Evaluation of Remote Sensing-Based Irrigation Water Accounting at River Basin District Management Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. HidroMORE for Large Irrigation Areas
2.2.1. VI Temporal Series
2.2.2. Map of Irrigated Crops
2.2.3. Soil Hydrological Maps
2.2.4. Agrometeorological Databases
2.3. Remote Sensing-Based Irrigation Water Accounting for Large Areas
2.4. RBMP Irrigation Water Accounting Estimation (RBMP-IWA)
2.5. RS-IWA Evaluation Approach in Comparison with RBMP-IWA at River Basin Spatial Scales
3. Results
3.1. Annual RS-IWA Evaluation for Exploitation Systems in the Duero and Júcar RBDs
3.2. Annual RS-IWA Evaluation Regarding Agricultural Demand Units in Duero and Júcar RBDs
3.3. Monthly RS-IWA Evaluation of Agricultural Demand Units in the Júcar and Duero RBDs
3.4. Annual RS-IWA Evaluation for the ES Spatial Scale for the 11 RBDs in Mainland Spain
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Acronyms
ADU | Agricultural Demand Unit |
EDU | Elemental Demand Unit |
NIR | Net Irrigation Requirements |
RBD | River Basin District |
RBMP | River Basin Management Plan |
RS-IWA | Remote Sensing-based Irrigation Water Accounting |
RS-SWB | Remote Sensing-based Soil Water Balance |
ES | Exploitation System |
References
- AQUASTAT Website. AQUASTAT—FAO’s Information System on Water and Agriculture. Available online: http://www.fao.org/nr/water/aquastat/water_use/index.stm (accessed on 1 September 2020).
- EEA Water Resources across Europe—Confronting Water Scarcity and Drought—European Environment Agency. 2019. Available online: https://www.eea.europa.eu/publications/water-resources-across-europe (accessed on 27 September 2020).
- The Council of the European Union. Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy; The Council of the European Union: Brussels, Belgium, 2000; Volume L327, pp. 1–82. [Google Scholar]
- European Commission. Introduction to the EU Water Framework Directive—Environment—European Commission. Available online: https://ec.europa.eu/environment/water/water-framework/info/intro_en.htm (accessed on 1 September 2020).
- European Commission. European Overview—Second River Basin Management Plans 5th Implementation Report; European Environmental Bureau (EEB): Brussels, Belgium, 2019. [Google Scholar]
- Del Cura, C.M.; Ramírez, J. Influencia de la Calidad del Agua en la Metrología de los Contadores de Riego. XXIX Congreso Nacional de Riegos. 2011. Available online: http://www.aeryd.es/empresas/aeryd/trabajos/2011-C-20.pdf (accessed on 27 September 2020).
- Pérez, J.; del Cura, C.M.; de Ribera, A.S. Influencia en la Disposición de un Contador en su Metrología. XXIX Congreso Nacaional de Riegos. 2011. Available online: http://www.aeryd.es/empresas/aeryd/trabajos/2011-C-19.pdf (accessed on 27 September 2020).
- Papadakis, D.; Milosavljevic, I. Copernicus Sentinel Benefits Study. Exploring Sectoral Uptake of Sentinel Data within Academic Publications. 2019. Available online: http://earsc.org/Sebs/wp-content/uploads/2019/07/CopernicusSentinelBenefitsStudy_UptakeOfSentinelDataInAcademicPublications_June2019.pdf (accessed on 8 July 2020).
- Serbina, L.; Miller, H.M. Landsat and Water—Case Studies of the Uses and Benefits of Landsat Imagery in Water Resources; U.S. Geological Survey Open-File Report. 2014–1108; U.S. Geological Survey: Reston, VA, USA, 2014; 61p. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements. Available online: http://www.fao.org/3/X0490E/x0490e00.htm (accessed on 1 September 2020).
- Wright, J. New evapotranspiration crop coefficients. J. Irrig. Drain. Div. 1982, 108, 57–74. Available online: https://eprints.nwisrl.ars.usda.gov/id/eprint/382 (accessed on 27 September 2020).
