A Multi-Scale Deep Neural Network for Water Detection from SAR Images in the Mountainous Areas
Abstract
:1. Introduction
2. Methodology
2.1. Foundation
2.2. The Framework of MSF-MLSAN
2.3. Multi-Scale Spatial Features (MSF)
2.3.1. GLGCM Extraction
2.3.2. Gabor Transformation
2.3.3. MSOGDF
2.3.4. Multi-Scale Space Statistical Features Fusion
2.4. MLSAN
2.4.1. The Encoder
2.4.2. The Decoder
- FMAF module
- RAP module
- PAP module
2.5. Improvement Strategy (IS)
Algorithm 1: Training the whole network |
Input: datasets, including SAR slice images, corresponding coherence maps, phase maps and ground truth. 1: Multi-scale features extraction and features fusion to generate four groups of fusion maps. 2: Initialization: The encoder part loads the model pre-trained from ImageNet. The decoder partis initialized by truncated normal distribution. 3: Training the network by BP algorithm. 4: Fine-tuning the network: Calculate the loss function , where is the feature extracted from the last layer in the network. denotes the ground truth class and denotes the dimension of the feature map. 5: for epoch = 1 to i do 6: Forward: where denotes the input image. …… . 7: Backward: , which means the information can directly propagated to any shallower unit and solves the problem of gradient disappearance. , where denotes the learning rate. 8: end for Output: the model of the network |
3. Experiments
3.1. Datasets
3.2. Performance Indices
- Overall Accuracy
- Intersection over Union
3.3. MSF Results
3.4. Classification Results and Analysis
3.4.1. The Experiment with More Water but Fewer Shadow Areas
3.4.2. The Experiment with Fewer Water but More Shadow Areas
4. Discussion
4.1. Weights Optimization for Feature Fusion
4.2. Generalization
4.2.1. Resolution
4.2.2. Frequency Band
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Algorithm A1: Testing process |
Input: the input images are cut from a large-scale SAR image using a sliding window and the size of the sliding window is 512×512 with a step of 256. Then the different features with different scales are extracted by Gabor, GLGCM and MSOGDF. The inputs of the testing network include SAR images, corresponding Gabor features, GLGCM features and MSOGDF features. Initialization: load the trained model and initialize the network. Forward: for iteration = 1:n (images) do where and denote the weight of the network, the input image, the output score map and the forward calculation of the entire network. end for Output: , , , . Postprocessing: 1. Weight and fuse the score maps. where , , and are the weights for the score maps and they satisfy: 2. merge all classification results of the small cut images to generate the final classification results of the large-scale image. Remove 50 columns or 50 rows of pixels from the right side or the bottom of the current score map and remove 50 columns or 50 rows of pixels from the left side or top of the next neighboring small score map. Then weight and merge the overlapping 156 columns or 50 rows of pixels and the weights are both 0.5 for them. 3. Input the final score map matrix to the Softmax function to get the belief map. 4. Output the maximum probability index of each pixel of the belief map, then combine it with the Colormap to generate the final classification results. |
References
- Ferretti, A.; MontiGuarnieri, A.; Prati, C.; Rocca, F.; Massonet, D. InSAR Principles-Guidelines for SAR Interferometry Processing and Interpretation. J. Financ. Stabil. 2007, 19, 156–162. [Google Scholar] [CrossRef] [Green Version]
