Dynamics and Drivers of the Alpine Timberline on Gongga Mountain of Tibetan Plateau-Adopted from the Otsu Method on Google Earth Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Platform
2.2.1. Landsat Satellite Imagery
2.2.2. Meteorological Data
2.2.3. Topographic Data
2.2.4. Google Earth Engine
2.3. Methods
2.3.1. Otsu Method
2.3.2. Alpine Timberline Extraction
2.3.3. Slope and Aspect Classification
2.3.4. Driving Force Analysis
2.4. Processing
3. Results
3.1. Otsu Analysis Results
3.2. Spatiotemporal Alpine Timberline Distribution
3.3. Topographic Factors Affecting the Spatial Distribution of the Alpine Timberline
3.3.1. Aspect Factor
3.3.2. Slope Factor
3.3.3. Longitude and Latitude Factors
3.4. Driving Factors of the Spatiotemporal Distribution of Alpine Timberlines
4. Discussion
4.1. Temporal and Spatial Dynamics of Alpine Timberline on Gongga Mountain
4.2. Drivers Influencing the Spatiotemporal Distribution of the Alpine Timberline
4.3. Importance and Uncertainties
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gonzalez, P.; Neilson, R.P.; Lenihan, J.M.; Drapek, R.J. Global patterns in the vulnerability of ecosystems to vegetation shifts due to climate change. Glob. Ecol. Biogeogr. 2010, 19, 755–768. [Google Scholar] [CrossRef]
- Jimenez, M.A.; Jaksic, F.M.; Armesto, J.J.; Gaxiola, A.; Meserve, P.L.; Kelt, D.A.; Gutierrez, J.R. Extreme climatic events change the dynamics and invasibility of semi-arid annual plant communities. Ecol. Lett. 2011, 14, 1227–1235. [Google Scholar] [CrossRef] [PubMed]
- Mayor, J.R.; Sanders, N.J.; Classen, A.T.; Bardgett, R.D.; Clement, J.C.; Fajardo, A.; Lavorel, S.; Sundqvist, M.K.; Bahn, M.; Chisholm, C.; et al. Elevation alters ecosystem properties across temperate treelines globally. Nature 2017, 542, 91–95. [Google Scholar] [CrossRef] [Green Version]
- Janetos, A.C.; Watson, R.T.; Zinyowera, M.C.; Moss, R.H. Climate change 1995: Impacts, adaptations and mitigation of climate change: Scientific-technical analyses. Ecology 1997, 78, 465–477. [Google Scholar] [CrossRef]
- Fang, J.Y.; Piao, S.L.; He, J.H.; Ma, W.H. Increasing terrestrial vegetation activity in China, 1982–1999. Sci. China Ser. C Life Sci. 2004, 47, 229–240. [Google Scholar]
- Wu, Z.T.; Wu, J.J.; He, B.; Liu, J.H.; Wang, Q.F.; Zhang, H.; Liu, Y. Drought offset ecological restoration program-induced increase in vegetation activity in the Beijing-Tianjin Sand Source Region, China. Environ. Sci. Technol. 2014, 48, 12108–12117. [Google Scholar] [CrossRef]
- Myneni, R.B.; Keeling, C.D.; Tucker, C.J.; Asrar, G.; Nemani, R.R. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 1997, 386, 698–702. [Google Scholar] [CrossRef]
- Myers-Smith, I.H.; Forbes, B.C.; Wilmking, M. Shrub encroachment in arctic and alpine tundra: Dynamics, impacts and research priorities. Environ. Res. Lett. 2011, 6, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Mclaren, J.R.; Buckeridge, K.M.; Weg, M.J.V.D.; Shaver, G.R.; Schimel, J.P.; Gough, L. Shrub encroachment in Arctic tundra: Betula nana effects on above-and belowground litter decomposition. Ecology 2017, 98, 1361–1376. [Google Scholar] [CrossRef] [Green Version]
- Urbina-Cardona, J.N.; Olivares-Pérez, M.; Reynoso, V.H. Herpetofauna diversity and microenvironment correlates across a pasture–edge–interior ecotone in tropical rainforest fragments in the Los Tuxtlas Biosphere Reserve of Veracruz, Mexico. Biol. Conserv. 2006, 132, 0–75. [Google Scholar] [CrossRef]
