Extreme Climate Event and Its Impact on Landscape Resilience in Gobi Region of Mongolia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Remote Sensing Data and Pre-Processing.
2.2.2. Meteorological Data (Climate Dataset)
2.2.3. Socio-Economic Data (Statistical Dataset)
2.2.4. The Implementation of the Aridity Index
3. Results
3.1. Spatio Temporal MODIS NDVI Analysis
3.2. The Relationship between MODIS NDVI, Aridity Index (aAIz), and Seasonal Precipitation
3.3. Climate Condition Analysis
3.4. Livestock Mortality Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Year | Extreme Event | Livestock Mortality/NSO |
---|---|---|
1944–1945 | dzud+drought | No data |
1954–1955 | dzud | - |
1956–1957 | dzud | - |
1967–1968 | dzud+drought | - |
1976–1977 | dzud | 3294.30 |
1986–1987 | dzud | 1635.10 |
1993–1994 | dzud | 2342.12 |
1996–1997 | dzud | 1203.50 |
1999–2000 | dzud+drought | 4291.30 |
2000–2001 | dzud+drought | 8249.90 |
2001–2002 | dzud+drought | 7676.50 |
2009–2010 | dzud+drought | 12,052.81 |
Appendix B
Dzud and Drought Information | 1999–2002 Drought and Dzud Years. | 2009–2010 White Dzud Years. |
---|---|---|
Drought and Dzud severity range | Drought and Dzud continued 3 consecutive years and covered around 90% of the total territory. | Covered 80.9 % of the total territory, 17 provinces and 175soums/administrative unit |
Mortality | Not enough information /not clear | 17 people between the ages of 12 and 89 died |
Livestock loss | 11 million of livestock | 8.8 million livestock |
Financial loss (exchange rate is during that period of time) | 91.7 billion MNT (Mongolian Tugrik) | 360 billion MNT |
The number of households left without livestock | 2369 households | 8711 households |
The number of households left with livestock | Over 10,000 households were left with less than 100 livestock | 32,756 households lost more than 50% of their livestock |
References
- Nandintsetseg, B.; Shinoda, M.; Du, C.; Munkhjargal, E. Cold-season disasters on the Eurasian steppes: Climate-driven or man-made. Sci. Rep. 2018, 8, 14769. [Google Scholar] [CrossRef] [PubMed]
- Groisman, P.Y.; Bulygina, O.N.; Yin, X.; Vose, R.S.; Gulev, S.K.; Hanssen-Bauer, I.; Førland, E. Recent changes in the frequency of freezing precipitation in North America and Northern Eurasia. Environ. Res. Lett. 2016, 11, 45007. [Google Scholar] [CrossRef]
- Bulygina, O.N.; Razuvaev, V.N.; Korshunova, N.N. Changes in snow cover over Northern Eurasia in the last few decades. Environ. Res. Lett. 2009, 4, 6. [Google Scholar] [CrossRef]
- Changes in Snow Cover Characteristics over Northern Eurasia Since 1966—IOPscience. Available online: https://iopscience.iop.org/article/10.1088/1748-9326/6/4/045204 (accessed on 18 April 2020).
- Ongoing Climatic Change in Northern Eurasia: Justification for Expedient Research—IOPscience. Available online: https://iopscience.iop.org/article/10.1088/1748-9326/4/4/045002/meta (accessed on 18 April 2020).
