A Multi Sensor Approach to Forest Type Mapping for Advancing Monitoring of Sustainable Development Goals (SDG) in Myanmar
Abstract
:1. Introduction
- (i)
- To provide a simple, open-source method to map forest types using satellite data sources that can be easily adopted by other countries.
- (ii)
- Test the accuracy of mapping the revised forest classes using recent active and passive sensors—Sentinel-1, Sentinel-2 and Landsat-8.
- (iii)
- Evaluate the contribution of each sensor and its metrics to successfully map the revised forest types.
- The accuracy of the Sentinel-2-based forest type classifications is higher compared to Landsat-8 because of improved spatial resolution of Sentinel-2 Red (R), Green (G), Blue (B), Narrow Near Infrared (NNIR), Short Wave Infrared 1 (SWIR1) and Short Wave Infrared 2 (SWIR2) bands and the presence of additional three Vegetation Red Edge (VRE) bands and one Near Infrared (NIR) band in Sentinel-2.
- The accuracy of the combined Sentinel-1 and -2 based forest type classification is higher than the Sentinel-2 based forest type classification because the radar data adds more information on vegetation structure and moisture.
2. Methods
2.1. Study Area
2.2. Data Sources and Processing
2.2.1. Earth Observation Datasets and Processing
- (a)
- Landsat-8 and Sentinel-2 processing
- (b) Sentinel-1 processing
- (c) SRTM
2.2.2. Variables Used in Classification
2.2.3. Masks
- (a)
- The tree cover mask was created using the Treecover2000 layer from Global Forest Change (GFC) 2018 dataset [17]. The Treecover2000 layer from GFC 2018 dataset provides a continuous percent tree cover value for all land pixels for the year 2000. The pixel values of percent tree cover layer range from 0 to 100%. Depending on the biome, Hansen et al., 2010 recommended using a threshold of 25–30% tree cover to identify woody vegetation taller than 5 m as forest. We decided to adopt the threshold of 25% considering the broad range of variation of forest types in Myanmar ranging from dry forests to evergreen forests. Compared to the 10% threshold used by FAO, the 25% threshold is more conservative but is better suited for global scale applications of mid resolution satellite image [60]. Areas with tree cover less than 25% were excluded from analysis.
- (b)
- The GFC 2018 dataset also provides estimates of annual forest loss for the years 2001–2018. A forest loss mask was created from the year of forest loss layer of the GFC 2018 dataset to remove all pixels which were forested in 2000 but experienced forest loss between 2000 and 2018.
- (c)
- Since the GFC 2018 product has a ± 1 year variation in the date of image used, and Bago region has high rate of deforestation [46], an additional NDVI mask was developed from the most recent Sentinel-2 image between November to April to ensure that the sampled pixels have vegetation. The NDVI value was computed as:NDVI = (NIR − R)/(NIR + R)
2.2.4. Training and Validation Datasets
2.3. Analytical Approach and Flow
3. Results
3.1. Areal Estimates
3.2. Spatial Agreement of the Forest Types
3.3. Input Predictors and Model Accuracy
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gregersen, H.; El Lakany, H.; Blaser, J. Forests for sustainable development: A process approach to forest sector contributions to the UN 2030 Agenda for Sustainable Development. Int. For. Rev. 2017, 19, 10–23. [Google Scholar] [CrossRef]
- Seymour, F.; Busch, J. Why forests? Why Now?: The Science, Economics, and Politics of Tropical Forests and Climate Change; Brookings Institution Press: Washington, DC, USA, 2016. [Google Scholar]
- FAO. Keeping an Eye on SDG 15; FAO: Rome, Italy, 2017; Volume 16. [Google Scholar]
