A Non-Local Low-Rank Algorithm for Sub-Bottom Profile Sonar Image Denoising
Abstract
:1. Introduction
2. Method
2.1. The Non-Local Low-Rank Framework
2.2. Guidance Image
2.3. Guidance Weight Calculation
2.4. Non-Local Patch Selection
2.5. Low-Rank Recovery
3. Experiment and Analysis
3.1. Parameter Setting
3.1.1. Parameters in Vessel Enhancement Filtering
3.1.2. Parameters in Patches Selecting and Low-Rank Recovery
3.2. Deep-Sea Data Processing and Analysis
3.3. Shallow-Sea Data Processing and Analysis
3.4. Synthetic Data Processing and Analysis
4. Discussion
4.1. The Relationships between the Effects of Different Methods and SBP Image Characteristics
4.2. Limitations and Future Work of the Proposed Method
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wilken, D.; Wunderlich, T.; Feldens, P.; Coolen, J.; Preston, J.; Mehler, N. Investigating the Norse Harbour of Igaliku (Southern Greenland) Using an Integrated System of Side-Scan Sonar and High-resolution Reflection Seismics. Remote Sens. 2019, 11, 1889. [Google Scholar] [CrossRef] [Green Version]
- Gournia, C.; Fakiris, E.; Geraga, M.; Williams, D.P.; Papatheodorou, G. Automatic Detection of Trawl-Marks in Sidescan Sonar Images through Spatial Domain Filtering, Employing Haar-Like Features and Morphological Operations. Geosciences 2019, 9, 214. [Google Scholar] [CrossRef] [Green Version]
- Fakiris, E.; Blondel, P.; Papatheodorou, G.; Christodoulou, D.; Dimas, X.; Georgiou, N.; Kordella, S.; Dimitriadis, C.; Rzhanov, Y.; Geraga, M.; et al. Multi-Frequency, Multi-Sonar Mapping of Shallow Habitats—Efficacy and Management Implications in the National Marine Park of Zakynthos, Greece. Remote Sens. 2019, 11, 461. [Google Scholar] [CrossRef] [Green Version]
- Shang, X.; Zhao, J.; Zhang, H. Obtaining High-Resolution Seabed Topography and Surface Details by Co-Registration of Side-Scan Sonar and Multibeam Echo Sounder Images. Remote Sens. 2019, 11, 1496. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Li, S.; Zhang, H.; Feng, J. Comprehensive Sediment Horizon Picking from Subbottom Profile Data. IEEE J. Ocean. Eng. 2019, 44, 524–534. [Google Scholar] [CrossRef]
- Maroni, C.S.; Quinquis, A.; Vinson, S. Horizon Picking on Sub-bottom Profiles Using Multiresolution analysis. Digit. Signal Prog. 2001, 11, 269–287. [Google Scholar] [CrossRef]
- Buades, A.; Coll, B.; Morel, J. Non-Local Means Denoising. Image Process. Line 2011, 1, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image Denoising by Sparse 3-d Transform-domain Collaborative Filtering. IEEE Trans. Signal Process. 2007, 16, 2080–2095. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Li, X.; Zhang, L.; Shi, G. Sparsity-based Image Denoising via Dictionary Learning and Structural Clustering. In Proceedings of the Computer Vision and Pattern Recognition (CVPR2011), Colorado Springs, CO, USA, 20–25 June 2011; pp. 457–464. [Google Scholar] [CrossRef]
- Zuo, W.; Zhang, L.; Song, C.; Zhang, D. Texture Enhanced Image Denoising via Gradient Histogram Preservation. In Proceedings of the Computer Vision and Pattern Recognition (CVPR2013), Portland, OR, USA, 23–28 June 2013; pp. 1203–1210. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Yang, C.; Zhao, X.; Yu, W. Low-rank Modeling and its Applications in Image Analysis. ACM Comput. Surv. 2014, 47, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Fu, C.; Brown, M.S.; Heng, P. A Non-local Low-rank Framework for Ultrasound Speckle Reduction. In Proceedings of the Computer Vision and Pattern Recognition (CVPR2017), Hawaii, HI, USA, 25–30 June 2017; pp. 493–501. [Google Scholar] [CrossRef]