- Dutoit, T.; Buisson, E.; Gerbaud, E.; Roche, P.; Tatoni, T. The status of transitions between cultivated fields and their boundaries: Ecotones, ecoclines or edge effects? Acta Oecol. 2007, 31, 0–136. [Google Scholar] [CrossRef]
- Holtmeier, F.K. Mountain Timberlines—Ecology, Patchiness, And Dynamics; Springer: Berlin, Germany, 2009. [Google Scholar]
- Tranquillini, W. Physiological Ecology of the Alpine Timberline; Springer: Berlin/Heidelberg, Germany, 1979. [Google Scholar]
- Korner, C. Treelines will be understood once the functional difference between a tree and a shrub is. Ambio 2012, 41, 197–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, A.H.; Fastie, C.L. Spatial and temporal variability in the growth and climate response of treeline trees in Alaska. Clim. Chang. 2002, 52, 481–509. [Google Scholar] [CrossRef]
- Sitko, I.; Troll, M. Timberline Changes in relation to summer farming in the Western Chornohora (Ukrainian Carpathians). Mt. Res. Dev. 2008, 28, 263–271. [Google Scholar] [CrossRef] [Green Version]
- Singh, C.; Panigrahy, S.; Thapliyal, A.; Kimothi, M.; Soni, P.; Parihar, J. Monitoring the alpine treeline shift in parts of the Indian Himalayas using remote sensing. Curr. Sci. 2012, 102, 559–562. [Google Scholar]
- Kumar, M.; Kumar, P. Snow cover dynamics and timberline change detection of Yamunotri watershed using multi-temporal satellite imagery. In Climate Change, Glacier Response, and Vegetation Dynamics in the Himalaya: Contributions Toward Future Earth Initiatives; Singh, R.B., Schickhoff, U., Mal, S., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 391–399. [Google Scholar]
- Theurillat, J.P.; Guisan, A. Potential impact of climate change on vegetation in the European Alps: A review. Clim. Chang. 2001, 50, 77–109. [Google Scholar] [CrossRef]
- Smith, M. Alpine treelines: Functional ecology of the global high elevation tree limits. Mt. Res. Dev. 2013, 33, 357. [Google Scholar] [CrossRef]
- Korner, C. The use of ‘altitude‘ in ecological research. Trends Ecol. Evol. 2007, 22, 569–574. [Google Scholar] [CrossRef]
- Körner, C.; Paulsen, J. World-wide study of high altitude treeline temperatures. J. Biogeogr. 2004, 31, 713–732. [Google Scholar] [CrossRef]
- Rupp, T.S.; Chapin, I.I.I.F.S.; Starfield, A.M. Modeling the influence of topographic barriers on treeline advance at the forest-tundra ecotone in Northwestern Alaska. Clim. Chang. 2001, 48, 399–416. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Huang, R.Q.; Li, Y.L. The effects of climate warming on the alpine vegetation of the Qinghai-Tibetan Plateau hinterland. Acta Ecol. Sin. 2005, 25, 1275–1281. [Google Scholar]
- MacDonald, G.M.; Kremenetski, K.V.; Beilman, D.W. Climate change and the northern Russian treeline zone. Philos. Trans. Biol. Sci. 2008, 363, 2285–2299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.P.; Zhang, L.; Fang, J.Y. Geographical differences in alpine timberline and its climatic interpretation in China. Acta Geogr. Sin. 2004, 59, 871–879. [Google Scholar]
- Grigor’ev, A.A.; Moiseev, P.A.; Nagimov, Z.Y. Dynamics of the timberline in high mountain areas of the nether-polar Urals under the influence of current climate change. Russ. J. Ecol. 2013, 44, 312–323. [Google Scholar] [CrossRef]
