Evaluating Post-Fire Vegetation Recovery in Cajander Larch Forests in Northeastern Siberia Using UAV Derived Vegetation Indices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data
2.3. UAV Data Collection
2.4. Data Analysis
3. Results
3.1. Correspondence between GCC and NDVI
3.2. Linking Field-Based Measures and Vegetation Indices
3.3. Burned, Unburned, and Edge Effects
4. Discussion
4.1. Correspondence between GCC and NDVI
4.2. Linking Field-Based Measures and Vegetation Indices
4.3. Postfire Vegetation Index Patterns Across Burn Perimeters
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Serreze, M.C.; Barry, R.G. Processes and impacts of Arctic amplification: A research synthesis. Glob. Planet. Chang. 2011, 77, 85–96. [Google Scholar] [CrossRef]
- Post, E.; Alley, R.B.; Christensen, T.R.; Macias-Fauria, M.; Forbes, B.C.; Gooseff, M.N.; Iler, A.; Kerby, J.T.; Laidre, K.L.; Mann, M.E.; et al. The polar regions in a 2 °C warmer world. Sci. Adv. 2019, 5, eaaw9883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapin, F.S. Role of Land-Surface Changes in Arctic Summer Warming. Science 2005, 310, 657–660. [Google Scholar] [CrossRef] [PubMed]
- Beck, P.S.A.; Goetz, S.J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: Ecological variability and regional differences. Environ. Res. Lett. 2011, 6. [Google Scholar] [CrossRef]
- Jia, G.J.; Epstein, H.E.; Walker, D.A. Greening of arctic Alaska, 1981–2001. Geophys. Res. Lett. 2003, 30, 2003GL018268. [Google Scholar] [CrossRef]
- Forbes, B.C.; Fauria, M.M.; Zetterberg, P. Russian Arctic warming and ‘greening’ are closely tracked by tundra shrub willows. Glob. Chang. Biol. 2010, 16, 1542–1554. [Google Scholar] [CrossRef]
- Frost, G.V.; Epstein, H.E. Tall shrub and tree expansion in Siberian tundra ecotones since the 1960s. Glob. Chang. Biol. 2014, 20, 1264–1277. [Google Scholar] [CrossRef]
- McManus, K.M.; Morton, D.C.; Masek, J.G.; Wang, D.; Sexton, J.O.; Nagol, J.R.; Ropars, P.; Boudreau, S. Satellite-based evidence for shrub and graminoid tundra expansion in northern Quebec from 1986 to 2010. Glob. Chang. Biol. 2012, 18, 2313–2323. [Google Scholar] [CrossRef] [Green Version]
- Assmann, J.J.; Myers-Smith, I.H.; Kerby, J.T.; Cunliffe, A.M.; Daskalova, G. Drone data reveal heterogeneity in tundra greenness and phenology not captured by satellites. Preprint 2020. [Google Scholar] [CrossRef]
- Siewert, M.B.; Olofsson, J. Scale-dependency of Arctic ecosystem properties revealed by UAV. Environ. Res. Lett. 2020. [Google Scholar] [CrossRef]
- Loranty, M.M.; Lieberman-Cribbin, W.; Berner, L.T.; Natali, S.M.; Goetz, S.J.; Alexander, H.D.; Kholodov, A.L. Spatial variation in vegetation productivity trends, fire disturbance, and soil carbon across arctic-boreal permafrost ecosystems. Environ. Res. Lett. 2016, 11, 095008. [Google Scholar] [CrossRef]
- Loranty, M.; Davydov, S.; Kropp, H.; Alexander, H.; Mack, M.; Natali, S.; Zimov, N. Vegetation Indices Do Not Capture Forest Cover Variation in Upland Siberian Larch Forests. Remote Sens. 2018, 10, 1686. [Google Scholar] [CrossRef] [Green Version]