- Natsagdorj, L. Some aspects of assessment of the dzud phenomena. Pap. Meteorol. Hydrol. 2001, 23, 3–18. [Google Scholar]
- Begzsuren, S.; Ellis, J.E.; Ojima, D.S.; Coughenour, M.B.; Chuluun, T. Livestock responses to droughts and severe winter weather in the Gobi Three Beauty National Park, Mongolia. J. Arid Environ. 2004, 59, 785–796. [Google Scholar] [CrossRef]
- Batima, P.; Natsagdorj, L.; Batnasan, N. Vulnerability of Mongolia’s pastoralists to climate extremes and changes. In Climate Change and Vulnerability; Leary, N., Conde, C., Kulkarni, J., Nyong, A., Adejuwon, J., Barros, V., Burton, I., Lasco, R., Pulhin, J., Eds.; Earthscan: London, UK, 2008; pp. 67–87. [Google Scholar]
- Morinaga, Y.; Tian, S.-F.; Shinoda, M. Winter snow anomaly and atmospheric circulation in Mongolia. Int. J. Climatol. 2003, 23, 1627–1636. [Google Scholar] [CrossRef]
- Dagvadorj, D.; Natsagdorj, L.; Dorjpurev, J.; Namkhainyam, B. Mongolia Assessment Report on Climate Change; Ministry of Nature, Environment and Tourism (MNET): Ulaanbaatar, Mongolia, 2009; p. 228. [Google Scholar]
- Shinoda, M. High-impact weathers in a changing climate over arid Eurasia andproactive disaster management. Procedia IUTAM 2015, 17, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Templer, G.; Swift, J.; Payne, P. The changing significance of risk in the Mongolian pastoral economy. Nomad. People. 1993, 33, 105–122. [Google Scholar]
- Mukund Palat, R.; Nicole, K.D.; Rosanne, D.D.; Jerry, S.; Baatarbileg, N.; Caroline, L.; Bradfield, L.; Shih-Yu, W.; Oyunsanaa, B. Dzuds, droughts, and livestock mortality in Mongolia. Environ. Res. Lett. 2015, 10, 74012. [Google Scholar] [CrossRef]
- Ma, H.; Mater, H.Z.-I.L. 1994, Undefined Memorandum of Understanding between the Conference of the Parties to the United Nations Convention to Combat Desertification in Those Countries Experiencing Serious Drought and/or Desertification, Particularly Africa and the Council of the Global Environm, 2018. Available online: https://www.unccd.int/ (accessed on 1 September 2020).
- Nandintsetseg, B.; Shinoda, M. Assessment of drought frequency, duration, and severity and its impact on pasture production in Mongolia. Nat. Hazards 2013, 66, 995–1008. [Google Scholar] [CrossRef]
- Bhuiyan, C.; Singh, R.P.; Kogan, F.N. Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 289–302. [Google Scholar] [CrossRef]
- Nandintsetseg, B.; Shinoda, M. Seasonal change of soil moisture in Mongolia: Its climatology and modelling. Int. J. Climatol. 2011, 31, 1143–1152. [Google Scholar] [CrossRef]
- Kakinuma, K.; Yanagawa, A.; Sasaki, T.; Rao, M.P.; Kanae, S. Socio-ecological Interactions in a Changing Climate: A Review of the Mongolian Pastoral System. Sustainability 2019, 11, 5883. [Google Scholar] [CrossRef] [Green Version]
- FAO´s Role in the Mongolia Dzud Appeal; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2010.
- UNDP/NEMA. How Mongolian Herders Affected by Dzud, Natural Phenomena, 2009–2010: Government and Pastoralist’s Disaster Management. Dzud National Report 2009–2010; Project ID:00074253; United Nations Development Programme and National Emergency Management Agency: Ulaan Baatar, Mongolia, 2010. [Google Scholar]
- Fernández-Giménez, M.E.; Batkhishig, B.; Batbuyan, B. Cross-boundary and cross-level dynamics increase vulnerability to severe winter disasters (dzud) in Mongolia. Glob. Environ. Chang. 2012, 22, 836–851. [Google Scholar] [CrossRef]
- Sternberg, T. Unravelling mongolia’s extreme winter disaster of 2010. Nomad. People. 2010, 14, 72–86. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Clark, E.A.; Kattsov, V.M.; Lettenmaierb, D.P.; Sokolik, I.N.; Aizen, V.B.; Cartus, O.; Chen, J.; Conard, S.; Katzenberger, J.; et al. The Northern Eurasia Earth Science Partnership: An example of science applied to societal needs. Bull. Am. Meteorol. Soc. 2009, 90, 671–688. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Ruedy, R.; Sato, M.; Lo, K. Global Surface Temperature Change. Rev. Geophys. 2010, 48, RG4004. [Google Scholar] [CrossRef] [Green Version]