- Valmore, C.L.; Harold, A.M. Recent climatic change and development of the bristlecone pine (P. Longaeva bailey) Krummholz zone, Mt. Washington, Nevada. Arct. Alp. Res. 2018, 4, 61–72. [Google Scholar]
- Zhou, T.Y.; Narayan, P.G.; Liao, L.B.; Zheng, L.L.; Wang, J.N.; Sun, J.; Wei, Y.Q.; Xie, Y.; Wu, Y. Spatio-temporal dynamics of two alpine treeline ecotones and ecological characteristics of their dominate species at the eastern margin of Qinghai-Xizang Plateau. Chin. J. Plant Ecol. 2018, 42, 1082–1093. [Google Scholar] [CrossRef] [Green Version]
- Huo, C.F.; Cheng, G.W.; Lu, X.Y.; Fan, J.H. Simulating the effects of climate change on forest dynamics on Gongga Mountain, Southwest China. J. For. Res. 2010, 15, 176–185. [Google Scholar] [CrossRef]
- Shen, Z.H.; Fang, J.Y.; Liu, Z.L.; Wu, J. Structure and dynamics of Abies Fabri population near the Alpine timberline in Hailuo Clough of Gongga Mountain. Acta Bot. Sin. 2001, 1288–1293. [Google Scholar]
- Ran, F.; Liang, Y.M.; Yang, Y.; Yang, Y.; Wang, G.X. Spatial-temporal dynamics of an Abies fabri population near the alpine treeline in the Yajiageng area of Gongga Mountain, China. Acta Ecol. Sin. 2014, 34, 6872–6878. [Google Scholar]
- Hill, R.; Granica, K.; Smith, G.; Schardt, M. Representation of an alpine treeline ecotone in SPOT 5 HRG data. Remote Sens. Environ. 2007, 110, 458–467. [Google Scholar] [CrossRef]
- Panigrahy, S.; Anitha, D.; Kimothi, M.M.; Singh, S.P. Timberline change detection using topographic map and satellite. Trop. Ecol. 2010, 51, 87–91. [Google Scholar]
- Mohapatra, J.; Singh, C.P.; Tripathi, O.P.; Pandya, H.A. Remote sensing of alpine treeline ecotone dynamics and phenology in Arunachal Pradesh Himalaya. Int. J. Remote Sens. 2019, 40, 7986–8009. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Xu, M.; Adams, J.; Wang, X.C. Can Landsat imagery detect tree line dynamics? Int. J. Remote Sens. 2009, 30, 1327–1340. [Google Scholar] [CrossRef]
- Bharti, R.R.; Adhikari, B.S.; Rawat, G.S. Assessing vegetation changes in timberline ecotone of Nanda Devi National Park, Uttarakhand. Int. J. Appl. Earth Observ. Geoinf. 2012, 18, 472–479. [Google Scholar] [CrossRef]
- Rai, I.D.; Bharti, R.R.; Adhikari, B.S.; Rawat, G.S. Structure and Functioning of Timberline Vegetation in the Western Himalaya: A Case Study; International Centre for Integrated Mountain Development: Kathmandu, Nepal, 2013. [Google Scholar]
- Otsu, N. A Threshold selection method from gray-level histograms. IEEE Trans. Syst. Man 2007, 9, 62–66. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.G.; Chen, G.Q.; Han, Z.; Zheng, L.; Zhang, F.L. A hybrid automatic thresholding approach using panchromatic imagery for rapid mapping of landslides. GISci. Remote Sens. 2014, 51, 710–730. [Google Scholar] [CrossRef]
- Ratnakumar, R.; Nanda, S.J. A low complexity hardware architecture of K-means algorithm for real-time satellite image segmentation. Multimed. Tools Appl. 2018, 78, 11949–11981. [Google Scholar] [CrossRef]
- Moore, R.T.; Hansen, M.C. Google Earth Engine: A New Cloud-Computing Platform for Global-Scale Earth Observation Data and Analysis. Available online: https://ui.adsabs.harvard.edu/abs/2011AGUFMIN43C..02M (accessed on 20 December 2019).