- Htun, K. Myanmar Forestry Outlook Study; Asia-Pacific Forestry Sector Outlook Study II Working Paper Series; FAO: Rome, Italy, 2009. [Google Scholar]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; Da Fonseca, G.A.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Bhagwat, T.; Hess, A.; Horning, N.; Khaing, T.; Thein, Z.M.; Aung, K.M.; Aung, K.H.; Phyo, P.; Tun, Y.L.; Oo, A.H. Losing a jewel—Rapid declines in Myanmar’s intact forests from 2002-2014. PLoS ONE 2017, 12, e0176364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO. Global Forest Resources Assessment 2015: How are the World’s Forests Changing? Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Foody, G.M. Remote sensing of tropical forest environments: Towards the monitoring of environmental resources for sustainable development. Int. J. Remote Sens. 2003, 24, 4035–4046. [Google Scholar] [CrossRef]
- Franklin, S.E. Remote Sensing for Sustainable Forest Management; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Goetz, S.; Dubayah, R. Advances in remote sensing technology and implications for measuring and monitoring forest carbon stocks and change. Carbon Manag. 2011, 2, 231–244. [Google Scholar] [CrossRef]
- Wulder, M. Optical remote-sensing techniques for the assessment of forest inventory and biophysical parameters. Prog. Phys. Geogr. 1998, 22, 449–476. [Google Scholar] [CrossRef]
- Fuller, D.O. Tropical forest monitoring and remote sensing: A new era of transparency in forest governance? Singap. J. Trop. Geogr. 2006, 27, 15–29. [Google Scholar] [CrossRef]
- Hansen, M.C.; Loveland, T.R. A review of large area monitoring of land cover change using Landsat data. Remote Sens. Environ. 2012, 122, 66–74. [Google Scholar] [CrossRef]
- Sexton, J.O.; Urban, D.L.; Donohue, M.J.; Song, C. Long-term land cover dynamics by multi-temporal classification across the Landsat-5 record. Remote Sens. Environ. 2013, 128, 246–258. [Google Scholar] [CrossRef]
- Sharma, S.; Dhakal, K.; Wagle, P.; Kilic, A. Retrospective tillage differentiation using the Landsat-5 TM archive with discriminant analysis. Agrosyst. Geosci. Environ. 2020, 3, e20000. [Google Scholar] [CrossRef] [Green Version]
- Cohen, W.B.; Goward, S.N. Landsat’s role in ecological applications of remote sensing. Bioscience 2004, 54, 535–545. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Potapov, P.V.; Turubanova, S.A.; Tyukavina, A.; Krylov, A.M.; McCarty, J.L.; Radeloff, V.C.; Hansen, M.C. Eastern Europe’s forest cover dynamics from 1985 to 2012 quantified from the full Landsat archive. Remote Sens. Environ. 2015, 159, 28–43. [Google Scholar] [CrossRef]
- Townshend, J.R.; Masek, J.G.; Huang, C.; Vermote, E.F.; Gao, F.; Channan, S.; Sexton, J.O.; Feng, M.; Narasimhan, R.; Kim, D. Global characterization and monitoring of forest cover using Landsat data: Opportunities and challenges. Int. J. Digit. Earth 2012, 5, 373–397. [Google Scholar] [CrossRef] [Green Version]
- Malenovsky, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels for science: Potential of Sentinel-1,-2, and-3 missions for scientific observations of ocean, cryosphere, and land. Remote Sens. Environ. 2012, 120, 91–101. [Google Scholar] [CrossRef]
- Heckel, K.; Urban, M.; Schratz, P.; Mahecha, M.D.; Schmullius, C. Predicting Forest Cover in Distinct Ecosystems: The Potential of Multi-Source Sentinel-1 and-2 Data Fusion. Remote Sens. 2020, 12, 302. [Google Scholar] [CrossRef] [Green Version]
- Phiri, D.; Simwanda, M.; Salekin, S.; R Nyirenda, V.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Poortinga, A.; Tenneson, K.; Shapiro, A.; Nquyen, Q.; San Aung, K.; Chishtie, F.; Saah, D. Mapping plantations in Myanmar by fusing landsat-8, sentinel-2 and sentinel-1 data along with systematic error quantification. Remote Sens. 2019, 11, 831. [Google Scholar] [CrossRef] [Green Version]
- Steinhausen, M.J.; Wagner, P.D.; Narasimhan, B.; Waske, B. Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 595–604. [Google Scholar] [CrossRef]
- Astola, H.; Häme, T.; Sirro, L.; Molinier, M.; Kilpi, J. Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region. Remote Sens. Environ. 2019, 223, 257–273. [Google Scholar] [CrossRef]