- Tachiiri, K.; Shinoda, M.; Klinkenberg, B.; Morinaga, Y. Assessing Mongolian snow disaster risk using livestock and satellite data. J. Arid Environ. 2008, 72, 2251–2263. [Google Scholar] [CrossRef]
- Xu, X.; Piao, S.; Wang, X.; Chen, A.; Ciais, P.; Myneni, R.B. Spatio-temporal patterns of the area experiencing negative vegetation growth anomalies in China over the last three decades. Environ. Res. Lett. 2012, 7, 9. [Google Scholar] [CrossRef]
- Zucca, C.; Wu, W.; Dessena, L.; Mulas, M. Assessing the Effectiveness of Land Restoration Interventions in Dry Lands by Multitemporal Remote Sensing—A Case Study in Ouled DLIM (Marrakech, Morocco). L. Degrad. Dev. 2015, 26, 80–91. [Google Scholar] [CrossRef]
- Karlsen, S.R.; Tolvanen, A.; Kubin, E.; Poikolainen, J.; Høgda, K.A.; Johansen, B.; Danks, F.S.; Aspholm, P.; Wielgolaski, F.E.; Makarova, O. MODIS-NDVI-based mapping of the length of the growing season in northern Fennoscandia. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 253–266. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Evans, J.P.; McCabe, M.F.; de Jeu, R.A.M.; van Dijk, A.I.J.M.; Dolman, A.J.; Saizen, I. Changing Climate and Overgrazing Are Decimating Mongolian Steppes. PLoS ONE 2013, 8, e57599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Statistical Office of Mongolia 2015 NSO (2015): Number of Livestock, by Type, by Regions, Soums, Aimags and the Capital: Mongolian Statistical Information Service. Available online: https://www.en.nso.mn/ (accessed on 1 September 2020).
- Klinge, M.; Sauer, D. Spatial pattern of Late Glacial and Holocene climatic and environmental development in Western Mongolia—A critical review and synthesis. Quat. Sci. Rev. 2019, 210, 26–50. [Google Scholar] [CrossRef]
- Yu, F.; Price, K.P.; Ellis, J.; Shi, P. Response of seasonal vegetation development to climatic variations in eastern central Asia. Remote Sens. Environ. 2003, 87, 42–54. [Google Scholar] [CrossRef]
- John, R.; Chen, J.; Lu, N.; Guo, K.; Liang, C.; Wei, Y.; Noormets, A.; Ma, K.; Han, X. Predicting plant diversity based on remote sensing products in the semi-arid region of Inner Mongolia. Remote Sens. Environ. 2008, 112, 2018–2032. [Google Scholar] [CrossRef]
- Herzschuh, U. Palaeo-moisture evolution in monsoonal Central Asia during the last 50,000 years. Quat. Sci. Rev. 2006, 25, 163–178. [Google Scholar] [CrossRef] [Green Version]
- Batima, P.; Natsagdorj, L.; Gombluudev, P.; Erdenetsetseg, B. Observed Climate Change in Mongolia. AIACC Work. Pap. 2005, 12, 1–16. [Google Scholar]
- Kang, L.; Han, X.; Zhang, Z.; Sun, O.J. Grassland ecosystems in China: Review of current knowledge and research advancement. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2007, 362, 997–1008. [Google Scholar] [CrossRef]
- Hilker, T.; Natsagdorj, E.; Waring, R.H.; Lyapustin, A.; Wang, Y. Satellite observed widespread decline in Mongolian grasslands largely due to overgrazing. Glob. Chang. Biol. 2014, 20, 418–428. [Google Scholar] [CrossRef] [Green Version]
- Bohner, J. General climatic controls and topoclimatic variations in Central and High Asia. Boreas 2008, 35, 279–295. [Google Scholar] [CrossRef]
- National Statistical Office of Mongolia Mongolian Statistical Yearbook 2009; Admon Publishing: Ulaanbaatar, Mongolia, 2010; p. 448.
- Didan, K. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006. NASA EOSDIS Land Processes DAAC. USGS 2015, 5, 2002–2015. [Google Scholar]
- Didan, K.; Barreto, A.; Solano, R.; Huete, A. Modis Vegetation Index User Guide (MOD13 Series). Available online: https://vip.arizona.edu/MODIS_UsersGuide.php (accessed on 1 September 2020).
- LP DAAC—MOD13Q1. Available online: https://lpdaac.usgs.gov/products/mod13q1v006/ (accessed on 13 August 2020).
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Climatic Research Unit CEDA Data Server, Index of CRU TS 3.22 Data (1901–2013). Available online: https://catalogue.ceda.ac.uk/uuid/c311c7948e8a47b299f8f9c7ae6cb9af (accessed on 1 September 2020).