- Calera, A.; Campos, I.; Osann, A.; D’Urso, G.; Menenti, M. Remote sensing for crop water management: From ET modelling to services for the end users. Sensors 2017, 17, 1104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Anderson, M.C.; Kustas, W.P.; Norman, J.M.; Hain, C.R.; Mecikalski, J.R.; Schultz, L.; González-Dugo, M.P.; Cammalleri, C.; D’urso, G.; Pimstein, A.; et al. Mapping daily evapotranspiration at field to continental scales using geostationary and polar orbiting satellite imagery. Hydrol. Earth Syst. Sci. 2011, 15, 223–239. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-based energy balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- D’Urso, G.; Menenti, M.; Santini, A. Regional application of one-dimensional water flow models for irrigation management. Agric. Water Manag. 1999, 40, 291–302. [Google Scholar] [CrossRef]
- Vuolo, F.; D’Urso, G.; De Michele, C.; Bianchi, B.; Cutting, M. Satellite-based irrigation advisory services: A common tool for different experiences from Europe to Australia. Agric. Water Manag. 2015, 147, 82–95. [Google Scholar] [CrossRef]
- Kanemasu, E.T. Seasonal canopy reflectance patterns of wheat, sorghum, and soybean. Remote Sens. Environ. 1974, 3, 43–47. [Google Scholar] [CrossRef]
- Trout, T.; Johnson, L.; Gartung, J. Remote sensing of canopy cover in horticultural crops. HortScience 2008, 43, 333–337. [Google Scholar] [CrossRef] [Green Version]
- Jackson, R.D.; Huete, A.R. Interpreting vegetation indices. Prev. Vet. Med. 1991, 11, 185–200. [Google Scholar] [CrossRef]
- Bausch, W.C. Remote sensing of crop coefficients for improving the irrigation scheduling of corn. Agric. Water Manag. 1995, 27, 55–68. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Howell, T.A.; Jensen, M.E. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric. Water Manag. 2011, 98, 899–920. [Google Scholar] [CrossRef] [Green Version]
- Choudhury, B.J.; Ahmed, N.U.; Idso, S.B.; Reginato, R.J.; Daughtry, C.S.T. Relations between evaporation coefficients and vegetation indices studied by model simulations. Remote Sens. Environ. 1994, 50, 1–17. [Google Scholar] [CrossRef]
- D’Urso, G.; Richter, K.; Calera, A.; Osann, M.A.; Escadafal, R.; Garatuza-Pajan, J.; Hanich, L.; Perdigão, A.; Tapia, J.B.; Vuolo, F. Earth observation products for operational irrigation management in the context of the PLEIADeS project. Agric. Water Manag. 2010, 98, 271–282. [Google Scholar] [CrossRef]
- Odi-Lara, M.; Campos, I.; Neale, C.M.U.; Ortega-Farías, S.; Poblete-Echeverría, C.; Balbontín, C.; Calera, A. Estimating evapotranspiration of an apple orchard using a remote sensing-based soil water balance. Remote Sens. 2016, 8, 253. [Google Scholar] [CrossRef] [Green Version]
- Balbontín, C.; Campos, I.; Odi-Lara, M.; Ibacache, A.; Calera, A. Irrigation performance assessment in table grape using the reflectance-based crop coefficient. Remote Sens. 2017, 9, 1276. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L.S.; Alves, I. Crop water requirements. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Directorate-General of Water, Secretary of State for the Environment, M. for the E.T.; Hydrographic Studies Centre, Centre for Public Works Studies and Experimentation (CEDEX), Ministry of Public Works, M.; Transition, for the E. Summary of Spanish River Basin Management Plans. Second Cycle of the WFD (2015–2021). Available online: https://www.miteco.gob.es/es/agua/temas/planificacion-hidrologica/summary_book_rbmp_2nd_cycle_tcm30-508614.pdf (accessed on 27 September 2020).
- Spanish Ministry of Agriculture, Fisheries and Food. Encuesta de Superficies y Rendimientos de Cultivos. Informe Sobre Regadíos en España. 2019. Available online: https://www.mapa.gob.es/es/estadistica/temas/estadisticas-agrarias/boletin2019_tcm30-536911.pdf (accessed on 29 July 2020).
- MMA (Ministerio de Medio Ambiente). Instrucción de Planificación Hidrológica. Available online: https://www.boe.es/eli/es/o/2008/09/10/arm2656/con (accessed on 1 September 2020).
- MMA (Ministerio de Medio Ambiente). Texto Refundido de la Ley de Aguas. Available online: https://www.boe.es/eli/es/rdlg/2001/07/20/1/con (accessed on 1 September 2020).
- MMA (Ministerio de Medio Ambiente). Reglamento de la Planificación Hidrológica. Available online: https://www.boe.es/eli/es/rd/2007/07/06/907/con (accessed on 1 September 2020).