- Forkuor, G.; Dimobe, K.; Serme, I.; Tondoh, J.E. Landsat-8 vs. Sentinel-2: Examining the added value of sentinel-2’s red-edge bands to land-use and land-cover mapping in Burkina Faso. GISci. Remote Sens. 2018, 55, 331–354. [Google Scholar] [CrossRef]
- Korhonen, L.; Packalen, P.; Rautiainen, M. Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index. Remote Sens. Environ. 2017, 195, 259–274. [Google Scholar] [CrossRef]
- Qiu, S.; He, B.; Yin, C.; Liao, Z. Assessments of Sentinel 2 vegetation red-edge spectral bands for improving land cover classification. Proc. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 1055–1059. [Google Scholar] [CrossRef] [Green Version]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Hojas-Gascon, L.; Belward, A.; Eva, H.; Ceccherini, G.; Hagolle, O.; Garcia, J.; Cerutti, P. Potential improvement for forest cover and forest degradation mapping with the forthcoming Sentinel-2 program. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, 40, 417. [Google Scholar] [CrossRef] [Green Version]
- Hirschmugl, M.; Sobe, C.; Deutscher, J.; Schardt, M. Combined use of optical and synthetic aperture radar data for REDD+ applications in Malawi. Land 2018, 7, 116. [Google Scholar] [CrossRef] [Green Version]
- Chaves, E.D.M.; Picoli, C.A.M.; Sanches, D.I. Recent Applications of Landsat 8/OLI and Sentinel-2/MSI for Land Use and Land Cover Mapping: A Systematic Review. Remote Sens. 2020, 12, 3062. [Google Scholar] [CrossRef]
- Sothe, C.; Almeida, C.M.; de Liesenberg, V.; Schimalski, M.B. Evaluating Sentinel-2 and Landsat-8 data to map sucessional forest stages in a subtropical forest in Southern Brazil. Remote Sens. 2017, 9, 838. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Gong, W.; Hu, X.; Gong, J. Forest type identification with random forest using Sentinel-1A, Sentinel-2A, multi-temporal Landsat-8 and DEM data. Remote Sens. 2018, 10, 946. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Jin, Y.; Liu, X.; Chen, Y.; Liang, X. Land-cover mapping using Random Forest classification and incorporating NDVI time-series and texture: A case study of central Shandong. Int. J. Remote Sens. 2018, 39, 8703–8723. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Lin, H. Urban land cover mapping using random forest combined with optical and SAR data. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 6809–6812. [Google Scholar]
- Ruiz Hernandez, I.E.; Shi, W. A Random Forests classification method for urban land-use mapping integrating spatial metrics and texture analysis. Int. J. Remote Sens. 2018, 39, 1175–1198. [Google Scholar] [CrossRef]
- Pino-Mejías, R.; Cubiles-de-la-Vega, M.D.; Anaya-Romero, M.; Pascual-Acosta, A.; Jordán-López, A.; Bellinfante-Crocci, N. Predicting the potential habitat of oaks with data mining models and the R system. Environ. Model. Softw. 2010, 25, 826–836. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Leimgruber, P.; Kelly, D.S.; Steininger, M.K.; Brunner, J.; Müller, T.; Songer, M. Forest cover change patterns in Myanmar (Burma) 1990–2000. Environ. Conserv. 2005, 356–364. [Google Scholar] [CrossRef] [Green Version]
- Connette, G.; Oswald, P.; Songer, M.; Leimgruber, P. Mapping distinct forest types improves overall forest identification based on multi-spectral Landsat imagery for Myanmar’s Tanintharyi Region. Remote Sens. 2016, 8, 882. [Google Scholar] [CrossRef] [Green Version]
- Tint, K. Community forestry. In Proceedings of the National Workshop on” Strengthening Re-Afforestation Programmes in Myanmar” Resource Paper, Hamawbi, Myanmar, 29 November–1 December 1995; Volume 6, pp. 68–73. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Mon, M.S.; Mizoue, N.; Htun, N.Z.; Kajisa, T.; Yoshida, S. Factors affecting deforestation and forest degradation in selectively logged production forest: A case study in Myanmar. For. Ecol. Manag. 2012, 267, 190–198. [Google Scholar] [CrossRef]
- USGS. Landsat 8 (L8) Data Users Handbook. Available online: https://www.usgs.gov/core-science-systems/nli/landsat/landsat-8-data-users-handbook (accessed on 20 September 2020).