- Centre for Environmental Data Analysis JASMIN | Centre for Environmental Data Analysis. Available online: https://www.ceda.ac.uk/ (accessed on 1 September 2020).
- National Statistical Office of Mongolia National Statistical Office of Mongolia 1990. Available online: https://www.en.nso.mn/ (accessed on 1 September 2020).
- Bedunah, D.J.; Schmidt, S.M. Rangelands of Gobi Gurvan Saikhan National Conservation Park, Mongolia. Rangelands 2000, 22, 18–24. [Google Scholar] [CrossRef]
- Munkhtsetseg, E.; Kimura, R.; Wang, J.; Shinoda, M. Pasture yield response to precipitation and high temperature in Mongolia. J. Arid Environ. 2007, 70, 94–110. [Google Scholar] [CrossRef]
- National Agency Meteorology and the Enviromental Monitoring National Agency Meteorology and the Enviromental Monitoring. Available online: http://namem.gov.mn/eng/ (accessed on 1 September 2020).
- Purevsuren, T.; Hoshino, B.; Ganzorig, S.; Sawamukai, M. Spatial and Temporal Patterns of NDVI Response to Precipitation and Temperature in Mongolian Steppe. J. Arid Land Stud. 2012, 22, 247–250. [Google Scholar]
- Ni, J. Plant functional types and climate along a precipitation gradient in temperate grasslands, north-east China and south-east Mongolia. J. Arid Environ. 2003, 53, 501–516. [Google Scholar] [CrossRef] [Green Version]
- Oliver, J.E.; Fairbridge, R.W. Fairbridge. In The Encyclopedia of Climatology; Springer: New York, NY, USA, 1987; pp. 102–107. ISBN 0-87933-009-0. [Google Scholar]
- Ni, J.; Zhang, X.-S. Climate variability, ecological gradient and the Northeast China Transect (NECT). J. Arid Environ. 2000, 46, 313–325. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.L.; Furtado, J.C.; Barlow, M.A.; Alexeev, V.A.; Cherry, J.E. Arctic warming, increasing snow cover and widespread boreal winter cooling. Environ. Res. Lett. 2012, 7, 014007. [Google Scholar] [CrossRef]
- Wang, X.; Wu, C.; Wang, H.; Gonsamo, A.; Liu, Z. No evidence of widespread decline of snow cover on the Tibetan Plateau over 2000–2015. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Pan, C.G.; Kimball, J.S.; Munkhjargal, M.; Robinson, N.P.; Tijdeman, E.; Menzel, L.; Kirchner, P.B. Role of Surface Melt and Icing Events in Livestock Mortality across Mongolia’s Semi-Arid Landscape. Remote Sens. 2019, 11, 2392. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.L.; Zhao, X.Y.; Zhou, R.L.; Zhang, T.H.; Drake, S. Desertification processes due to heavy grazing in sandy rangeland, Inner Mongolia. J. Arid Environ. 2005, 62, 309–319. [Google Scholar] [CrossRef]
- Nandintsetseg, B.; Shinoda, M.; Erdenetsetseg, B. Contributions of multiple climate hazards and overgrazing to the 2009/2010 winter disaster in Mongolia. Nat. Hazards 2018, 92, 109–126. [Google Scholar] [CrossRef]
- Benson, C. Dzud Disaster Financing and Response in Mongolia Paper prepared for World Bank study on Structuring Dzud Disaster Preparation, Financing and Response to Increase Resilience of Herder Households to Climatic Risk in Mongolia; World Bank: Washington, DC, USA, 2011. Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/13065/695250ESW0whit00Benson000June02011.pdf?sequence=1 (accessed on 1 September 2020).