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Lu, X.Y.; Cheng, G.W. Climate change effects on soil carbon dynamics and greenhouse gas emissions in Abies fabri forest of subalpine, southwest China. Soil Biol. Biochem. 2009, 41, 1015–1021. [Google Scholar] [CrossRef]
- Yu, L.; Song, M.Y.; Lei, Y.B.; Duan, B.L.; Berninger, F.; Korpelainen, H.; Niinemets, Ü.; Li, C.Y. Effects of phosphorus availability on later stages of primary succession in Gongga Mountain glacier retreat area. Environ. Exp. Bot. 2017, 141, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Cheng, G.W. Mountain Altitudinal Belt: A Review. Ecol. Environ. Sci. 2014, 23, 1544–1550. [Google Scholar]
- Eric, V.; Chris, J.; Martin, C.; Belen, F. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar]
- Abrams, M.; Crippen, R.; Fujisada, H. ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD). Remote Sens. 2020, 12, 1156. [Google Scholar] [CrossRef] [Green Version]
- Clinton, N. Otsu’s Method for Image Segmentation. Available online: https://medium.com/google-earth/otsus-method-for-image-segmentation-f5c48f405e (accessed on 10 January 2020).
- Torres-Sánchez, J.; López-Granados, F.; Peña, J.M. An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous crops. Comput. Electron. Agric. 2015, 114, 43–52. [Google Scholar] [CrossRef]
- Donchyts, G.; Baart, F.; Winsemius, H.; Gorelick, N.; Kwadijk, J.; van de Giesen, N. Earth‘s surface water change over the past 30 years. Nat. Clim. Chang. 2016, 6, 810–813. [Google Scholar] [CrossRef]
- Piao, S.L.; Fang, J.Y.; Ji, W.; Guo, Q.H.; Ke, J.H.; Tao, S. Variation in a satellite-based vegetation index in relation to climate in China. J. Veg. Sci. 2004, 15, 219–226. [Google Scholar] [CrossRef]
- Piao, S.L.; Wang, X.H.; Ciais, P.; Zhu, B.; Wang, T.; Liu, J. Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006. Glob. Chang. Biol. 2011, 17, 3228–3239. [Google Scholar] [CrossRef]
- Jiang, L.G.; Liu, X.N.; Feng, Z.M. Remote sensing identification and spatial pattern analysis of the alpine timberline in the three parallel rivers region. Resour. Sci. 2014, 36, 259–266. [Google Scholar]
- Xiong, J.N.; Ye, C.C.; Cheng, W.M.; Guo, L.; Zhou, C.H.; Zhang, X.L. The spatiotemporal distribution of flash floods and analysis of partition driving forces in Yunnan Province. Sustainability 2019, 11, 2926. [Google Scholar] [CrossRef] [Green Version]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Uyanık, G.K.; Güler, N. A Study on Multiple Linear Regression Analysis. Procedia Soc. Behav. Sci. 2013, 106, 234–240. [Google Scholar] [CrossRef] [Green Version]
- Zhu, W.Z.; Ran, F.; Li, M.H.; Wang, W.Z.; Jia, M. Alpine timberline dynamics and physiological mechanisms of the timberline formation on the Mt.Gongga. Mt. Res. 2017, 35, 622–628. [Google Scholar]
- Li, P. Study of Physiological Characteristics of the Alpine Treeline Trees in Mt. Gongga, Southwest China. Master’s Thesis, Southwest University, Chongqing, China, 2008. [Google Scholar]
- Liang, E.Y.; Wang, Y.F.; Eckstein, D. Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytol. 2011, 190, 760–769. [Google Scholar] [CrossRef] [PubMed]
- Camarero, J.J.; Gutiérrez, E. Pace and pattern of recent treeline dynamics: Response of ecotones to climatic variability in the Spanish Pyrenees. Clim. Chang. 2004, 63, 181–200. [Google Scholar] [CrossRef]
- Macdonald, G.M.; Szeicz, J.M.; Dale, C.K.A. Response of the Central Canadian Treeline to recent climatic changes. Ann. Assoc. Am. Geogr. 1998, 88, 183–208. [Google Scholar] [CrossRef]