- Garrido-Rubio, J.; González-Piqueras, J.; Campos, I.; Osann, A.; González-Gómez, L.; Calera, A. Remote sensing–based soil water balance for irrigation water accounting at plot and water user association management scale. Agric. Water Manag. 2020, 238, 106236. [Google Scholar] [CrossRef]
- Garrido-Rubio, J.; Sanz, D.; González-Piqueras, J.; Calera, A. Application of a remote sensing-based soil water balance for the accounting of groundwater abstractions in large irrigation areas. Irrig. Sci. 2019, 37, 709–724. [Google Scholar] [CrossRef]
- Garrido-Rubio, J.; Calera, A.; Enguita, L.F.; Alcázar, I.A.; Mancebo, M.B.; Rodríguez, I.C.; Rubio, R.B. Remote sensing-based soil water balance for irrigation water accounting at the Spanish Iberian Peninsula. Proc. Int. Assoc. Hydrol. Sci. 2018, 380, 29–35. [Google Scholar] [CrossRef] [Green Version]
- Köppen, W.; Geiger, R. Handbuch der Klimatologie in fünf Bänden Das geographische System der Klimate; Borntraeger: Berlin, Germany, 1936. [Google Scholar]
- Moreno, R.; Arias, E.; Sanchez, J.L.; Cazorla, D.; Garrido, J.; Gonzalez-Piqueras, J. HidroMORE 2: An optimized and parallel version of HidroMORE. In Proceedings of the 2017 8th International Conference on Information and Communication Systems (ICICS), Irbid, Jordan, 4–6 April 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Sánchez, N.; Martínez-Fernández, J.; González-Piqueras, J.; González-Dugo, M.P.; Baroncini-Turrichia, G.; Torres, E.; Calera, A.; Pérez-Gutiérrez, C. Water balance at plot scale for soil moisture estimation using vegetation parameters. Agric. For. Meteorol. 2012, 166–167, 1–9. [Google Scholar] [CrossRef]
- Sánchez, N.; Martínez-Fernández, J.; Rodríguez-Ruiz, M.; Torres, E.; Calera, A. Simulación del contenido de agua del suelo mediante teledetección en un contexto semiárido mediterráneo. Span. J. Agric. Res. 2012, 10, 521–531. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, N.; Martínez-Fernández, J.; Calera, A.; Torres, E.; Pérez-Gutiérrez, C. Combining remote sensing and in situ soil moisture data for the application and validation of a distributed water balance model (HIDROMORE). Agric. Water Manag. 2010, 98, 69–78. [Google Scholar] [CrossRef]
- Prieto, T.; Alejandro, E. El Modelo FAO-56 Asistido por Satélite en la Estimación de la Evapotranspiración en un Cultivo Bajo Estrés Hídrico y Suelo Desnudo. Tesis Univiversidad de Castilla-La Mancha, de Castilla-La Mancha, Albacete, Spain, 2010. Available online: https://www.educacion.gob.es/teseo/mostrarRef.do?ref=894945 (accessed on 27 September 2020).
- Campos, I. Evapotranspiración y Balance de Agua del Viñedo Mediante Teledetección en el Acuífero Mancha Oriental. Ph.D. Thesis, En la Universidad de Castilla-La Mancha, Albacete, Spain, 2012. Available online: https://dialnet.unirioja.es/servlet/tesis?codigo=134868 (accessed on 27 September 2020).
- Sánchez, N. Teledetección óptica Aplicada a un Modelo Distribuido de Balance Híbrido (Hidromore) Para el Cálculo de Evapotranspiración y Humedad de Suelo. 2009. Available online: https://www.educacion.gob.es/teseo/mostrarRef.do?ref=891117 (accessed on 27 September 2020).
- Campos, I.; Odi, M.; Belmonte, M.; Martínez-Beltrán, C.; Calera, A. Obtención de Series Multitemporales y Multisensor de índices de Vegetación Mediante un Procedimiento de Normalización Absoluta. Available online: http://dns2.aet.org.es/congresos/xvi/XVI_Congreso_AET_actas.pdf (accessed on 1 September 2020).
- Chen, X.; Vierling, L.; Deering, D. A simple and effective radiometric correction method to improve landscape change detection across sensors and across time. Remote Sens. Environ. 2005, 98, 63–79. [Google Scholar] [CrossRef]
- Foga, S.; Scaramuzza, P.L.; Guo, S.; Zhu, Z.; Dilley, R.D.; Beckmann, T.; Schmidt, G.L.; Dwyer, J.L.; Joseph Hughes, M.; Laue, B. Cloud detection algorithm comparison and validation for operational Landsat data products. Remote Sens. Environ. 2017, 194, 379–390. [Google Scholar] [CrossRef] [Green Version]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing, Warsaw, Poland, 11–13 September 2017; p. 3. [Google Scholar] [CrossRef] [Green Version]
- Belmonte, A.C.; González, J.M.; Mayorga, A.V.; Fernández, S.C. GIS tools applied to the sustainable management of water resources: Application to the aquifer system 08–29. Agric. Water Manag. 1999, 40, 207–220. [Google Scholar] [CrossRef]
- Belmonte, M.; Arellano, I.; Campos, I.; Calera, A.; Martínez-Beltrán, C. Constelación Multisensor Para el Seguimiento y Clasificación de Cultivos en el área de Estudio de la Mancha Oriental. Available online: http://www.aet.org.es/congresos/xiv/XIV_Congreso_AET_libro_actas.pdf (accessed on 1 September 2020).