- Shestakovich, N. Exploratory analysis of spatial and temporal dynamics of Dzud development in Mongolia, 1993–2004. Master Thesis, School of Natural Resources & Environment of the University of Michigan, Ann Arbor, MI, USA, November 2010. [Google Scholar]
- Kakinuma, K.; Ozaki, T.; Takatsuki, S.; Chuluun, J. How Pastoralists in Mongolia perceive vegetation changes caused by grazing. Nomad. Peoples 2008, 12, 67–73. [Google Scholar] [CrossRef]
- Oliver, T.H.; Isaac, N.J.B.; August, T.A.; Woodcock, B.A.; Roy, D.B.; Bullock, J.M. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Type of Dzud | Weather Condition | Effects |
---|---|---|
Tsagaan (white) | Average thickness of snow layer on pasture land exceeds 21 cm in high mountains and forest regions, 16 cm in steppes, and 10 cm in the Gobi region. Snow density reaches 200 kg/m3 or greater in any region. | Prevents access to grass. The most common form of dzud and the most disastrous when it affects large areas. |
Khar (black) | No snow during winter and the monthly or ten–day average temperature is 5.0 °C lower. | Causes water supply shortages, often exacerbated by lack of winter grass. |
Tumur (iron or ice) | Snow cover melts and freezes due to rapid changes in temperature creating an ice cover that prevents livestock from grazing. Snow density reaches 0.30 g/cm3 or greater. | Prevents access to grass. |
Khuiten (cold) | Air temperature is 5 to 10 °C lower than the monthly mean temperature for several consecutive days. | Extreme cold and strong freezing winds prevent animals from grazing. Animals spend most of their energy maintaining their body heat. |
Turen (hoof) | Extremely dry weather. | Causes complete depletion of grass due to drought and/or trampling and heavy grazing. |
Khavsarsan (combined) | Two or more of the above occurring simultaneously. |
Meteorological Station | Province Name | Vegetation Zones | Latitude | Longitude |
---|---|---|---|---|
Bayankhongor | Bayankhongor | steppe | 46°11′40″N | 100°42′2″E |
Galuut | Bayankhongor | steppe | 46°43′30″N | 100°8′35″E |
Bogd | Bayankhongor | desert steppe | 45°40′10″N | 100°7′75″E |
Ekhiingol | Bayankhongor | desert | 43°14′48″N | 99°21′14″E |
Shinejinst | Bayankhongor | desert steppe | 44°32′13″N | 99°17′34″E |
Bayanbulag | Bayankhongor | steppe | 46°49′32″N | 98°40′10″E |
Bugat | Gobi-Altai | desert steppe | 45°34′55″N | 94°22′91″E |
Khukhmorit | Gobi-Altai | desert steppe | 47°35′23″N | 94°28′51″E |
Aj Bogd | Gobi-Altai | desert | 44°37′52″N | 94°54′48″E |
Tooroi | Gobi-Altai | desert | 44°54′39″N | 96°47′42″E |
Altai | Gobi-Altai | desert steppe | 46°23′12″N | 96°15′14″E |
Tonkhil | Gobi-Altai | steppe | 46°18′23″N | 93°54′51″E |
Bayankhongor | Gobi-Altai | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | Bayanbulag | Bayankhongor | Bogd | Ekhiingol | Galuut | Shinejinst | Aj Bogd | Altai | Bugat | Khukhmorit | Tonkhil | Tooroi |
1990 | 1.0 | 1.0 | 1.3 | 0.1 | 1.1 | 1.1 | −0.8 | 0.9 | no data | no data | 0.5 | 0.1 |