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.C.; Egorov, A.; Roy, D.P.; Potapov, P.; Ju, J.; Turubanova, S.; Kommareddy, I.; Loveland, T.R. Continuous fields of land cover for the conterminous United States using Landsat data: First results from the Web-Enabled Landsat Data (WELD) project. Remote Sens. Lett. 2011, 2, 279–288. [Google Scholar] [CrossRef]
- Liu, Q.; Guo, Y.; Liu, G.; Zhao, J. Classification of Landsat 8 OLI image using support vector machine with Tasseled Cap Transformation. In Proceedings of the 2014 10th International Conference on Natural Computation (ICNC), Xiamen, China, 19–21 August 2014; pp. 665–669. [Google Scholar]
- Mondal, P.; McDermid, S.S.; Qadir, A. A reporting framework for Sustainable Development Goal 15: Multi-scale monitoring of forest degradation using MODIS, Landsat and Sentinel data. Remote Sens. Environ. 2020, 237, 111592. [Google Scholar] [CrossRef]
- Flores-Anderson, A.I.; Herndon, K.E.; Thapa, R.B.; Cherrington, E. The SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation; NASA: Washington, DC, USA, 2019.
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Conners, R.W.; Trivedi, M.M.; Harlow, C.A. Segmentation of a high-resolution urban scene using texture operators. Comput. Vis. Graph. Image Process. 1984, 25, 273–310. [Google Scholar] [CrossRef]
- Kayitakire, F.; Hamel, C.; Defourny, P. Retrieving forest structure variables based on image texture analysis and IKONOS-2 imagery. Remote Sens. Environ. 2006, 102, 390–401. [Google Scholar] [CrossRef]
- Franklin, S.E.; Hall, R.J.; Moskal, L.M.; Maudie, A.J.; Lavigne, M.B. Incorporating texture into classification of forest species composition from airborne multispectral images. Int. J. Remote Sens. 2000, 21, 61–79. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. Random Forest classification of Mediterranean land cover using multi-seasonal imagery and multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107. [Google Scholar] [CrossRef]
- Simard, M.; Saatchi, S.S.; De Grandi, G. The use of decision tree and multiscale texture for classification of JERS-1 SAR data over tropical forest. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2310–2321. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Stehman, S.V.; Potapov, P.V. Quantification of global gross forest cover loss. Proc. Natl. Acad. Sci. USA 2010, 107, 8650–8655. [Google Scholar] [CrossRef] [Green Version]
- McGrew, J.C., Jr.; Monroe, C.B. An Introduction to Statistical Problem Solving in Geography; Waveland Press: Long Grove, IL, USA, 2009. [Google Scholar]
- Sharma, S.; Ochsner, T.E.; Twidwell, D.; Carlson, J.D.; Krueger, E.S.; Engle, D.M.; Fuhlendorf, S.D. Nondestructive estimation of standing crop and fuel moisture content in tallgrass prairie. Rangel. Ecol. Manag. 2018, 71, 356–362. [Google Scholar] [CrossRef]
- R Core Team, R. A Language and Environment for Statistical Computing [Computer Software Manual]; R Core Team: Vienna, Austria, 2016. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Bousbih, S.; Zribi, M.; Lili-Chabaane, Z.; Baghdadi, N.; El Hajj, M.; Gao, Q.; Mougenot, B. Potential of Sentinel-1 radar data for the assessment of soil and cereal cover parameters. Sensors 2017, 17, 2617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irons, J.R.; Dwyer, J.L.; Barsi, J.A. The next Landsat satellite: The Landsat data continuity mission. Remote Sens. Environ. 2012, 122, 11–21. [Google Scholar] [CrossRef] [Green Version]