- Rubio, R.B.; Belmonte, A.C.; Fuentetaja, I.C.; Muñoz, H.C.; Rubio, J.G. Informe Final del Proyecto SPIDER-SIAR. Años 2016–2017. Determinación de las Necesidades Hídricas en el Regadío Español Mediante Herramientas Basadas en el SIAR, la Teledetección y los SIG. 2016. Available online: http://maps.spiderwebgis.org/media/customlogins/spider-siar/assets/Informe_final_Proyecto_SPIDER-SIAR_Anos_2016-2017.pdf (accessed on 27 September 2020).
- Gómez-Miguel, V. Instituto Geográfico Nacional; Área de Banco de Datos de la Naturaleza, Mapa de Suelos de España. Escala 1:1.000.000; Instituto Geográfico Nacional: Madrid, Spain, 2005. [Google Scholar]
- Delgado, A.G.; Rodríguez, A.G.; Ojea, F.G.; Monturiol, F.; Gómez, J.L.M.; Guerrero, G.P.; Fernández, J.A.S. Mapa de Suelos de España. Península y Baleares. Escala 1/1.000.000. Descripción de las Asociaciones y Tipos Principales de Suelos; CSIC—Instituto Nacional de Edafología y Agrobiología José María Albared: Madrid, Spain, 1968. [Google Scholar]
- Hiederer, R. Mapping Soil Properties for Europe—Spatial Representation of Soil Database Attributes. Available online: https://publications.jrc.ec.europa.eu/repository/bitstream/JRC83425/lb-na-26082-en-n.pdf (accessed on 1 September 2020).
- Panagos, P.; Van Liedekerke, M.; Jones, A.; Montanarella, L. European Soil Data Centre: Response to European policy support and public data requirements. Land Use Policy 2012, 29, 329–338. [Google Scholar] [CrossRef]
- Torres, E.A.; Calera, A. Bare soil evaporation under high evaporation demand: A proposed modification to the FAO-56 model. Hydrol. Sci. J. 2010, 55, 303–315. [Google Scholar] [CrossRef]
- Tasumi, M.; Allen, R.G. Satellite-based ET mapping to assess variation in ET with timing of crop development. Agric. Water Manag. 2007, 88, 54–62. [Google Scholar] [CrossRef]
- Pôças, I.; Calera, A.; Campos, I.; Cunha, M. Remote sensing for estimating and mapping single and basal crop coefficientes: A review on spectral vegetation indices approaches. Agric. Water Manag. 2020, 233, 106081. [Google Scholar] [CrossRef]
- Melton, F.S.; Johnson, L.F.; Lund, C.P.; Pierce, L.L.; Michaelis, A.R.; Hiatt, S.H.; Guzman, A.; Adhikari, D.D.; Purdy, A.J.; Rosevelt, C.; et al. Satellite irrigation management support with the terrestrial observation and prediction system: A framework for integration of satellite and surface observations to support improvements in agricultural water resource management. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1709–1721. [Google Scholar] [CrossRef]
- Montgomery, J.; Hornbuckle, J.W.; Hume, I.; Vleeshouwer, J. IrriSAT—Weather Based Scheduling and Benchmarking Technology. Available online: http://www.agronomyaustraliaproceedings.org/images/sampledata/2015_Conference/pdf/agronomy2015final00449.pdf (accessed on 1 September 2020).
- Campos, I.; Neale, C.M.U.; Calera, A.; Balbontín, C.; González-Piqueras, J. Assessing satellite-based basal crop coefficients for irrigated grapes (Vitis vinifera L.). Agric. Water Manag. 2010, 98, 45–54. [Google Scholar] [CrossRef]
- Gonzalez-Piqueras, J.; Calera, A.; Gilabert, M.A.; Cuesta, A.; De la Cruz Tercero, F. Estimation of crop coefficients by means of optimized vegetation indices for corn. Remote Sens. Agric. Ecosyst. Hydrol. V 2004, 5232, 110. [Google Scholar] [CrossRef]
- Bausch, W.C.; Neale, C.M.U. Crop coefficients derived from reflected canopy radiation: A concept. Trans. Am. Soc. Agric. Eng. 1987, 30, 703–709. [Google Scholar] [CrossRef]
- López-Urrea, R.; Martínez-Molina, L.; de la Cruz, F.; Montoro, A.; González-Piqueras, J.; Odi-Lara, M.; Sánchez, J.M. Evapotranspiration and crop coefficients of irrigated biomass sorghum for energy production. Irrig. Sci. 2016, 34, 287–296. [Google Scholar] [CrossRef]
- Hornbuckle, J.W.; Car, N.J.; Christen, E.W.; Stein, T.-M.; Williamson, B. IrriSatSMS Irrigation Water Management by Satellite and SMS—A Utilisation Framework. Available online: http://hdl.handle.net/102.100.100/113714?index=1 (accessed on 1 September 2020 ).