- Harsch, M.A.; Hulme, P.E.; McGlone, M.S.; Duncan, R.P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett. 2009, 12, 1040–1049. [Google Scholar] [CrossRef]
- Shen, W.; Zhang, L.; Guo, Y.; Luo, T.X. Causes for treeline stability under climate warming: Evidence from seed and seedling transplant experiments in southeast Tibet. For. Ecol. Manag. 2018, 408, 45–53. [Google Scholar] [CrossRef]
- Zhang, G.L.; Zhang, Y.J.; Dong, J.W.; Xiao, X.M. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011. Proc. Natl. Acad. Sci. USA 2013, 110, 4309–4314. [Google Scholar] [CrossRef] [Green Version]
- Dubayah, R.C. Modeling a solar radiation topoclimatology for the Rio Grande River Basin. J. Veg. Sci. 1994, 5, 627–640. [Google Scholar] [CrossRef]
- Li, X.; Huang, J.F.; Wang, X.Z. Temporal and spatial distribution characteristics of sunshine duration based on GIS in mountainous areas. Trans. Chin. Soc. Agric. Eng. 2006, 22, 108–113. [Google Scholar]
- Lambert, M.S.; Mariam, T.T.; Susan, F.H. Vegetation and Slope Stability; Betascript Publishing: Beau Bassin, Mauritius, 2010. [Google Scholar]
- Weltzin, J.F.; Allen, P.B. Tree Seedling Recruitment in a Temperate Deciduous Forest: Interactive Effects of Soil Moisture, Light, and Slope Position; Springer: New York, NY, USA, 2003. [Google Scholar]
- Dou, X.L.; Li, M.; Wang, W.B.; Zhang, Q.F.; Cheng, X.L. Changes in soil nutrients in different eroded soils in Pinus massoniana forest ecosystems in Fujian Province, China. Plant Sci. J. 2012, 30, 161–168. [Google Scholar] [CrossRef]
- Gilfedder, L. Factors influencing the maintenance of an inverted Eucalyptus coccifera tree-line on the Mt Wellington Plateau, Tasmania. Aust. J. Ecol. 1988, 13, 495–503. [Google Scholar] [CrossRef]
- Huxman, T.; Smith, M.D.; Fay, P.A.; Knapp, A.K.; Shaw, M.R.; Loik, M.E.; Smith, S.D.; Tissue, D.T.; Zak, J.C.; Weltzin, J.F.; et al. Convergence across biomes to a common rain-use efficiency. Nature 2004, 429, 651–654. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.S.; Wang, Y.; Yu, F. Research advances in key factors affecting seedling regeneration above treeline. Chin. J. Ecol. 2019, 38, 3535–3541. [Google Scholar]
- Zhou, T.C.; Liu, M.; Sun, J.; Li, Y.R.; Shi, P.L.; Tsunekawa, A.; Zhou, H.K.; Yi, S.H.; Xue, X. The patterns and mechanisms of precipitation use efficiency in alpine grasslands on the Tibetan Plateau. Agric. Ecosyst. Environ. 2020, 292, 106833–106843. [Google Scholar] [CrossRef]
- Qi, Z.M.; Wang, K.Y. On soil water characteristics of the subalpine timberline ecotone and adjacent vegetations in Western Sichuan. J. Southwest China Norm. Univ. (Nat. Sci. Ed.) 2013, 38, 90–95. [Google Scholar]
- Ehleringer, J. Physiological Ecology of North American Plant Communities; Chapman and Hall: Dordrecht, The Netherlands, 1985. [Google Scholar]
- Zong, S.W.; Wu, Z.F.; Xu, J.W.; Li, M.; Gao, X.F.; He, H.S.; Du, H.B.; Wang, L. Current and potential tree locations in tree line ecotone of Changbai Mountains, Northeast China: The controlling effects of topography. PLoS ONE 2014, 9, e106114. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.H.; Liu, Z.L.; Fang, J.Y. Altitudinal changes in species diversity and community structure of Abies fabri communities at Hailuo Valley of Mt.Gongga, Sichuan. Biodivers. Sci. 2004, 12, 237–244. [Google Scholar]