- Berner, L.T.; Beck, P.S.A.; Bunn, A.G.; Goetz, S.J. Plant response to climate change along the forest-tundra ecotone in northeastern Siberia. Glob. Chang. Biol. 2013. [Google Scholar] [CrossRef] [PubMed]
- Stocks, B.J.; Fosberg, M.A.; Lynham, T.J.; Mearns, L.; Wotton, B.M.; Yang, Q.; Jin, J.-Z.; Lawrence, K.; Hartley, G.R.; Mason, J.A.; et al. Climate Change and Forest Fire Potential in Russian and Canadian Boreal Forests. Clim. Chang. 1998, 38, 1–13. [Google Scholar] [CrossRef]
- Groisman, P.Y.; Sherstyukov, B.G.; Razuvaev, V.N.; Knight, R.W.; Enloe, J.G.; Stroumentova, N.S.; Whitfield, P.H.; Førland, E.; Hannsen-Bauer, I.; Tuomenvirta, H.; et al. Potential forest fire danger over Northern Eurasia: Changes during the 20th century. Glob. Planet. Chang. 2007, 56, 371–386. [Google Scholar] [CrossRef] [Green Version]
- Soja, A.J.; Tchebakova, N.M.; French, N.H.F.; Flannigan, M.D.; Shugart, H.H.; Stocks, B.J.; Sukhinin, A.I.; Parfenova, E.I.; Chapin, F.S.; Stackhouse, P.W. Climate-induced boreal forest change: Predictions versus current observations. Glob. Planet. Chang. 2007, 56, 274–296. [Google Scholar] [CrossRef] [Green Version]
- Kasischke, E.S.; Verbyla, D.L.; Rupp, S.; McGuire, A.D.; Murphy, K.A.; Jandt, R.; Barnes, J.L.; Hoy, E.E.; Duffy, P.A.; Calef, M.; et al. Alaska’s changing fire regime—implications for the vulnerability of its boreal forests. Can. J. For. Res. 2010, 40, 1313–1324. [Google Scholar] [CrossRef]
- Ponomarev, E.; Kharuk, V.; Ranson, K. Wildfires Dynamics in Siberian Larch Forests. Forests 2016, 7, 125. [Google Scholar] [CrossRef] [Green Version]
- Johnstone, J.F.; Allen, C.D.; Franklin, J.F.; Frelich, L.E.; Harvey, B.J.; Higuera, P.E.; Mack, M.C.; Meentemeyer, R.K.; Metz, M.R.; Perry, G.L.; et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 2016, 14, 369–378. [Google Scholar] [CrossRef]
- Alexander, H.D.; Mack, M.C.; Goetz, S.; Loranty, M.M.; Beck, P.S.A.; Earl, K.; Zimov, S.; Davydov, S.; Thompson, C.C. Carbon Accumulation Patterns During Post-Fire Succession in Cajander Larch (Larix cajanderi) Forests of Siberia. Ecosystems 2012, 15, 1065–1082. [Google Scholar] [CrossRef]
- Webb, E.E.; Heard, K.; Natali, S.M.; Bunn, A.G.; Alexander, H.D.; Berner, L.T.; Kholodov, A.; Loranty, M.M.; Schade, J.D.; Spektor, V.; et al. Variability in above- and belowground carbon stocks in a Siberian larch watershed. Biogeosciences 2017, 14, 4279–4294. [Google Scholar] [CrossRef] [Green Version]
- Myers-Smith, I.H.; Forbes, B.C.; Wilmking, M.; Hallinger, M.; Lantz, T.; Blok, D.; Tape, K.D.; Macias-Fauria, M.; Sass-Klaassen, U.; Lévesque, E.; et al. Shrub expansion in tundra ecosystems: Dynamics, impacts and research priorities. Environ. Res. Lett. 2011, 6, 045509. [Google Scholar] [CrossRef] [Green Version]
- Walker, L.R.; Wardle, D.A.; Bardgett, R.D.; Clarkson, B.D. The use of chronosequences in studies of ecological succession and soil development: Chronosequences, succession and soil development. J. Ecol. 2010, 98, 725–736. [Google Scholar] [CrossRef]