- Liao, H.; Wen, T. Extracting urban water bodies from high-resolution radar images: Measuring the urban surface morphology to control for radar’s double-bounce effect. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 102003. [Google Scholar] [CrossRef]
- D’Addabbo, A.; Refice, A.; Pasquariello, G.; Lovergine, F.P.; Capolongo, D.; Manfreda, S. A Bayesian Network for Flood Detection Combining SAR Imagery and Ancillary Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 3612–3615. [Google Scholar] [CrossRef]
- Ding, X.; Li, X. Shoreline movement monitoring based on SAR images in Shanghai, China. Int. J. Remote Sens. 2014, 35, 3994–4008. [Google Scholar] [CrossRef]
- Karvonen, J.; Simila, M.; Makynen, M. Open water detection from Baltic Sea ice Radarsat-1 SAR imagery. IEEE Geosci. Remote Sens. Lett. 2005, 2, 275–279. [Google Scholar] [CrossRef]
- Martinis, S.; Kuenzer, C.; Wendleder, A.; Huth, J.; Twele, A.; Roth, A.; Dech, S. Comparing four operational SAR-based water and flood detection approaches. Int. J. Remote Sens. 2015, 36, 3519–3543. [Google Scholar] [CrossRef]
- Notti, D.; Giordan, D.; Calo, F.; Pepe, A.; Zucca, F.; Galve, J.P. Potential and Limitations of Open Satellite Data for Flood Mapping. Remote Sens. 2018, 10, 1673. [Google Scholar] [CrossRef] [Green Version]
- Behnamian, A.; Banks, S.; White, L.; Brisco, B.; Millard, K.; Pasher, J.; Chen, Z.; Duffe, J.; Bourgeau-Chavez, L.; Battaglia, M. Semi-Automated Surface Water Detection with Synthetic Aperture Radar Data: A Wetland Case Study. Remote Sens. 2017, 9, 1209. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; DeVries, B.; Huang, C.W.; Lang, M.W.; Jones, J.F.; Creed, I.L.; Carroll, M. Automated Extraction of Surface Water Extent from Sentinel-1 Data. IGARSS 2018, 10, 797. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Chen, L.; Li, Z.; Xing, J.; Xing, X.; Yuan, Z. Automatic Extraction of Water and Shadow from SAR Images Based on a Multi-Resolution Dense Encoder and Decoder Network. Sensors 2019, 19, 3576. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Cui, X.; Li, Z.; Yuan, Z.; Xing, J.; Xing, X.; Jia, Z. A New Deep Learning Algorithm for SAR Scene Classification Based on Spatial Statistical Modeling and Features Re-Calibration. Sensors 2019, 19, 2479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinton, G.E. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Lenz, I.; Lee, H.; Saxena, A. Deep learning for detecting robotic grasps. arxiv 2013, arXiv:1301.3592. [Google Scholar]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. Segnet: A deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Zhu, X.; Tuia, D.; Mou, L.; Xia, G.; Zhang, L.; Xu, F.; Fraundorfer, F. Deep learning in remote sensing: A comprehensive review and list of resources. IEEE Geosci. Remote Sens. Mag. 2017, 5, 8–36. [Google Scholar] [CrossRef] [Green Version]
- Hänsch, R.; Hellwich, O. Complex-valued convolutional neural networks for object detection in PolSAR data. In Proceedings of the 8th European Conference on Synthetic Aperture Radar, Aachen, Germany, 7–10 June 2010; pp. 1–4. [Google Scholar]
- Song, Y.S.; Sohn, H.G.; Park, C.H. Efficient water area classification using Radarsat-1 SAR imagery in a high relief mountainous environment. Photogramm. Eng. Remote Sens. 2017, 73, 285–296. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Geng, J.; Wang, H. Hyperspectral image classification via contextual deep learning. EURASIP J. Image Vide 2015, 1, 2153–7003. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid scene parsing network. arxiv 2016, arXiv:1612.01105. [Google Scholar]
- Lin, G.; Milan, A.; Shen, C.; Reid, I. Refinenet: Multi-path refinement networks for high-resolution semantic segmentation. arxiv 2016, arXiv:1611.06612. [Google Scholar]