- Gallardo-Cruz, J.A.; Pérez-García, E.A.; Meave, J.A. β-Diversity and vegetation structure as influenced by slope aspect and altitude in a seasonally dry tropical landscape. Landsc. Ecol. 2009, 24, 473–482. [Google Scholar] [CrossRef]
- Cheng, G.W. Exploration of precipitation features on extra-high zone of Mt. Gongga. Mt. Res. 1996, 14, 177–182. [Google Scholar]
- Cao, B.; Pan, B.T.; Guan, W.J.; Wen, Z.L.; Wang, J. Changes in glacier volume on Mt. Gongga, southeastern Tibetan Plateau, based on the analysis of multi-temporal DEMs from 1966 to 2015. J. Glaciol. 2019, 65, 366–375. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.J.; Liu, Q.; Zhong, Y.; Lu, X.Y. Landsat-based estimation of the glacier surface temperature of Hailuogou glacier, Southeastern Tibetan Plateau, between 1990 and 2018. Remote Sens. 2020, 12, 2105. [Google Scholar] [CrossRef]
- Liang, E.Y.; Wang, Y.F.; Piao, S.L.; Lu, X.M.; Camarero, J.J.; Zhu, H.F.; Zhu, L.P.; Ellison, A.M.; Ciais, P.; Penuelas, J. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2016, 113, 4380–4385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, J.N.; Yong, Z.W.; Wang, Z.G.; Cheng, W.M.; Li, Y.; Zhang, H.; Ye, C.C.; Yang, Y.M. Spatial and temporal patterns of the extreme precipitation across the Tibetan Plateau (1986–2015). Water 2019, 11, 1453. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.Q.; Wu, N.; Luo, P.; Yi, S.L. Impacts of disturbances on alpine timberline reformation. Chin. J. Ecol. 2005, 24, 1493–1498. [Google Scholar]
- Van Bogaert, R.; Haneca, K.; Hoogesteger, J.; Jonasson, C.; De Dapper, M.; Callaghan, T.V. A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming. J. Biogeogr. 2011, 38, 907–921. [Google Scholar] [CrossRef] [Green Version]
- Chhetri, P.K.; Shrestha, K.B.; Cairns, D.M. Topography and human disturbances are major controlling factors in treeline pattern at Barun and Manang area in the Nepal Himalaya. J. Mt. Sci. 2017, 14, 119–127. [Google Scholar] [CrossRef]
- Schickhoff, U.; Bobrowski, M.; Böhner, J.; Bürzle, B.; Schwab, N. Climate Change and Treeline Dynamics in the Himalaya; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Kaczka, R.J.; Czajka, B.; Łajczak, A. The tree-ring growth responses to climate in the timberline ecotone of Babia Góra Mountain. Geogr. Pol. 2015, 88, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Kaczka, R.J.; Czajka, B.; Łajczak, A.; Szwagrzyk, J.; Nicia, P. The timberline as result of the interactions among forest, abiotic environment and human activity in the Babia Góra Mt., Western Carpathians. Geogr. Pol. 2015, 88, 177–191. [Google Scholar] [CrossRef] [Green Version]
- Lioyd, A.H.; Graumlich, L.J. Holocene dynamics of treeline forests in the sierra nevada. Ecology 1997, 78, 1199–1210. [Google Scholar] [CrossRef]
- Sullivan, P.F.; Sveinbjörnsson, B. Microtopographic control of treeline advance in noatak national preserve, Northwest Alaska. Ecosystems 2010, 13, 275–285. [Google Scholar] [CrossRef]
- Butler, D.R.; Malanson, G.P.; Walsh, S.J.; Fagre, D.B. Influences of geomorphology and geology on alpine treeline in the American West—More important than climatic influences? Phys. Geogr. 2007, 28, 434–450. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Helder, D.; Irons, J.R.; Johnson, D.M.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.l.; Zhao, K.; Zheng, X.M.; Jiang, T. Temporal dynamics of spatial heterogeneity over cropland quantified by time-series NDVI, near infrared and red reflectance of Landsat 8 OLI imagery. Int. J. Appl. Earth Observ. Geoinf. 2014, 30, 139–145. [Google Scholar] [CrossRef]