- Epstein, H.E.; Myers-Smith, I.; Walker, D.A. Recent dynamics of arctic and sub-arctic vegetation. Environ. Res. Lett. 2013, 8, 015040. [Google Scholar] [CrossRef]
- Alexander, H.D.; Natali, S.M.; Loranty, M.M.; Ludwig, S.M.; Spektor, V.V.; Davydov, S.; Zimov, N.; Trujillo, I.; Mack, M.C. Impacts of increased soil burn severity on larch forest regeneration on permafrost soils of far northeastern Siberia. For. Ecol. Manag. 2018, 417, 144–153. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Ranson, K.J.; Dvinskaya, M.L.; Im, S.T. Wildfires in northern Siberian larch dominated communities. Environ. Res. Lett. 2011, 6, 045208. [Google Scholar] [CrossRef]
- Loranty, M.M.; Abbott, B.W.; Blok, D.; Douglas, T.A.; Epstein, H.E.; Forbes, B.C.; Jones, B.M.; Kholodov, A.L.; Kropp, H.; Malhotra, A.; et al. Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences 2018, 15, 5287–5313. [Google Scholar] [CrossRef] [Green Version]
- Riihimäki, H.; Luoto, M.; Heiskanen, J. Estimating fractional cover of tundra vegetation at multiple scales using unmanned aerial systems and optical satellite data. Remote Sens. Environ. 2019, 224, 119–132. [Google Scholar] [CrossRef]
- Dandois, J.P.; Olano, M.; Ellis, E.C. Optimal Altitude, Overlap, and Weather Conditions for Computer Vision UAV Estimates of Forest Structure. Remote Sens. 2015, 7, 13895–13920. [Google Scholar] [CrossRef] [Green Version]
- Wallace, L.; Lucieer, A.; Malenovský, Z.; Turner, D.; Vopěnka, P. Assessment of Forest Structure Using Two UAV Techniques: A Comparison of Airborne Laser Scanning and Structure from Motion (SfM) Point Clouds. Forests 2016, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Fraser, R.H.; Olthof, I.; Lantz, T.C.; Schmitt, C. UAV photogrammetry for mapping vegetation in the low-Arctic. Arct. Sci. 2016, 2, 79–102. [Google Scholar] [CrossRef] [Green Version]
- Juszak, I.; Iturrate-Garcia, M.; Gastellu-Etchegorry, J.-P.; Schaepman, M.E.; Maximov, T.C.; Schaepman-Strub, G. Drivers of shortwave radiation fluxes in Arctic tundra across scales. Remote Sens. Environ. 2017, 193, 86–102. [Google Scholar] [CrossRef] [Green Version]
- Palace, M.; Herrick, C.; DelGreco, J.; Finnell, D.; Garnello, A.; McCalley, C.; McArthur, K.; Sullivan, F.; Varner, R. Determining Subarctic Peatland Vegetation Using an Unmanned Aerial System (UAS). Remote Sens. 2018, 10, 1498. [Google Scholar] [CrossRef] [Green Version]
- Samiappan, S.; Hathcock, L.; Turnage, G.; McCraine, C.; Pitchford, J.; Moorhead, R. Remote Sensing of Wildfire Using a Small Unmanned Aerial System: Post-Fire Mapping, Vegetation Recovery and Damage Analysis in Grand Bay, Mississippi/Alabama, USA. Drones 2019, 3, 43. [Google Scholar] [CrossRef] [Green Version]
- Larrinaga, A.R.; Brotons, L. Greenness Indices from a Low-Cost UAV Imagery as Tools for Monitoring Post-Fire Forest Recovery. Drones 2019, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Sonnentag, O.; Hufkens, K.; Teshera-Sterne, C.; Young, A.M.; Friedl, M.; Braswell, B.H.; Milliman, T.; O’Keefe, J.; Richardson, A.D. Digital repeat photography for phenological research in forest ecosystems. Agric. For. Meteorol. 2012, 152, 159–177. [Google Scholar] [CrossRef]