- Labib, S.M.; Harris, A. The potentials of Sentinel-2 and LandSat-8 data in green infrastructure extraction, using object based image analysis (OBIA) method. Eur. J. Remote Sens. 2018, 51, 231–240. [Google Scholar] [CrossRef]
- Lisein, J.; Michez, A.; Claessens, H.; Lejeune, P. Discrimination of deciduous tree species from time series of unmanned aerial system imagery. PLoS ONE 2015, 10, e0141006. [Google Scholar] [CrossRef]
- Li, D.; Ju, W.; Fan, W.; Gu, Z. Estimating the age of deciduous forests in northeast China with Enhanced Thematic Mapper Plus data acquired in different phenological seasons. J. Appl. Remote Sens. 2014, 8, 083670. [Google Scholar] [CrossRef] [Green Version]
- Barsi, J.A.; Lee, K.; Kvaran, G.; Markham, B.L.; Pedelty, J.A. The spectral response of the Landsat-8 operational land imager. Remote Sens. 2014, 6, 10232–10251. [Google Scholar] [CrossRef] [Green Version]
- Sibanda, M.; Mutanga, O.; Rouget, M. Discriminating rangeland management practices using simulated hyspIRI, landsat 8 OLI, sentinel 2 MSI, and VENμs spectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 3957–3969. [Google Scholar] [CrossRef]
- Chastain, R.; Housman, I.; Goldstein, J.; Finco, M.; Tenneson, K. Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top of atmosphere spectral characteristics over the conterminous United States. Remote Sens. Environ. 2019, 221, 274–285. [Google Scholar] [CrossRef]
- Erinjery, J.J.; Singh, M.; Kent, R. Mapping and assessment of vegetation types in the tropical rainforests of the Western Ghats using multispectral Sentinel-2 and SAR Sentinel-1 satellite imagery. Remote Sens. Environ. 2018, 216, 345–354. [Google Scholar] [CrossRef]
- Rüetschi, M.; Schaepman, M.E.; Small, D. Using multitemporal sentinel-1 c-band backscatter to monitor phenology and classify deciduous and coniferous forests in northern switzerland. Remote Sens. 2018, 10, 55. [Google Scholar] [CrossRef] [Green Version]
- Argamosa, R.J.L.; Blanco, A.C.; Baloloy, A.B.; Candido, C.G.; Dumalag, J.B.L.C.; DImapilis, L.L.C.; Paringit, E.C. Modelling above Ground Biomass of Mangrove Forest Using Sentinel-1 Imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, 4, 3. [Google Scholar] [CrossRef] [Green Version]
- Jena, F.-S.-U. SAR Theory and Applications to Forest Cover and Disturbance Mapping and Forest Biomass Assessment; Friedrich-Schiller-University: Jena, Germany, 2012; Volume 57. [Google Scholar]
- Niemi, M.T.; Vauhkonen, J. Extracting canopy surface texture from airborne laser scanning data for the supervised and unsupervised prediction of area-based forest characteristics. Remote Sens. 2016, 8, 582. [Google Scholar] [CrossRef] [Green Version]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 surface reflectance data set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Emerton, L.; Aung, Y.M. The Economic Value of Forest Ecosystem Services in Myanmar and Options for Sustainable Financing; International Management Group: Yangon, Myanmar, 2013. [Google Scholar]
- Assessment, I.H.L.C. Integrated Household Living Conditions Survey 2009-10 Myanmar: Poverty Profile; United Nations Development Programme: Yangon, Myanmar, 2011. [Google Scholar]
- Rao, M.; Rabinowitz, A.; Khaing, S.T. Status review of the protected-area system in Myanmar, with recommendations for conservation planning. Conserv. Biol. 2002, 16, 360–368. [Google Scholar] [CrossRef]
- Southeastern Asia: Central Myanmar (formerly Burma)|Ecoregions|WWF. Available online: https://www.worldwildlife.org/ecoregions/im0205 (accessed on 14 August 2020).