- Ke, Y.H.; Im, J.; Lee, J.; Gong, H.l.; Ryu, Y. Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sens. Environ. 2015, 164, 298–313. [Google Scholar] [CrossRef]
- Li, P.; Jiang, L.G.; Feng, Z.M. Cross-comparison of vegetation indices derived from landsat-7 enhanced thematic mapper plus (Etm+) And landsat-8 operational land imager (oli) sensors. Remote Sens. 2013, 6, 310–329. [Google Scholar] [CrossRef] [Green Version]
- Herold, M.; Mayaux, P.; Woodcock, C.E.; Baccini, A.; Schmullius, C. Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 2008, 112, 2538–2556. [Google Scholar] [CrossRef]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.C.; Zhao, Y.Y.; Liang, L.; Niu, Z.G.; Huang, X.M.; Fu, H.H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2012, 34, 2607–2654. [Google Scholar] [CrossRef] [Green Version]
Symbol | Range of Slope (°) | Description | Area (km2) | Weight |
---|---|---|---|---|
A | 0–2 | Flat | 3.07 | 0.002 |
B | 2–5 | Very gentle | 17.52 | 0.011 |
C | 5–15 | Gentle | 157.37 | 0.099 |
D | 15–25 | Moderate | 297.25 | 0.187 |
E | 25–35 | Moderately steep | 460.91 | 0.290 |
F | 35–55 | Steep | 595.83 | 0.374 |
G | >55 | Very steep | 59.66 | 0.037 |
Aspect | Range of Aspect (°) | Area (km2) | Weight |
---|---|---|---|
Flat | −1 | 0.03 | 0.000 |
North | 0–22.5 and 227.5–360 | 193.55 | 0.122 |
Northeast | 22.5–67.5 | 224.95 | 0.141 |
East | 67.5–112.5 | 248.86 | 0.156 |
Southeast | 112.5–157.5 | 222.89 | 0.140 |
South | 157.5–202.5 | 198.82 | 0.125 |
Southwest | 202.5–247.5 | 183.13 | 0.115 |
West | 247.5–292.5 | 155.5 | 0.098 |
Northwest | 292.5–337.5 | 163.87 | 0.103 |
Region | The Drivers |
---|---|
Alps | Maximum month temperature [13] |
Siberia | Summer temperatures and growing season length [25] Winter temperatures and precipitation [27] |
Himalaya | Growing season and annual bio-temperature [26] Topography and human disturbances [87] Temperature and moisture supply [88] |
Carpathians | Growing season temperatures and late winter precipitation [89] Land use, grazing, logging, air pollution, and climate warming [90] |
Sierra Nevada | Precipitation [91] |
Northwest Alaska | Microtopography [92] |
Rocky Mountains | Geomorphology and Geology [93] |
Global scale | Winter warming [63] Low temperature, average temperature, and average soil temperature during the growing season [88] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, W.; Ye, C.; Sun, J.; Xiong, J.; Wang, J.; Zhou, T. Dynamics and Drivers of the Alpine Timberline on Gongga Mountain of Tibetan Plateau-Adopted from the Otsu Method on Google Earth Engine. Remote Sens. 2020, 12, 2651. https://doi.org/10.3390/rs12162651
He W, Ye C, Sun J, Xiong J, Wang J, Zhou T. Dynamics and Drivers of the Alpine Timberline on Gongga Mountain of Tibetan Plateau-Adopted from the Otsu Method on Google Earth Engine. Remote Sensing. 2020; 12(16):2651. https://doi.org/10.3390/rs12162651
Chicago/Turabian StyleHe, Wen, Chongchong Ye, Jian Sun, Junnan Xiong, Jinniu Wang, and Tiancai Zhou. 2020. "Dynamics and Drivers of the Alpine Timberline on Gongga Mountain of Tibetan Plateau-Adopted from the Otsu Method on Google Earth Engine" Remote Sensing 12, no. 16: 2651. https://doi.org/10.3390/rs12162651
APA StyleHe, W., Ye, C., Sun, J., Xiong, J., Wang, J., & Zhou, T. (2020). Dynamics and Drivers of the Alpine Timberline on Gongga Mountain of Tibetan Plateau-Adopted from the Otsu Method on Google Earth Engine. Remote Sensing, 12(16), 2651. https://doi.org/10.3390/rs12162651