- Keenan, T.F.; Darby, B.; Felts, E.; Sonnentag, O.; Friedl, M.A.; Hufkens, K.; O’Keefe, J.; Klosterman, S.; Munger, J.W.; Toomey, M.; et al. Tracking forest phenology and seasonal physiology using digital repeat photography: A critical assessment. Ecol. Appl. 2014, 24, 1478–1489. [Google Scholar] [CrossRef] [Green Version]
- Pearson, R.L.; Miller, L.D. Remote mapping of standing crop biomass for estimation of the productivity of the shortgrass prairie, Pawnee National Grasslands, Colorado. In Proceedings of the 8th International Symposium on Remote Sensing of the Environment, Ann Arbor, MI, USA, 2–6 October 1972; pp. 1357–1381. [Google Scholar]
- Rouse, J.W.; Haas, R.H.; Schell, J.A. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the 3rd ERTS Symposium, Washington, DC, USA, 10–14 December 1973; pp. 309–317. [Google Scholar]
- Alcaraz-Segura, D.; Chuvieco, E.; Epstein, H.E.; Kasischke, E.S.; Trishchenko, A. Debating the greening vs. browning of the North American boreal forest: Differences between satellite datasets. Glob. Chang. Biol. 2010, 16, 760–770. [Google Scholar] [CrossRef]
- Guay, K.C.; Beck, P.S.A.; Berner, L.T.; Goetz, S.J.; Baccini, A.; Buermann, W. Vegetation productivity patterns at high northern latitudes: A multi-sensor satellite data assessment. Glob. Chang. Biol. 2014, 20, 3147–3158. [Google Scholar] [CrossRef]
- Wulder, M.A.; Hilker, T.; White, J.C.; Coops, N.C.; Masek, J.G.; Pflugmacher, D.; Crevier, Y. Virtual constellations for global terrestrial monitoring. Remote Sens. Environ. 2015, 170, 62–76. [Google Scholar] [CrossRef] [Green Version]
- Berner, L.T.; Alexander, H.D.; Loranty, M.M.; Ganzlin, P.; Mack, M.C.; Davydov, S.P.; Goetz, S.J. Biomass allometry for alder, dwarf birch, and willow in boreal forest and tundra ecosystems of far northeastern Siberia and north-central Alaska. For. Ecol. Manag. 2015, 337, 110–118. [Google Scholar] [CrossRef]
- Assmann, J.J.; Kerby, J.T.; Cunliffe, A.M.; Myers-Smith, I.H. Vegetation monitoring using multispectral sensors—best practices and lessons learned from high latitudes. J. Unmanned Veh. Syst. 2018, 7, 54–75. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. A language and environment for statistical computing. Computing 2020. [Google Scholar] [CrossRef]
- Lenth, R.V. Least-Squares Means: The R Package lsmeans. J. Stat. Softw. 2016. [Google Scholar] [CrossRef] [Green Version]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Alexander, H.; Paulson, A.; DeMarco, J.; Hewitt, R.; Lichstein, J.; Loranty, M.; Mack, M.; McEwan, R.; Borth, E.; Frankenberg, S.; et al. Fire influences on forest recovery and associated climate feedbacks in Siberian Larch Forests, Russia, 2018–2019. Arct. Data Cent. 2020. [Google Scholar] [CrossRef]