- Xie, N.; Chen, Y.; Liu, H. 3D Tensor Based Nonlocal Low Rank Approximation in Dynamic PET Reconstruction. Sensors 2019, 19, 5299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, Z.; Zhao, C.; Wan, J. Application of Multi-resolution Analysis in Sonar Image Denoising. J. Syst. Eng. Electron. 2008, 19, 1082–1089. [Google Scholar] [CrossRef]
- Firoiu, I.; Nafornita, C.; Isar, D.; Isar, A. Bayesian Hyperanalytic Denoising of Sonar Images. IEEE Geosci. Remote Sens. Lett. 2001, 8, 1065–1069. [Google Scholar] [CrossRef]
- Wang, X.; Liu, A.; Zhang, Y.; Xue, F. Underwater Acoustic Target Recognition: A Combination of Multi-Dimensional Fusion Features and Modified Deep Neural Network. Remote Sens. 2019, 11, 1888. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Ku, B.; Ahn, J.; Kim, S.; Ko, H. Nonhomogeneous Noise Removal from Side-scan Sonar Images Using Structural Sparsity. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1–5. [Google Scholar] [CrossRef]
- Lurton, X. An Introduction to Underwater Acoustic: Principles and Applications, 2nd ed.; Springer: Chichester, UK, 2010; pp. 372–379. [Google Scholar]
- Manj´on, J.V.; Coup´e, P.; Buades, A. MRI Noise Estimation and Denoising Using Non-local PCA. Med. Image Anal. 2015, 22, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Frangi, A.F.; Niessen, W.J.; Vincken, K.L.; Viergever, M.A. Multiscale Vessel Enhancement Filtering. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI1998), Cambridge, MA, USA, 11–13 October 1998; pp. 130–137. [Google Scholar] [CrossRef] [Green Version]
- Sun, Q.; Xiang, S.; Ye, J. Robust Principal Component Analysis via Capped Norms. In Proceedings of the 19th ACM International Conference on Knowledge Discovery and Data Mining(SIGKDD2013), Chicago, IL, USA, 11–14 August 2013; pp. 311–319. [Google Scholar] [CrossRef]
- Gu, S.; Zhang, L.; Zuo, W.; Feng, X. Weighted Nuclear Norm Minimization with Application to Image Denoising. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR2014), Columbus, OH, USA, 24–27 June 2014; pp. 2862–2869. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Zhu, C.; Xu, C.; Yan, S.; Lin, Z. Generalized Singular Value Thresholding. arXiv 2014, arXiv:1412.2231. [Google Scholar]
- Driggs, D.; Becker, S.; Aravkin, A. Adapting Regularized Low-rank Models for Parallel Architectures. SIAM J. Sci. Comput. 2019, 41, 163–189. [Google Scholar] [CrossRef] [Green Version]
- Coupé, P.; Hellier, P.; Kervrann, C.; Barillot, C. Nonlocal Means-based Speckle Filtering for Ultrasound Images. IEEE Trans. Image Process. 2009, 18, 2221–2229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aharon, M.; Elad, M.; Bruckstein, A.M. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation. IEEE Trans. Signal Process. 2006, 54, 4311–4322. [Google Scholar] [CrossRef]
- Fisher, C. Acute Response of Benthic Hard Bottom Communities to Oil Exposure in the Deep Gulf of Mexico. Available online: http://www.marine-geo.org/tools/search/entry.php?id=AT18-03 (accessed on 1 May 2020).
- Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition (ICPR), Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar] [CrossRef]
- Mohamed, S. Sediment Classification Using Sub-bottom Profiler. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2011. [Google Scholar]
KSVD | NLM | BM3D | NLLR | Authors’ Method | |
---|---|---|---|---|---|
SSIM | 0.218 | 0.392 | 0.394 | 0.902 | 0.903 |
PNSR | 15.871 | 16.347 | 16.296 | 23.091 | 23.097 |
Runtime | 37.9 s | 15.9 s | 4.1 s | 171.5 s | 78.1 s |
KSVD | NLM | BM3D | NLLR | Authors’ Method | |
---|---|---|---|---|---|
SSIM | 0.190 | 0.197 | 0.196 | 0.225 | 0.324 |
PNSR | 10.049 | 11.09 | 10.937 | 20.897 | 21.9 |
Runtime | 168.5 s | 41.8 s | 12.2 s | 265.2 s | 170.6 s |
KSVD | NLM | BM3D | NLLR | Authors’ Method | |
---|---|---|---|---|---|
SSIM | 0.391 | 0.394 | 0.397 | 0.898 | 0.906 |
PNSR | 16.151 | 16.841 | 16.287 | 22.077 | 22.330 |
Runtime | 41.2 s | 16.7 s | 4.5 s | 192.3 s | 87.2 s |
KSVD | NLM | BM3D | NLLR | Authors’ Method | |
---|---|---|---|---|---|
SSIM | 0.181 | 0.185 | 0.182 | 0.214 | 0.216 |
PNSR | 10.787 | 11.424 | 10.859 | 20.492 | 20.806 |
Runtime | 158.8 s | 42.9 s | 12.4 s | 267.1 s | 172.7 s |
KSVD | NLM | BM3D | NLLR | Authors’ Method | |
---|---|---|---|---|---|
SSIM (Av. and SD) | 0.355/ 0.077 | 0.398/ 0.013 | 0.395/ 0.001 | 0.899/ 0.002 | 0.903/ 0.003 |
PNSR (Av. and SD) | 16.097/ 0.123 | 16.700/ 0.225 | 16.282/ 0.01 | 22.421/ 0.389 | 22.550/ 0.313 |
Runtime (Av. and SD) | 39.2 s/ 1.65 s | 15.9 s/ 0.61 s | 3.72 s/ 0.78 s | 181.3 s/ 9.53 s | 83.4 s/ 3.74 s |
KSVD | NLM | BM3D | NLLR | Authors’ Method | |
---|---|---|---|---|---|
SSIM (Av. and SD) | 0.186/ 0.005 | 0.192/ 0.007 | 0.189/ 0.007 | 0.216/ 0.006 | 0.242/ 0.054 |
PNSR (Av. and SD) | 10.411/ 0.418 | 11.247/ 0.183 | 10.891/ 0.54 | 20.525/ 0.256 | 20.990/ 0.612 |
Runtime (Av. and SD) | 165.4 s/ 5.34 s | 43.1 s/ 1.89 s | 13.4 s/ 2.17 s | 276.1 s/ 20.62 s | 180.2 s/ 17.88 s |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zhao, J.; Zhang, H.; Bi, Z.; Qu, S. A Non-Local Low-Rank Algorithm for Sub-Bottom Profile Sonar Image Denoising. Remote Sens. 2020, 12, 2336. https://doi.org/10.3390/rs12142336
Li S, Zhao J, Zhang H, Bi Z, Qu S. A Non-Local Low-Rank Algorithm for Sub-Bottom Profile Sonar Image Denoising. Remote Sensing. 2020; 12(14):2336. https://doi.org/10.3390/rs12142336
Chicago/Turabian StyleLi, Shaobo, Jianhu Zhao, Hongmei Zhang, Zijun Bi, and Siheng Qu. 2020. "A Non-Local Low-Rank Algorithm for Sub-Bottom Profile Sonar Image Denoising" Remote Sensing 12, no. 14: 2336. https://doi.org/10.3390/rs12142336
APA StyleLi, S., Zhao, J., Zhang, H., Bi, Z., & Qu, S. (2020). A Non-Local Low-Rank Algorithm for Sub-Bottom Profile Sonar Image Denoising. Remote Sensing, 12(14), 2336. https://doi.org/10.3390/rs12142336