- Loveland, T.R.; Dwyer, J.L. Landsat: Building a strong future. Remote Sens. Environ. 2012, 122, 22–29. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E. Free access to Landsat imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef]
- Wulder, M.A.; Masek, J.G.; Cohen, W.B.; Loveland, T.R.; Woodcock, C.E. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sens. Environ. 2012, 122, 2–10. [Google Scholar] [CrossRef]
- Showstack, R. Sentinel satellites initiate new era in earth observation. Eos Trans. Am. Geophys. Union 2014, 95, 239–240. [Google Scholar] [CrossRef]
- International Cooperation|Copernicus. Available online: https://www.copernicus.eu/en/about-copernicus/international-cooperation (accessed on 13 August 2020).
No. | Name of Texture Metric | Abbreviation |
---|---|---|
1. | Angular Second Moment | asm |
2. | Contrast | contrast |
3. | Correlation | corr |
4. | Variance | var |
5. | Inverse Difference Moment (Homogeneity) | idm |
6. | Sum of Average | savg |
7. | Sum of Variance | svar |
8. | Sum of Entropy | sent |
9. | Entropy | ent |
10. | Difference of Variances | dvar |
11. | Difference of Entropies | dent |
12. | Information Measures of Correlation 1 | imcorr1 |
13. | Information Measures of Correlation 2 | imcorr2 |
14. | Maximum Correlation Coefficient | maxcorr |
15. | Dissimilarity | diss |
16. | Inertia | inertia |
17. | Cluster Shade | shade |
18. | Cluster Prominence | prom |
Model. | Variables |
---|---|
Landsat-8 Purpose: Baseline model. | Input bands: Landsat-8 bands (B2, B3, B4, B5, B6, B7) |
Total variables: 145 variables derived from these bands (144 variables per month for 6 months and elevation). Total variables = 144 + 1 = 145. Note: The last variable in each model is ‘elevation.’ | |
The monthly variables included six spectral bands (B2, B3, B4, B5, B6, B7), 15 simple ratios of the band combinations, 15 Normalized Difference of the band combinations, 18 texture metrics for each of the six bands. Monthly variables = 6 + 15 + 15 + 18*6 = 144. | |
Based on variable importance, only 18 variables were selected in the final model. They are: 5 Monthly band composites (Blue_Feb, Blue_Mar, Blue_Nov, Blue_Dec, Green_Mar); 11 Texture of monthly band composites (Blue_savg_Jan, Blue_savg_Feb, Blue_savg_Mar, Blue_savg_Apr, Blue_savg_Nov, Blue_savg_Dec, Green _savg_Feb, Green_savg_Mar, Green _savg_Nov, Red_savg_Mar, Red_savg_Nov); 1 Normalized Difference (SWIR1, Red for Apr) and elevation. | |
Map resolution 30 m | |
Sentinel-2 with Landsat-8 like bands Purpose: Shows how increased resolution (30 m Landsat-8 vs. 20 m Sentinel-2) and characteristic wavelength of Sentinel-2 bands comparable to Landsat-8 improves the forest type classification. | Input bands: Sentinel-2 bands comparable with Landsat-8 bands (B2, B3, B4, B8A, B11 and B12). |