- Loranty, M.; Forbath, E.; Talucci, A.; Alexander, H.; DeMarco, J.; Hewitt, R.; Lichstein, J.; Mack, M.; Paulson, A.; McEwan, R. Uncrewed aerial vehicle remote sensing imagery of postfire vegetation in Siberian larch forests 2018–2019. Arct. Data Cent. 2020. [Google Scholar] [CrossRef]
- Talucci, A.C. Code: FLARE UAV and vegetation analyses. Zenodo 2020. [Google Scholar] [CrossRef]
- Blan, L.; Butler, R. Comparing Effects of Aggregation Methods on Statistical and Spatial Properties of Simulated Spatial Data. Remote Sens. 1999, 65, 73–84. [Google Scholar]
- Chen, J.M. Spatial Scaling of a Remotely Sensed Surface Parameter by Contexture. Remote Sens. Environ. 1999, 69, 30–42. [Google Scholar] [CrossRef]
- Chen, J.M.; Chen, X.; Ju, W. Effects of vegetation heterogeneity and surface topography on spatial scaling of net primary productivity. Biogeosci. Discuss. 2013, 10, 4225–4270. [Google Scholar] [CrossRef]
- Jin, Z.; Tian, Q.; Chen, J.M.; Chen, M. Spatial scaling between leaf area index maps of different resolutions. J. Environ. Manag. 2007, 85, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Räsänen, A.; Juutinen, S.; Aurela, M.; Virtanen, T. Predicting aboveground biomass in Arctic landscapes using very high spatial resolution satellite imagery and field sampling. Int. J. Remote Sens. 2019, 40, 1175–1199. [Google Scholar] [CrossRef] [Green Version]
- Welch, B.L. The Generalization of ’Student’s’ Problem when Several Different Population Variances are Involved. Biometrika 1947, 34, 28. [Google Scholar] [CrossRef] [PubMed]
- Moore, C.E.; Brown, T.; Keenan, T.F.; Duursma, R.A.; van Dijk, A.I.J.M.; Beringer, J.; Culvenor, D.; Evans, B.; Huete, A.; Hutley, L.B.; et al. Australian vegetation phenology: New insights from satellite remote sensing and digital repeat photography. Biogeosci. Discuss. 2016. [Google Scholar] [CrossRef] [Green Version]
- Berra, E.F.; Gaulton, R.; Barr, S. Assessing spring phenology of a temperate woodland: A multiscale comparison of ground, unmanned aerial vehicle and Landsat satellite observations. Remote Sens. Environ. 2019, 223, 229–242. [Google Scholar] [CrossRef]
- Loranty, M.M.; Berner, L.T.; Taber, E.D.; Kropp, H.; Natali, S.M.; Alexander, H.D.; Davydov, S.P.; Zimov, N.S. Understory vegetation mediates permafrost active layer dynamics and carbon dioxide fluxes in open-canopy larch forests of northeastern Siberia. PLoS ONE 2018, 13, e0194014. [Google Scholar] [CrossRef] [Green Version]
- Richardson, A.D.; Jenkins, J.P.; Braswell, B.H.; Hollinger, D.Y.; Ollinger, S.V.; Smith, M.-L. Use of digital webcam images to track spring green-up in a deciduous broadleaf forest. Oecologia 2007, 152, 323–334. [Google Scholar] [CrossRef]
- Reid, A.M.; Chapman, W.K.; Prescott, C.E.; Nijland, W. Using excess greenness and green chromatic coordinate colour indices from aerial images to assess lodgepole pine vigour, mortality and disease occurrence. For. Ecol. Manag. 2016, 374, 146–153. [Google Scholar] [CrossRef]
- Xue, J.; Su, B. Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications. J. Sens. 2017, 2017, 1353691. [Google Scholar] [CrossRef] [Green Version]