- Campos, I.; Villodre, J.; Carrara, A.; Calera, A. Remote sensing-based soil water balance to estimate Mediterranean holm oak savanna (dehesa) evapotranspiration under water stress conditions. J. Hydrol. 2013, 494, 1–9. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- González-Piqueras, J. Evapotranspiración de la Cubierta Vegetal Mediante la Determinación del Coeficiente de Cultivo por Teledetección Extesión a Escala Regional: Acuífero 08.29 Mancha Oriental. Available online: http://hdl.handle.net/10550/14928 (accessed on 1 September 2020).
- González-Gómez, L.; Campos, I.; Calera, A. Use of different temporal scales to monitor phenology and its relationship with temporal evolution of normalized difference vegetation index in wheat. J. Appl. Remote Sens. 2018, 12, 1. [Google Scholar] [CrossRef]
- Campos, I.; Neale, C.M.U.; López, M.-L.; Balbontín, C.; Calera, A. Analyzing the effect of shadow on the relationship between ground cover and vegetation indices by using spectral mixture and radiative transfer models. J. Appl. Remote Sens. 2014, 8, 083562. [Google Scholar] [CrossRef]
- Fan, Y.; Li, H.; Miguez-Macho, G. Global patterns of groundwater table depth. Science 2013, 339, 940–943. [Google Scholar] [CrossRef] [Green Version]
- La Torre, A.M.-D.; Miguez-Macho, G. Groundwater influence on soil moisture memory and land-atmosphere fluxes in the Iberian Peninsula. Hydrol. Earth Syst. Sci. 2019, 23, 4909–4932. [Google Scholar] [CrossRef] [Green Version]
- Dalmau, B.; Vierbücher, L. Experiencia en el Establecimiento de Redes de Control de Extracciones de Agua Subterránea en Tarragona. Available online: https://www.igme.es/actividadesIGME/lineas/HidroyCA/publica/libros2_TH/art2/pdf/experien4.pdf (accessed on 1 September 2020).
- Mora, J.D. Experiencia en la Implantación de Contadores en los Acuíferos de la Cuenca alta del Guadiana. Available online: https://www.igme.es/actividadesIGME/lineas/HidroyCA/publica/libros2_TH/art2/pdf/experien3.pdf (accessed on 1 September 2020).
- Cornish, G.; Bosworth, B.; Perry, C.J.; Burke, J.J.; Food and Agriculture Organization of the United Nations. Water Charging in Irrigated Agriculture: An Analysis of International Experience; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004; ISBN 9251052115. [Google Scholar]
- MAGRAMA. Plan Hidrológico de la Parte Española de la Demarcación Hidrográfica del Duero. 2015–2021. Anejo 5 Demandas de Agua. Apéndice III Metodología Usos de Regadíos. Available online: https://www.chduero.es/documents/20126/89007/PHD15-050_03_Demanda_Regadio-v03_00.pdf (accessed on 1 September 2020).
- MAGRAMA. Plan Hidrológico de la Demarcación Hidrográfica del Júcar. Memoria—Anejo 3 Usos y Demandas del Agua. 2015–2021. Available online: https://www.chj.es/Descargas/ProyectosOPH/Consulta publica/PHC-2015-2021/PHJ1521_Anejo03_UsosyDemandas_151126.pdf (accessed on 1 September 2020).
- Agencia Catalana del Agua. Generalitat de Catalunya. Plan de Gestión del Distrito de Cuenca Fluvial de Cataluña. 2016–2021. Available online: http://aca.gencat.cat/web/.content/30_Plans_i_programes/10_Pla_de_gestio/02-2n-cicle-de-planificacio-2016-2021/bloc1/101_pdg2_plagestio_dcfc_ES.pdf (accessed on 1 September 2020).
- MAGRAMA. Plan Hidrológico de la Parte Española de la Demarcación Hidrográfica del Ebro 2015–2021. Memoria. Available online: http://www.chebro.es:81/Plan Hidrologico Ebro 2015-2021/ (accessed on 1 September 2020).
- MAGRAMA. Plan Hidrológico de la Parte Española de la Demarcación Hidrográfica del Guadiana. 2015–2021. Anejo 4 Usos y Demandas del Agua. Available online: http://www.chguadiana.es/sites/default/files/2019-10/Anejo4_Usos_y_Demandas.zip (accessed on 1 September 2020).
- MAGRAMA. Plan Hidrológico de la Demarcación Hidrográfica del Guadalquivir. 2015–2021. Aenjo n° 3. Descripción de Usos, Demandas y Presiones. Available online: http://www.chguadalquivir.es/documents/10182/238324/ANEJO+N°+3.-+DESCRIPCIÓN+DE+USOS%2C+DEMANDAS+Y+PRESIONES.pdf/4c78ba2f-b2ac-4b09-ae36-4112676cd53e (accessed on 1 September 2020).