Total variables: 145 variables derived from these bands (144 variables per month for 6 months and elevation). Total variables = 144 + 1 = 145. | |
The monthly variables included six spectral bands (B2, B3, B4, B5, B6, B7), 15 simple ratios of the band combinations, 15 Normalized Difference of the band combinations, 18 texture metrics for each of the six bands. Monthly variables = 6 + 15 + 15 + 18*6 = 144. | |
The same variables as Landsat-8 model was used. | |
Map resolution 20 m. | |
Sentinel-2-all bands Purpose: Shows the contribution of the 3 VRE and 1 NIR bands to forest type mapping. | Input bands: All Sentinel-2 bands (B2, B3, B4, B5, B6, B7, B8, B8A, B11 and B12). |
Total variables: Retained all bands in Model 2 and added 3 VRE and 1 NNIR bands and variables derived from the 3 VRE and 1 NNIR bands and 3 VRE based indices—CCCI, IRECI and S2REP. The total number of variables generated in Model 3 was 285 (284 variables per month times for 6 months and elevation). Total variables = 284 + 1 = 285. | |
The monthly variables included 10 Spectral bands (B2, B3, B4, B5, B6, B7, B8, B8A, B11 and B12), 45 Simple Ratios of the consecutive bands, 45 Normalized Difference of the consecutive bands, 4 Indices (EVI, SAVI, AWEI, WRI), 18 Texture metrics of each of the 10 bands. Monthly variables = 10 + 45 + 45 + 4 + 18*10 = 284. | |
Based on variable importance, only 17 new variables were added to the existing 18 variables from previous model. The final model had a total of 35 (17 + 18 = 35) variables. The 17 new variables are: 15 Texture of monthly band composites (VRE1_dent_Mar, VRE1_diss_Mar, VRE1_savg, VRE1_savg_Mar, VRE2_savg_Jan, VRE2_savg_Feb, VRE2_savg_Mar, VRE2_savg_Apr, VRE2_savg_Dec, VRE3_savg_Jan, VRE3_savg_Feb, VRE3_savg_Mar, VRE3_savg_Apr, NIR_savg_Feb, NIR_savg_Apr). 1 Normalized Difference (SWIR1, VRE1 for Apr) and elevation. 1 Simple Ratio of bands (Blue, VRE2 for Apr). | |
Map resolution 20 m. | |
Sentinel-1 and -2 Purpose: Shows the contribution of Sentinel-1 radar bands to forest type classification. | Input bands: VV, VH and ratio of VV and VH. |
Total variables: All the variables from Model 3 and added the bands (VV, VH and ratio of VV and VH) from Sentinel-1 (radar) composite and the texture of the 3 Sentinel-1 bands. The total number of variables in Model 4 was 341 (287 per month for 6 months, 18 texture metrics for each of 3 Sentinel-1 bands and elevation). Total variables = 284 + 3 + 3*18 + 1 = 342. | |
The monthly variables included 3 bands (VV, VH, ratio of VV and VH) and Texture metrics of each of the 3 bands. Monthly variables = 284 + 3 + 3*18 = 341. | |
