yao, W.; Ma, Y.; Du, J.; Lu, T. An automated cloud detection method based on green channel of total sky visible images. Atmos. Meas. Technol. 2015, 8, 4671–4679. [Google Scholar] [CrossRef] [Green Version]
- Calbó, J.; Sabburg, J. Feature extraction from whole-sky ground-based images for cloud-type recognition. J. Atmos. Ocean. Technol. 2008, 25, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Solomon, S. Climate Change 2007-The Physical Science Basis: Working Group I Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2007; Volume 4, pp. 1–996. [Google Scholar]
- Kim, B.Y.; Jee, J.B.; Zo, I.S.; Lee, K.T. Cloud cover retrieved from skyviewer: A validation with human observations. Asia-Pac. J. Atmos. Sci. 2016, 52, 1–10. [Google Scholar] [CrossRef]
- Li, X.; Lu, Z.; Zhou, Q.; Xu, Z. A Cloud Detection Algorithm with Reduction of Sunlight Interference in Ground-Based Sky Images. Atmosphere 2019, 10, 640. [Google Scholar] [CrossRef] [Green Version]
- Huo, J.; Lu, D. Cloud determination of all-sky images under low-visibility conditions. J. Atmos. Ocean. Technol. 2009, 26, 2172–2181. [Google Scholar] [CrossRef]
- Yun, H.K.; Whang, S.M. Development of a cloud cover reader from whole sky images. Int. J. Eng. Technol. 2018, 7, 33. [Google Scholar] [CrossRef]
- Peng, Z.; Yu, D.; Huang, D.; Heiser, J.; Yoo, S.; Kalb, P. 3D cloud detection and tracking system for solar forecast using multiple sky imagers. Sol. Energy 2015, 118, 496–519. [Google Scholar] [CrossRef] [Green Version]
- Long, C.N.; Sabburg, J.M.; Calbó, J.; Pages, D. Retrieving cloud characteristics from ground-based daytime color all-sky images. J. Atmos. Ocean. Technol. 2006, 23, 633–652. [Google Scholar] [CrossRef] [Green Version]
- Ghonima, M.S.; Urquhart, B.; Chow, C.W.; Shields, J.E.; Cazorla, A.; Kleissl, J. A method for cloud detection and opacity classification based on ground based sky imagery. Atmos. Meas. Technol. Discuss. 2012, 5, 4535–4569. [Google Scholar] [CrossRef]
- Yabuki, M.; Shiobara, M.; Nishinaka, K.; Kuji, M. Development of a cloud detection method from whole-sky color images. Polar Sci. 2014, 8, 315–326. [Google Scholar] [CrossRef] [Green Version]
- Shields, J.E.; Johnson, R.W.; Karr, M.E.; Weymouth, R.A.; Sauer, D.S. Delivery and Development of a Day/Night Whole Sky Imager with Enhanced Angular Alignment for Full 24 Hour Cloud Distribution Assessment; Final Report; Marine Physical Laboratory, Scripps Institution of Oceanography, University of California: San Diego, CA, USA, 1997; pp. 1–19. [Google Scholar]
- Shields, J.E.; Karr, M.E.; Johnson, R.W.; Burden, A.R. Day/night whole sky imagers for 24-h cloud and sky assessment: History and overview. Appl. Opt. 2013, 52, 1605–1616. [Google Scholar] [CrossRef]
- Long, C.N.; Slater, D.W.; Tooman, T. Total Sky Imager Model 880 Status and Testing Results; ARM Technical Report ARM TR-006; Department of Energy: Washington, DC, USA, 2001; pp. 1–36.