- MAGRAMA. Plan Hidrológico de la Demarcación Hidrográfica del Segura. 2015–2021. Anejo 3. Usos y Demandas del Agua. Available online: https://www.chsegura.es/static/plan-15-21/A03_usos_y_demandas.zip (accessed on 1 September 2020).
- MAGRAMA. Plan Hidrológico de la Demarcación Hidrográfica del Tajo. 2015–2021. Anejo 3. Usos y Demandas del Agua. Available online: http://www.chtajo.es/LaCuenca/Planes/PlanHidrologico/Planif_2015-2021/Documents/PlanTajo/PHT2015-An03.pdf (accessed on 1 September 2020).
- Consejería de Medio Ambiente y Ordenación del Territorio de la Junta de Andalucía. Plan Hidrológico de la Demarcación Hidrográfica del Guadalete-Barbate. 2015–2021. Anejo 3 Usos y Demandas del Agua. Available online: http://www.juntadeandalucia.es/medioambiente/portal_web/web/temas_ambientales/agua/planes_hidrologicos/plan_hidrologico2015_2021_gb/anejo_3_usos_y_demandas_gb.pdf (accessed on 27 September 2020).
- Consejería de Medio Ambiente y Ordenación del Territorio de la Junta de Andalucía. Plan Hidrológico de la Demarcación Hidrográfica del Tinto, Odiel y Piedras. 2015–2021. Anejo 3 Usos y Demandas del Agua. Available online: http://www.juntadeandalucia.es/medioambiente/portal_web/web/temas_ambientales/agua/planes_hidrologicos/plan_hidrologico2015_2021_top/anejo_3_usos_y_demandas_top.pdf (accessed on 27 September 2020).
- Consejería de Medio Ambiente y Ordenación del Territorio de la Junta de Andalucía. Plan Hidrológico de la Demarcación Hidrográfica de las Cuencas Mediterráneas Andaluzas. 2015–2021. Anejo 3 Usos y Demandas del Agua. Available online: http://www.juntadeandalucia.es/medioambiente/portal_web/web/temas_ambientales/agua/planes_hidrologicos/plan_hidrologico2015_2021_cma/anejo_3_usos_y_demandas_cma.pdf (accessed on 27 September 2020).
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [Google Scholar] [CrossRef]
- Willmott, C.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Belmonte, A.C.; Jochum, A.M.; García, A.C.; Rodríguez, A.M.; Fuster, P.L. Irrigation management from space: Towards user-friendly products. Irrig. Drain. Syst. 2005, 19, 337–353. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Er-Raki, S.; Chehbouni, A.; Guemouria, N.; Duchemin, B.; Ezzahar, J.; Hadria, R. Combining FAO-56 model and ground-based remote sensing to estimate water consumptions of wheat crops in a semi-arid region. Agric. Water Manag. 2007, 87, 41–54. [Google Scholar] [CrossRef] [Green Version]
- Taghvaeian, S.; Neale, C.M.U.; Osterberg, J.C.; Sritharan, S.I.; Watts, D.R. Remote Sensing and GIS techniques for assessing irrigation performance: Case study in Southern California. J. Irrig. Drain. Eng. 2018, 144, 05018002. [Google Scholar] [CrossRef]
- Karatas, B.S.; Akkuzu, E.; Unal, H.B.; Asik, S.; Avci, M. Using satellite remote sensing to assess irrigation performance in Water User Associations in the Lower Gediz Basin, Turkey. Agric. Water Manag. 2009, 96, 982–990. [Google Scholar] [CrossRef]
- Droogers, P.; Immerzeel, W.W.; Lorite, I.J. Estimating actual irrigation application by remotely sensed evapotranspiration observations. Agric. Water Manag. 2010, 97, 1351–1359. [Google Scholar] [CrossRef]
- Ramos, J.G.; Kay, J.A.; Cratchley, C.R.; Casterad, M.A.; Herrero, J.; López, R.; Martínez-Cob, A.; Domínguez, R. Crop management in a district within the Ebro River Basin using remote sensing techniques to estimate and map irrigation volumes. Trans. Ecol. Environ. 2006, 96, 1743–3541. [Google Scholar] [CrossRef] [Green Version]