- Xing, J.; Sieber, R.; Kalacska, M. The challenges of image segmentation in big remotely sensed imagery data. Ann. GIS 2014, 20, 233–244. [Google Scholar] [CrossRef]
- Chaudhari, S.; Polatkan, G.; Ramanath, R.; Mithal, V. An attentive survey of attention models. arxiv 2019, arXiv:1904.02874. [Google Scholar]
- Luong, M.T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation. arxiv 2015, arXiv:1508.04025. [Google Scholar]
- Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Wang, X.; Tang, X. Residual attention network for image classification. arxiv 2017, arXiv:1704.06904. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G.; Wu, E. Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 2011–2023. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Xiong, P.; An, J.; Wang, L. Pyramid attention network for semantic segmentation. arxiv 2018, arXiv:1805.10180. [Google Scholar]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 640–651. [Google Scholar] [CrossRef]
- Chen, L.C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 40, 834–848. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. arxiv 2015, arXiv:1512.03385. [Google Scholar]
- Yosinski, J.; Clune, J.; Bengio, Y.; Lipson, H. How transferable are features in deep neural networks. arxiv 2014, arXiv:1411.1792. [Google Scholar]
- Xing, J.; Sieber, R. Sampling based image splitting in large scale distributed computing of earth observation data. IGARSS 2014, 1409–1412. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Papandreou, G.; Schroff, F.; Adam, H. Rethinking atrous convolution for semantic image segmentation. arxiv 2017, arXiv:1706.05587. [Google Scholar]
- Serpico, S.; Moser, G. Weight parameter optimization by the Ho–Kashyap algorithm in MRF models for supervised image classification. IEEE Trans. Geosci Remote Sens 2006, 44, 3695–3705. [Google Scholar] [CrossRef]
- Stich, T.; Linz, C.; Albuquerque, G.; Magnor, M. View and Time Interpolation in Image Space. Comput. Graph. Fprum. 2008, 27, 1781–1787. [Google Scholar] [CrossRef]
- Xing, J.; Sieber, R.; Caelli, T. A scale-invariant change detection method for land use/cover change research. Isprs. Photogramm. 2018, 141, 252–264. [Google Scholar] [CrossRef]
- Lu, J.; Vahid, B.; Hao, P.; Zuo, H.; Xue, S.; Zhang, G. Transfer learning using computational intelligence: A survey. Knowl. Based Syst. 2015, 80, 14–23. [Google Scholar] [CrossRef]
Ground Truth | |||||
---|---|---|---|---|---|
Types | Water | Shadow | BG | IoU | |
Detected results | Water | 0.8382 | 0.0018 | 0.0050 | 0.7727 |
Shadow | 0.0811 | 0.9278 | 0.0784 | 0.8006 | |
BG | 0.0807 | 0.0704 | 0.9032 | 0.8588 | |
Overall Accuracy | 0.9076 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Zhang, P.; Xing, J.; Li, Z.; Xing, X.; Yuan, Z. A Multi-Scale Deep Neural Network for Water Detection from SAR Images in the Mountainous Areas. Remote Sens. 2020, 12, 3205. https://doi.org/10.3390/rs12193205
Chen L, Zhang P, Xing J, Li Z, Xing X, Yuan Z. A Multi-Scale Deep Neural Network for Water Detection from SAR Images in the Mountainous Areas. Remote Sensing. 2020; 12(19):3205. https://doi.org/10.3390/rs12193205
Chicago/Turabian StyleChen, Lifu, Peng Zhang, Jin Xing, Zhenhong Li, Xuemin Xing, and Zhihui Yuan. 2020. "A Multi-Scale Deep Neural Network for Water Detection from SAR Images in the Mountainous Areas" Remote Sensing 12, no. 19: 3205. https://doi.org/10.3390/rs12193205
APA StyleChen, L., Zhang, P., Xing, J., Li, Z., Xing, X., & Yuan, Z. (2020). A Multi-Scale Deep Neural Network for Water Detection from SAR Images in the Mountainous Areas. Remote Sensing, 12(19), 3205. https://doi.org/10.3390/rs12193205