- Dev, S.; Savoy, F.M.; Lee, Y.H.; Winkler, S. Estimation of solar irradiance using ground-based whole sky imagers. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 7236–7239. [Google Scholar]
- Lothon, M.; Barnéoud, P.; Gabella, O.; Lohou, F.; Derrien, S.; Rondi, S.; Chiriaco, M.; Bastin, S.; Dupont, J.-C.; Haeffelin, M.; et al. ELIFAN, an algorithm for the estimation of cloud cover from sky imagers. Atmos. Meas. Technol. 2019, 12, 5519–5534. [Google Scholar] [CrossRef] [Green Version]
- Dev, S.; Savoy, F.M.; Lee, Y.H.; Winkler, S. WAHRSIS: A low-cost high-resolution whole sky imager with near-infrared capabilities. In Proceedings of the SPIE—The International Society for Optical Engineering, Baltimore, MD, USA, 5–9 May 2014; pp. 1–10. [Google Scholar]
- Dev, S.; Lee, Y.H.; Winkler, S. Systematic study of color spaces and components for the segmentation of sky/cloud images. In Proceedings of the 2014 IEEE International Conference on Image Processing (ICIP), Paris, France, 27–30 October 2014; pp. 5102–5106. [Google Scholar]
- Chauvin, R.; Nou, J.; Thil, S.; Grieu, S. Modelling the clear-sky intensity distribution using a sky imager. Sol. Energy 2015, 119, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Hosek, L.; Wilkie, A. An analytic model for full spectral sky-dome radiance. ACM Trans. Gr. (TOG) 2012, 31, 1–9. [Google Scholar] [CrossRef]
- Shields, J.E.; Karr, M.E.; Burden, A.R.; Mikuls, V.W.; Streeter, J.R.; Johnson, R.W.; Hodgkiss, W.S. Whole Sky Imager Characterization of Sky Obscuration by Clouds for the Starfire Optical Range; Scientific Report for AFRL Contract FA9451-008-C-0226, Technical Note 275, ADA556222; Marine Physical Laboratory, Scripps Institution of Oceanography, University of California: San Diego, CA, USA, 2010; pp. 1–102. [Google Scholar]
- Kreuter, A.; Blumthaler, M. Feasibility of polarized all-sky imaging for aerosol characterization. Atmos. Meas. Technol. 2013, 6, 1845. [Google Scholar] [CrossRef] [Green Version]
- Klebe, D.I.; Blatherwick, R.D.; Morris, V.R. Ground-based all-sky mid-infrared and visible imagery for purposes of characterizing cloud properties. Atmos. Meas. Technol. 2014, 7, 637. [Google Scholar] [CrossRef] [Green Version]
- Shields, J.E.; Karr, M.E. Radiometric calibration methods for day/night whole sky imagers and extinction imagers. Appl. Opt. 2019, 58, 5663–5673. [Google Scholar] [CrossRef]
- Shields, J.E.; Burden, A.R.; Karr, M.E. Atmospheric cloud algorithms for day/night whole sky imagers. Appl. Opt. 2019, 58, 7050–7062. [Google Scholar] [CrossRef]
- Dev, S.; Savoy, F.M.; Lee, Y.H.; Winkler, S. Nighttime sky/cloud image segmentation. In Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China, 17–20 September 2017; pp. 345–349. [Google Scholar]
- Neto, M.; Luiz, S.; von Wangenheim, A.; Pereira, E.B.; Comunello, E. The use of Euclidean geometric distance on RGB color space for the classification of sky and cloud patterns. J. Atmos. Ocean. Technol. 2010, 27, 1504–1517. [Google Scholar] [CrossRef] [Green Version]
- Kazantzidis, A.; Tzoumanikas, P.; Bais, A.F.; Fotopoulos, S.; Economou, G. Cloud detection and classification with the use of whole-sky ground-based images. Atmos. Res. 2012, 113, 80–88. [Google Scholar] [CrossRef]
- Kim, B.Y.; Jee, J.B.; Jeong, M.J.; Zo, I.S.; Lee, K.T. Estimation of total cloud amount from skyviewer image data. J. Korean Earth Sci. Soc. 2015, 36, 330–340. [Google Scholar] [CrossRef]
- Li, Q.; Lu, W.; Yang, J.; Wang, J.Z. Thin cloud detection of all-sky images using Markov random fields. IEEE Geosci. Remote Sens. Lett. 2011, 9, 417–421. [Google Scholar] [CrossRef]
- Sazzad, T.S.; Islam, S.; Mamun, M.M.R.K.; Hasan, M.Z. Establishment of an efficient color model from existing models for better gamma encoding in image processing. Int. J Image Process. (IJIP) 2013, 7, 90. [Google Scholar]
- Shimoji, N.; Aoyama, R.; Hasegawa, W. Spatial variability of correlated color temperature of lightning channels. Result. Phys. 2016, 6, 161–162. [Google Scholar] [CrossRef] [Green Version]
- Cazorla, A.; Shields, J.; Karr, M.; Olmo, F.; Burden, A.; Alados-Arboledas, L. Determination of aerosol optical properties by a calibrated sky imager. Atmos. Chem. Phys. 2009, 9, 6417–6427. [Google Scholar] [CrossRef] [Green Version]
- Hughes, C.; Denny, P.; Jones, E.; Glavin, M. Accuracy of fish-eye lens models. Appl. Opt. 2010, 49, 3338–3347. [Google Scholar] [CrossRef] [Green Version]