1991 | 0.8 | −0.1 | −1.0 | −0.6 | 1.0 | 0.1 | 1.5 | 0.6 | no data | no data | 0.2 | 0.9 |
1992 | −0.7 | 0.0 | −0.9 | 0.1 | 0.6 | −0.5 | −0.2 | 0.8 | no data | no data | −1.3 | 0.5 |
1993 | 2.3 | 1.9 | 1.2 | 2.1 | 1.7 | 1.6 | no data | 1.9 | 1.0 | no data | 2.4 | no data |
1994 | −0.7 | 2.2 | −0.3 | −0.1 | 1.5 | 0.9 | −0.7 | 1.5 | 2.3 | no data | 2.1 | −0.9 |
1995 | 0.7 | −0.5 | −0.5 | 2.9 | −0.5 | −0.5 | 1.7 | −0.1 | 0.3 | no data | 0.6 | −0.5 |
1996 | −0.1 | −0.6 | −0.4 | 1.2 | 0.0 | 0.3 | 0.4 | −0.8 | −0.7 | no data | −0.6 | 0.7 |
1997 | 1.3 | −0.1 | 0.0 | 0.4 | −0.5 | 1.6 | −0.6 | −0.3 | 0.6 | no data | −0.5 | −0.3 |
1998 | 1.3 | −0.8 | −0.1 | −0.8 | −1.4 | −1.1 | −0.6 | 0.5 | −0.3 | no data | 0.1 | −0.5 |
1999 | −0.2 | 1.0 | 0.3 | 0.1 | 1.1 | 1.7 | −0.1 | 0.9 | 0.2 | −0.3 | 0.3 | −0.1 |
2000 | −0.3 | −1.0 | −0.4 | 0.3 | −1.2 | −0.2 | 0.0 | −0.9 | −0.8 | 0.0 | −0.6 | 0.3 |
2001 | −1.0 | −1.5 | −1.4 | −1.0 | −1.2 | −1.8 | −0.7 | −0.7 | −1.5 | −1.6 | −1.2 | −1.5 |
2002 | −0.6 | −1.3 | −0.7 | 0.2 | −1.4 | −0.9 | 0.5 | −1.8 | −0.2 | −0.3 | −0.9 | 0.1 |
2003 | 1.1 | 2.3 | 2.2 | 0.0 | 0.2 | 1.9 | 3.1 | 1.4 | 2.5 | 2.7 | 2.5 | 3.4 |
2004 | −0.6 | −0.2 | −1.2 | −0.2 | −0.8 | −1.2 | −0.5 | −0.4 | −0.4 | 0.2 | −0.4 | −0.6 |
2005 | 0.8 | 1.1 | −1.4 | −0.9 | −0.5 | −1.3 | −0.5 | 1.3 | 0.0 | −0.2 | −0.2 | 0.7 |
2006 | −0.8 | −0.7 | −0.4 | −0.6 | −1.1 | 0.0 | −0.8 | −0.6 | −0.2 | −0.4 | −0.5 | −0.6 |
2007 | −0.5 | 0.6 | 0.9 | 2.4 | −1.1 | −0.2 | −0.4 | −1.2 | 0.3 | 0.5 | −0.3 | 0.1 |
2008 | −1.3 | −1.2 | 1.4 | −0.3 | −1.7 | −0.3 | 0.5 | −1.3 | −0.6 | −0.2 | −0.8 | −1.0 |
2009 | −1.5 | −0.7 | −1.2 | −1.0 | −0.4 | −1.4 | −1.5 | −1.6 | −0.9 | −0.9 | −0.5 | −1.5 |
2010 | 0.1 | −0.2 | 0.0 | −0.1 | 0.0 | −0.6 | 0.6 | −0.1 | 0.1 | 0.6 | 0.0 | 0.0 |
2011 | 1.3 | 1.1 | 0.1 | −0.3 | 1.3 | 0.5 | −0.3 | 0.5 | 0.5 | −1.1 | −0.6 | 1.0 |
2012 | 0.1 | −0.2 | 1.7 | 0.8 | 0.4 | 1.6 | −0.2 | −0.5 | −1.3 | 0.4 | −0.3 | 0.5 |
2013 | −0.7 | −0.3 | −0.1 | −0.6 | 0.0 | −0.5 | −1.0 | 0.3 | −0.9 | 1.2 | 0.5 | −0.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vova, O.; Kappas, M.; Renchin, T.; Fassnacht, S.R. Extreme Climate Event and Its Impact on Landscape Resilience in Gobi Region of Mongolia. Remote Sens. 2020, 12, 2881. https://doi.org/10.3390/rs12182881
Vova O, Kappas M, Renchin T, Fassnacht SR. Extreme Climate Event and Its Impact on Landscape Resilience in Gobi Region of Mongolia. Remote Sensing. 2020; 12(18):2881. https://doi.org/10.3390/rs12182881
Chicago/Turabian StyleVova, Oyudari, Martin Kappas, Tsolmon Renchin, and Steven R. Fassnacht. 2020. "Extreme Climate Event and Its Impact on Landscape Resilience in Gobi Region of Mongolia" Remote Sensing 12, no. 18: 2881. https://doi.org/10.3390/rs12182881
APA StyleVova, O., Kappas, M., Renchin, T., & Fassnacht, S. R. (2020). Extreme Climate Event and Its Impact on Landscape Resilience in Gobi Region of Mongolia. Remote Sensing, 12(18), 2881. https://doi.org/10.3390/rs12182881