- Castaño, S.; Sanz, D.; Gómez-Alday, J.J. Methodology for quantifying groundwater abstractions for agriculture via remote sensing and GIS. Water Resour. Manag. 2010, 24, 795–814. [Google Scholar] [CrossRef]
- Gonçalves, I.Z.; Mekonnen, M.M.; Neale, C.M.U.; Campos, I.; Neale, M.R. Temporal and spatial variations of irrigation water use for commercial corn fields in Central Nebraska. Agric. Water Manag. 2020, 228, 105924. [Google Scholar] [CrossRef]
- Foster, T.; Gonçalves, I.Z.; Campos, I.; Neale, C.M.U.; Brozovic, N. Assessing landscape scale heterogeneity in irrigation water use with remote sensing and in situ monitoring. Environ. Res. Lett. 2019, 14, 024004. [Google Scholar] [CrossRef]
- Al-Bakri, J.; Shawash, S.; Ghanim, A.; Abdelkhaleq, R. Geospatial techniques for improved water management in Jordan. Water 2016, 8, 132. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Chen, Y.; Li, Z.; Fang, G.; Li, Y.; Xia, Z. Assessment of the irrigation water requirement and water supply risk in the Tarim River Basin, Northwest China. Sustainability 2019, 11, 4941. [Google Scholar] [CrossRef] [Green Version]
- Akdim, N.; Alfieri, S.; Habib, A.; Choukri, A.; Cheruiyot, E.; Labbassi, K.; Menenti, M. Monitoring of irrigation schemes by remote sensing: Phenology versus retrieval of biophysical variables. Remote Sens. 2014, 6, 5815–5851. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Song, W.; Deng, X. Spatiotemporal patterns of crop irrigation water requirements in the Heihe River Basin, China. Water 2017, 9, 616. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Yang, Y.; Liu, D.; Nordblom, T.; Wu, B.; Yan, N. Regional water balance based on remotely sensed evapotranspiration and irrigation: An assessment of the Haihe Plain, China. Remote Sens. 2014, 6, 2514–2533. [Google Scholar] [CrossRef] [Green Version]
- González-Dugo, M.P.; Escuin, S.; Cano, F.; Cifuentes, V.; Padilla, F.L.M.; Tirado, J.L.; Oyonarte, N.; Fernández, P.; Mateos, L. Monitoring evapotranspiration of irrigated crops using crop coefficients derived from time series of satellite images. II. Application on basin scale. Agric. Water Manag. 2013, 125, 92–104. [Google Scholar] [CrossRef]
- Vuolo, F.; Neuwirth, M.; Immitzer, M.; Atzberger, C.; Ng, W.T. How much does multi-temporal Sentinel-2 data improve crop type classification? Int. J. Appl. Earth Obs. Geoinf. 2018, 72, 122–130. [Google Scholar] [CrossRef]
- Cahn, M.; Johnson, L. New approaches to irrigation scheduling of vegetables. Horticulturae 2017, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Aguilar, M.Á.; Jiménez-Lao, R.; Nemmaoui, A.; Aguilar, F.J.; Koc-San, D.; Tarantino, E.; Chourak, M. Evaluation of the consistency of simultaneously acquired Sentinel-2 and Landsat 8 imagery on plastic covered greenhouses. Remote Sens. 2020, 12, 2015. [Google Scholar] [CrossRef]
- Nemmaoui, A.; Aguilar, M.A.; Aguilar, F.J.; Novelli, A.; Lorca, A.G. Greenhouse crop identification from multi-temporal multi-sensor satellite imagery using object-based approach: A case study from Almería (Spain). Remote Sens. 2018, 10, 1751. [Google Scholar] [CrossRef] [Green Version]
Av | Min | Max | σ | RMSE | RERMSE | MAE | REMAE | r2 | dr | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Duero RBD | Annual RS-IWA | 2014 | 155 | 2.4 | 407 | 135 | 41 | 26 | 32 | 21 | 0.92 | 0.86 |
2015 | 173 | 2.7 | 482 | 158 | 38 | 22 | 29 | 17 | 0.94 | 0.88 | ||
2016 | 127 | 0.4 | 359 | 115 | 58 | 46 | 42 | 33 | 0.94 | 0.82 | ||
2017 | 143 | 0.4 | 424 | 137 | 38 | 26 | 29 | 20 | 0.95 | 0.87 | ||
2018 | 120 | 0.5 | 365 | 117 | 56 | 47 | 45 | 37 | 0.98 | 0.81 | ||