- Cłapa, J.; Błasiński, H.; Grabowski, K.; Sękalski, P. A fisheye distortion correction algorithm optimized for hardware implementations. In Proceedings of the 21st International Conference Mixed Design of Integrated Circuits and Systems (MIXDES), Lublin, Poland, 19–21 June 2014; pp. 415–419. [Google Scholar]
- Inanici, M. Evalution of high dynamic range image-based sky models in lighting simulation. Leukos 2010, 7, 69–84. [Google Scholar] [CrossRef]
- Marquez, R.; Coimbra, C.F. Intra-hour DNI forecasting based on cloud tracking image analysis. Sol. Energy 2013, 91, 327–336. [Google Scholar] [CrossRef]
- Kyba, C.C.M.; Ruhtz, T.; Fischer, J.; Hölker, F. Red is the new black: How the colour of urban skyglow varies with cloud cover. Mon. Not. R. Astron. Soc. 2012, 425, 701–708. [Google Scholar] [CrossRef] [Green Version]
- Cauwerts, C.; Piderit, M.B. Application of High-Dynamic Range Imaging Techniques in Architecture: A Step toward High-Quality Daylit Interiors? J. Imaging 2018, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Yun, S.I.; Kim, K.S. Sky Luminance Measurements Using CCD Camera and Comparisons with Calculation Models for Predicting Indoor Illuminance. Sustainability 2018, 10, 1556. [Google Scholar] [CrossRef] [Green Version]
- Jechow, A.; Kolláth, Z.; Ribas, S.J.; Spoelstra, H.; Hölker, F.; Kyba, C.C. Imaging and mapping the impact of clouds on skyglow with all-sky photometry. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ackerman, S.; Frey, R.; Strabala, K.; Liu, Y.; Gumley, L.; Baum, B.; Menzel, P. Discriminating Clear-Sky from Cloud with MODIS Algorithm Theoretical Basis Document (MOD35); ATBD-MOD-06, Version 6.1; Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison: Madison, WI, USA, 2010; pp. 1–121. [Google Scholar]
- Lalonde, J.F.; Narasimhan, S.G.; Efros, A.A. What do the sun and the sky tell us about the camera? Int. J. Comput. Vis. 2010, 88, 24–51. [Google Scholar] [CrossRef]
- Alonso, J.; Batlles, F.J.; López, G.; Ternero, A. Sky camera imagery processing based on a sky classification using radiometric data. Energy 2014, 68, 599–608. [Google Scholar] [CrossRef]
- Feister, U.; Shields, J.; Karr, M.; Johnson, R.; Dehne, K.; Woldt, M. Ground-based cloud images and sky radiances in the visible and near infrared region from whole sky imager measurements. In Proceedings of the EUMETSAT Satellite Application Facility Workshop, German Weather Service and World Meteorological Organization, Dresden, German, 20–22 November 2000; pp. 79–88. [Google Scholar]
- Linfoot, A.; Alliss, R.J. A cloud detection algorithm applied to a whole sky imager instrument using neural networks. In Proceedings of the American Meteorological Society, 88th Annual Meeting, Chantilly, VA, USA, 20–25 January 2008; pp. 1–13. [Google Scholar]
- Dev, S.; Savoy, F.M.; Lee, Y.H.; Winkler, S. Design of low-cost, compact and weather-proof whole sky imagers for High-Dynamic-Range captures. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 5359–5362. [Google Scholar]
Function | Description |
---|---|
Size | 264 mm (L) 264 mm (W) 250 mm (H), 6.5 kg |
Pixels | 2432 2432 |
Focal length | 8 mm, 180° fish-eye lens |
Sensor | CMOS |
Aperture | F8 (daytime) ~ F11 (nighttime) |
Sutter speeds | 1/1000s (daytime) ~ 5s (nighttime) |
ISO | 100 (daytime) ~ 25,600 (nighttime) |
Observation periods | 24-h operation, hourly observation for 10-min |
Etc. | Automatic heating (below –2 °C), 24-h ventilation |
% | ≤5 | 5~15 | 15~25 | 25~35 | 35~45 | 45~55 | 55~65 | 65~75 | 75~85 | 85~95 | 95< |
Tenth | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Season | Spring | Summer | Fall | Winter | Annual | |
---|---|---|---|---|---|---|
Diff. | ||||||
0 tenths | 49.12 | 31.23 | 48.51 | 59.27 | 46.82 | |
2 tenths | 88.19 | 82.17 | 86.38 | 94.86 | 87.79 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.-Y.; Cha, J.W. Cloud Observation and Cloud Cover Calculation at Nighttime Using the Automatic Cloud Observation System (ACOS) Package. Remote Sens. 2020, 12, 2314. https://doi.org/10.3390/rs12142314
Kim B-Y, Cha JW. Cloud Observation and Cloud Cover Calculation at Nighttime Using the Automatic Cloud Observation System (ACOS) Package. Remote Sensing. 2020; 12(14):2314. https://doi.org/10.3390/rs12142314
Chicago/Turabian StyleKim, Bu-Yo, and Joo Wan Cha. 2020. "Cloud Observation and Cloud Cover Calculation at Nighttime Using the Automatic Cloud Observation System (ACOS) Package" Remote Sensing 12, no. 14: 2314. https://doi.org/10.3390/rs12142314
APA StyleKim, B.-Y., & Cha, J. W. (2020). Cloud Observation and Cloud Cover Calculation at Nighttime Using the Automatic Cloud Observation System (ACOS) Package. Remote Sensing, 12(14), 2314. https://doi.org/10.3390/rs12142314