- Woodcock, C.E.; Strahler, A.H. The factor of scale in remote sensing. Remote Sens. Environ. 1987, 21, 311–332. [Google Scholar] [CrossRef]
- Berner, L.T.; Beck, P.S.A.; Loranty, M.M.; Alexander, H.D.; Mack, M.C.; Goetz, S.J. Cajander larch (Larix cajanderi) biomass distribution, fire regime and post-fire recovery in northeastern Siberia. Biogeosciences 2012, 9, 3943–3959. [Google Scholar] [CrossRef] [Green Version]
- Kropp, H.; Loranty, M.M.; Natali, S.M.; Kholodov, A.L.; Alexander, H.D.; Zimov, N.S.; Mack, M.C.; Spawn, S.A. Tree density influences ecohydrological drivers of plant–water relations in a larch boreal forest in Siberia. Ecohydrology 2019, 12. [Google Scholar] [CrossRef]
- Curasi, S.R.; Loranty, M.M.; Natali, S.M. Water track distribution and effects on carbon dioxide flux in an eastern Siberian upland tundra landscape. Environ. Res. Lett. 2016, 11, 045002. [Google Scholar] [CrossRef]
- Ormsby, J.P.; Choudhury, B.J.; Owe, M. Vegetation spatial variability and its effect on vegetation indices. Int. J. Remote Sens. 1987, 1301–1306. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Chapin, F.S.; Foote, J.; Kemmett, S.; Price, K.; Viereck, L. Decadal observations of tree regeneration following fire in boreal forests. Can. J. For. Res. 2004, 34, 8. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Chapin, F.S. Effects of Soil Burn Severity on Post-Fire Tree Recruitment in Boreal Forest. Ecosystems 2006, 9, 14–31. [Google Scholar] [CrossRef]
- Frazier, R.J.; Coops, N.C.; Wulder, M.A. Boreal Shield forest disturbance and recovery trends using Landsat time series. Remote Sens. Environ. 2015, 170, 317–327. [Google Scholar] [CrossRef]
- Cuevas-González, M.; Gerard, F.; Balzter, H.; Riaño, D. Analysing forest recovery after wildfire disturbance in boreal Siberia using remotely sensed vegetation indices. Glob. Chang. Biol. 2009, 15, 561–577. [Google Scholar] [CrossRef]
- Shvetsov, E.G.; Kukavskaya, E.A.; Buryak, L.V.; Barrett, K. Assessment of post-fire vegetation recovery in Southern Siberia using remote sensing observations. Environ. Res. Lett. 2019, 14, 055001. [Google Scholar] [CrossRef]
- Johnstone, J.; Boby, L.; Tissier, E.; Mack, M.; Verbyla, D.; Walker, X. Postfire seed rain of black spruce, a semiserotinous conifer, in forests of interior Alaska. Can. J. For. Res. 2009, 39, 1575–1588. [Google Scholar] [CrossRef] [Green Version]
- Braithwaite, N.T.; Mallik, A.U. Edge effects of wildfire and riparian buffers along boreal forest streams: Edge effects of wildfire and riparian buffers. J. Appl. Ecol. 2012, 49, 192–201. [Google Scholar] [CrossRef]
- Harper, K.A.; Drapeau, P.; Lesieur, D.; Bergeron, Y. Forest structure and composition at fire edges of different ages: Evidence of persistent structural features on the landscape. For. Ecol. Manag. 2014, 314, 131–140. [Google Scholar] [CrossRef]