5y RS-IWA | 143 | 1.3 | 408 | 132 | 39 | 27 | 29 | 20 | 0.95 | 0.88 | ||
Estimated RBMP | 164 | 6.5 | 500 | 147 | ||||||||
Júcar RBD | Annual RS-IWA | 2014 | 148 | 13 | 759 | 236 | 28 | 19 | 17 | 11 | 0.99 | 0.94 |
2015 | 134 | 12 | 667 | 206 | 42 | 32 | 24 | 18 | 0.99 | 0.92 | ||
2016 | 148 | 10 | 709 | 220 | 36 | 24 | 25 | 17 | 0.98 | 0.91 | ||
2017 | 141 | 11 | 700 | 216 | 38 | 27 | 23 | 16 | 0.98 | 0.92 | ||
2018 | 133 | 14 | 618 | 190 | 58 | 44 | 29 | 22 | 0.98 | 0.90 | ||
5y RS-IWA | 141 | 12 | 691 | 213 | 38 | 27 | 21 | 15 | 0.99 | 0.93 | ||
Estimated RBMP | 157 | 18 | 777 | 239 |
Av | Min | Max | σ | RMSE | RERMSE | MAE | REMAE | r2 | dr | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Duero RBD | Annual RS-IWA | 2014 | 6.2 | 0.0 | 161 | 14.4 | 3.6 | 58 | 1.7 | 27 | 0.95 | 0.89 |
2015 | 6.9 | 0.0 | 186 | 16.4 | 3.5 | 50 | 1.7 | 24 | 0.96 | 0.89 | ||
2016 | 5.0 | 0.0 | 102 | 11.0 | 5.6 | 111 | 2.2 | 43 | 0.94 | 0.86 | ||
2017 | 5.7 | 0.0 | 160 | 15.2 | 3.4 | 59 | 1.5 | 27 | 0.95 | 0.90 | ||
2018 | 4.7 | 0.0 | 118 | 12.3 | 4.3 | 92 | 1.8 | 39 | 0.96 | 0.88 | ||
5y RS-IWA | 5.7 | 0.0 | 146 | 13.8 | 3.3 | 57 | 1.5 | 26 | 0.96 | 0.90 | ||
Estimated RBMP | 6.3 | 0.0 | 160 | 15.4 | ||||||||
Júcar RBD | Annual RS-IWA | 2014 | 13.0 | 0.1 | 331 | 35.3 | 8.6 | 66 | 3.9 | 30 | 0.96 | 0.86 |
2015 | 11.6 | 0.2 | 295 | 31.2 | 7.1 | 62 | 3.8 | 33 | 0.96 | 0.86 | ||
2016 | 12.8 | 0.1 | 287 | 31.5 | 6.2 | 49 | 3.5 | 27 | 0.96 | 0.87 | ||
2017 | 12.0 | 0.1 | 298 | 31.8 | 7.1 | 59 | 3.8 | 31 | 0.96 | 0.87 | ||
2018 | 11.2 | 0.1 | 217 | 24.4 | 8.2 | 73 | 3.9 | 35 | 0.97 | 0.86 | ||
5y RS-IWA | 12.1 | 0.1 | 285 | 30.8 | 6.3 | 52 | 3.4 | 28 | 0.96 | 0.88 | ||
Estimated RBMP | 14.4 | 0.2 | 268 | 30.3 |
Av | Min | Max | σ | RMSE | RERMSE | MAE | REMAE | r2 | dr | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Annual RS-IWA | 2014 | 182 | 2.4 | 1748 | 277 | 129 | 71 | 70 | 39 | 0.90 | 0.84 |
2015 | 204 | 2.7 | 2187 | 325 | 117 | 57 | 61 | 30 | 0.89 | 0.86 | |
2016 | 169 | 0.4 | 1418 | 247 | 146 | 86 | 77 | 45 | 0.91 | 0.83 | |
2017 | 181 | 0.4 | 1635 | 269 | 135 | 74 | 70 | 38 | 0.90 | 0.84 | |
2018 | 149 | 0.5 | 1226 | 212 | 178 | 119 | 93 | 62 | 0.91 | 0.79 | |
5y RS-IWA | 177 | 1.3 | 1643 | 265 | 134 | 76 | 72 | 41 | 0.91 | 0.84 | |
Estimated RBMP | 233 | 0.3 | 2105 | 346 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrido-Rubio, J.; Calera, A.; Arellano, I.; Belmonte, M.; Fraile, L.; Ortega, T.; Bravo, R.; González-Piqueras, J. Evaluation of Remote Sensing-Based Irrigation Water Accounting at River Basin District Management Scale. Remote Sens. 2020, 12, 3187. https://doi.org/10.3390/rs12193187
Garrido-Rubio J, Calera A, Arellano I, Belmonte M, Fraile L, Ortega T, Bravo R, González-Piqueras J. Evaluation of Remote Sensing-Based Irrigation Water Accounting at River Basin District Management Scale. Remote Sensing. 2020; 12(19):3187. https://doi.org/10.3390/rs12193187
Chicago/Turabian StyleGarrido-Rubio, Jesús, Alfonso Calera, Irene Arellano, Mario Belmonte, Lorena Fraile, Tatiana Ortega, Raquel Bravo, and José González-Piqueras. 2020. "Evaluation of Remote Sensing-Based Irrigation Water Accounting at River Basin District Management Scale" Remote Sensing 12, no. 19: 3187. https://doi.org/10.3390/rs12193187
APA StyleGarrido-Rubio, J., Calera, A., Arellano, I., Belmonte, M., Fraile, L., Ortega, T., Bravo, R., & González-Piqueras, J. (2020). Evaluation of Remote Sensing-Based Irrigation Water Accounting at River Basin District Management Scale. Remote Sensing, 12(19), 3187. https://doi.org/10.3390/rs12193187