- Bret-Harte, M.S.; Mack, M.C.; Shaver, G.R.; Huebner, D.C.; Johnston, M.; Mojica, C.A.; Pizano, C.; Reiskind, J.A. The response of Arctic vegetation and soils following an unusually severe tundra fire. Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120490. [Google Scholar] [CrossRef] [PubMed]
- Narayanaraj, G.; Wimberly, M.C. Influences of forest roads and their edge effects on the spatial pattern of burn severity. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 62–70. [Google Scholar] [CrossRef]
- Burton, P.J.; Parisien, M.-A.; Hicke, J.A.; Hall, R.J.; Freeburn, J.T. Large fires as agents of ecological diversity in the North American boreal forest. Int. J. Wildland Fire 2008, 17, 754. [Google Scholar] [CrossRef]
Genus | BD | DBH | a | b | Source |
---|---|---|---|---|---|
Alder (Alnus) | 0.18–9.52 | 23.7 | 2.68 | [43] | |
Birch (Betula) | 0.09–2.53 | 28.1 | 2.97 | [43] | |
Willow (Salix) | 0.10–6.30 | 23.53 | 2.83 | [43] | |
Larch | 0.7–39.2 | 39.46 | 2.26 | [20] | |
Larch | 0.08–29.3 | 179.2 | 2.01 | [20] |
Site Code | Transect | Flight Number (RGB/MS) | Burn Year | DoY | Altitude (m) | Pixel Resolution (cm) |
---|---|---|---|---|---|---|
Alnus | 1 | 7/8 | 1984 | 174 | 120/60 | 3.28/6.04 |
ANS | 2 | 4 | 2003 | 173 | 120 | 4.88 |
ANS | 3 | 6 | 2003 | 173 | 120 | 3.19 |
BP | 1 | 9 | 1983 | 175 | 110 | 3.19 |
BP | 2 | 12/13 | 1983 | 175 | 120/60 | 3.34/6.03 |
CN | 2 | 17/17 | 2001 | 184 | 120/60 | 1.54/6.85 |
CN | 1 | 15/20 | 2001 | 184/188 | 120/60 | 3.28/6.03 |
GCC | NDVI | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Radius | 25 cm | 50 cm | 1 m | 3 m | 5 m | 10 m | 25 cm | 50 cm | 1 m | 3 m | 5 m | 10 m | |
GCC | 25 cm | 1 | |||||||||||
50 cm | 0.99 | 1 | |||||||||||
1 m | 0.96 | 0.98 | 1 | ||||||||||
3 m | 0.87 | 0.89 | 0.91 | 1 | |||||||||
5 m | 0.84 | 0.86 | 0.88 | 0.99 | 1 | ||||||||
10 m | 0.81 | 0.83 | 0.85 | 0.97 | 0.99 | 1 | |||||||
NDVI | 25 cm | 0.45 | 0.45 | 0.47 | 0.58 | 0.56 | 0.53 | 1 | |||||
50 cm | 0.5 | 0.52 | 0.55 | 0.66 | 0.63 | 0.6 | 0.95 | 1 | |||||
1 m | 0.57 | 0.6 | 0.64 | 0.75 | 0.72 | 0.68 | 0.88 | 0.96 | 1 | ||||
3 m | 0.68 | 0.71 | 0.74 | 0.86 | 0.86 | 0.83 | 0.72 | 0.82 | 0.9 | 1 | |||
5 m | 0.72 | 0.74 | 0.76 | 0.88 | 0.88 | 0.87 | 0.71 | 0.79 | 0.86 | 0.98 | 1 | ||
10 m | 0.74 | 0.75 | 0.78 | 0.91 | 0.91 | 0.91 | 0.64 | 0.71 | 0.8 | 0.94 | 0.98 | 1 |
Explanatory | ß | SE | t | p-Value | R2 |
---|---|---|---|---|---|
GCC | |||||
25 cm Intercept (ß0) | −1.83 | 1.38 | −1.33 | 0.19 | 0.29 |
25 cm Slope (ß1) | 19.59 | 3.74 | 5.24 | <0.001 | |
50 cm Intercept (ß0) | −2.92 | 2.02 | −0.54 | 0.59 | 0.34 |
50 cm Slope (ß1) | 22.63 | 5.49 | 0.55 | <0.001 | |
1 m Intercept (ß0) | −4.02 | 2.12 | −1.03 | 0.30 | 0.36 |
1 m Slope (ß1) | 25.65 | 5.78 | 1.05 | <0.001 | |
3 m Intercept (ß0) | −5.81 | 2.22 | −1.79 | 0.07 | 0.44 |
3 m Slope (ß1) | 30.61 | 6.06 | 1.82 | <0.001 | |
5 m Intercept (ß0) | −6.08 | 2.20 | −1.93 | 0.05 | 0.48 |
5 m Slope (ß1) | 31.35 | 6.02 | 1.96 | <0.001 | |
10 m Intercept (ß0) | −6.12 | 2.19 | −1.96 | 0.05 | 0.49 |
10 m Slope (ß1) | 31.44 | 5.97 | 1.98 | <0.001 | |
NDVI | |||||
25 cm Intercept (ß0) | 0.92 | 1.02 | 0.90 | 0.37 | 0.26 |
25 cm Slope (ß1) | 6.56 | 1.51 | 4.3 | 0.001 | |
50 cm Intercept (ß0) | 0.05 | 1.51 | −0.58 | −0.58 | 0.32 |
50 cm Slope (ß1) | 7.86 | 2.24 | 0.58 | <0.001 | |
1 m Intercept (ß0) | −1.22 | 1.58 | −1.36 | 0.18 | 0.43 |
1 m Slope (ß1) | 9.73 | 2.34 | 1.36 | <0.001 | |
3 m Intercept (ß0) | −3.67 | 1.67 | −2.75 | 0.007 | 0.68 |
3 m Slope (ß1) | 13.21 | 2.46 | 2.71 | <0.001 | |
5 m Intercept (ß0) | −4.27 | 1.69 | −3.07 | 0.002 | 0.75 |
5 m Slope (ß1) | 14.05 | 2.48 | 3.02 | <0.001 | |
10 m Intercept (ß0) | −5.16 | 1.76 | −3.45 | <0.001 | 0.79 |
10 m Slope (ß1) | 15.23 | 2.57 | 3.37 | <0.001 |
Response Explanatory | ß | SE | t | p-Value | R2 |
---|---|---|---|---|---|
Live tree basal area | |||||
GCC Intercept (ß0) | −24.29 | 9.24 | −2.63 | 0.01 | 0.14 |
GCC Slope (ß1) | 75.93 | 25.26 | 3.01 | 0.004 | |
NDVI Intercept (ß0) | −23.83 | 4.66 | −5.11 | <0.001 | 0.52 |
NDVI Slope (ß1) | 38.90 | 6.76 | 5.76 | <0.001 | |
Shrub basal area | |||||
GCC Intercept (ß0) | −29.98 | 7.75 | −3.87 | <0.001 | 0.29 |
GCC Slope (ß1) | 98.83 | 21.19 | 4.67 | <0.001 | |
NDVI Intercept (ß0) | −14.54 | 6.10 | −2.39 | 0.024 | 0.28 |
NDVI Slope (ß1) | 29.90 | 8.83 | 3.39 | 0.002 |
Response | ß1 | ß2 | ß3 | SE | t | p-Value |
---|---|---|---|---|---|---|
GCC | 0.359 | 0.382 | −0.033 | 0.009 | −2.59 | 0.02 |
NDVI | 0.639 | 0.728 | −0.089 | 0.017 | −6.00 | <0.0001 |
Response | ß | SE | t | p-Value | R2 |
---|---|---|---|---|---|
GCC Intercept (ß0) | 0.3741 | 0.0051 | 73.56 | <0.001 | 0.14 |
GCC Slope (ß1) | −0.0001 | 0.0001 | −2.94 | 0.005 | |
NDVI Intercept (ß0) | 0.6918 | 0.0101 | 68.52 | <0.001 | 0.42 |
NDVI Slope (ß1) | −0.0005 | 0.0001 | −4.68 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Talucci, A.C.; Forbath, E.; Kropp, H.; Alexander, H.D.; DeMarco, J.; Paulson, A.K.; Zimov, N.S.; Zimov, S.; Loranty, M.M. Evaluating Post-Fire Vegetation Recovery in Cajander Larch Forests in Northeastern Siberia Using UAV Derived Vegetation Indices. Remote Sens. 2020, 12, 2970. https://doi.org/10.3390/rs12182970
Talucci AC, Forbath E, Kropp H, Alexander HD, DeMarco J, Paulson AK, Zimov NS, Zimov S, Loranty MM. Evaluating Post-Fire Vegetation Recovery in Cajander Larch Forests in Northeastern Siberia Using UAV Derived Vegetation Indices. Remote Sensing. 2020; 12(18):2970. https://doi.org/10.3390/rs12182970
Chicago/Turabian StyleTalucci, Anna C., Elena Forbath, Heather Kropp, Heather D. Alexander, Jennie DeMarco, Alison K. Paulson, Nikita S. Zimov, Sergei Zimov, and Michael M. Loranty. 2020. "Evaluating Post-Fire Vegetation Recovery in Cajander Larch Forests in Northeastern Siberia Using UAV Derived Vegetation Indices" Remote Sensing 12, no. 18: 2970. https://doi.org/10.3390/rs12182970
APA StyleTalucci, A. C., Forbath, E., Kropp, H., Alexander, H. D., DeMarco, J., Paulson, A. K., Zimov, N. S., Zimov, S., & Loranty, M. M. (2020). Evaluating Post-Fire Vegetation Recovery in Cajander Larch Forests in Northeastern Siberia Using UAV Derived Vegetation Indices. Remote Sensing, 12(18), 2970. https://doi.org/10.3390/rs12182970