Based on variable importance, only 6 new variables were added to the existing 35 variables from previous model. The number of variables in the final model was 41 variables (35 + 6 = 41). The 6 new variables are: 6 Texture of monthly band composites (VH_contrast_Dec, VH_dvar_Dec, VV/VH_contrast_Apr, VV/VH_inertia_Apr, VV/VH_savg_Feb, VV_idm_Nov). | |
Map resolution 20 m. |
Model | Swamp [km2/%] | Bamboo [km2/%] | Lower MDF [km2/%] | Upper Moist MDF [km2/%] | Upper Dry MDF [km2/%] | Indaing Forest [km2/%] |
---|---|---|---|---|---|---|
Landsat-8 | 381.17/2.30/ 393.78 ± 0.02 | 486.46/2.94/ 425.65 ± 0.21 | 992.59/6.0/ 643.84 ± 0.39 | 5849.77/35.35/ 7520.16 ± 0.30 | 8797.72/53.16/ 7522.93 ± 0.54 | 42.04/0.25/ 43.38 ± 0.04 |
Sentinel-2 with Landsat-8 like bands | 575.04/3.44/ 527.63 ± 112.86 | 390.04/2.33/ 380.53 ±18.65 | 854.1/5.10/ 855.26 ±83.05 | 6182.29/36.95/ 7082.91 ± 150.23 | 8665.27/51.79/ 7835.85 ± 88.79 | 65.23/0.39/ 49.78 ± 8.94 |
Sentinel-2-all bands | 261.34/1.56/ 182.94 ± 78.24 | 182.12/1.09/ 155.47 ± 19.95 | 629.32/3.76/ 532.44 ± 66.82 | 6485.4/38.76/ 7492.20 ± 121.04 | 9040.27/54.03/ 8240.89 ± 84.16 | 133.51/0.80/ 128.02 ± 14.14 |
Sentinel-1 and -2 | 1513.86/9.05/ 1608.17 ± 298.55 | 399.58/2.39/ 389.83 ± 19.10 | 536.25/3.2/ 544.30 ± 56.66 | 6551.12/39.15/ 7436.34 ± 304.68 | 7322.96/43.77/ 6427.99 ± 73.35 | 408.28/2.44/ 325.41 ± 54.94 |
Model | Important Predictors |
---|---|
Landsat-8 | Blue_Feb, Blue_Mar, Blue_Nov, Blue_Dec, Green_Mar, Blue_savg_Jan, Blue_savg_Feb, Blue_savg_Mar, Blue_savg_Apr, Blue_savg_Nov, Blue_savg_Dec, Green _savg_Feb, Green_savg_Mar, Green _savg_Nov, Red_savg_Mar, Red_savg_Nov, Normalized Difference (SWIR1, Red for Apr) and elevation |
Sentinel-2-all bands | VRE1_dent_Mar, VRE1_diss_Mar, VRE1_savg, VRE1_savg_Mar, VRE2_savg_Jan, VRE2_savg_Feb, VRE2_savg_Mar, VRE2_savg_Apr, VRE2_savg_Dec, VRE3_savg_Jan, VRE3_savg_Feb, VRE3_savg_Mar, VRE3_savg_Apr, NIR_savg_Feb, NIR_savg_Apr Normalized Difference (SWIR1, VRE1 for Apr) Simple Ratio of bands (Blue, VRE2 for Apr) |
Sentinel-1 and -2 | VH_contrast_5, VH_dvar_5, VV/VH_contrast_3, VV/VH_inertia_3, VV/VH_savg_1, VV_idm_4 |
Model | Accuracy |
---|---|
Landsat-8 | 82.68% ± 0.13 pp |
Sentinel-2 with Landsat-8 like bands | 87.51% ± 0.12 pp |
Sentinel-2 all bands | 87.97% ± 0.11 pp |
Sentinel-1 and -2 | 89.6% ± 0.16 pp |
Model | ||||
---|---|---|---|---|
Forest Type | Landsat-8 | Sentinel-2 with Landsat-8 Like Bands | Sentinel-2 -All Bands | Sentinel-1 and -2 |
Swamp | 100.00 | 90.00 | 70.00 | 90.00 |
Bamboo | 87.50 | 97.56 | 85.37 | 97.56 |
Lower MDF * | 64.86 | 74.42 | 65.12 | 86.05 |
Upper Moist MDF * | 93.65 | 92.89 | 93.91 | 96.17 |
Upper Dry MDF * | 76.54 | 84.43 | 85.85 | 84.18 |
Indaing Forest | 50.00 | 76.32 | 89.47 | 76.92 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biswas, S.; Huang, Q.; Anand, A.; Mon, M.S.; Arnold, F.-E.; Leimgruber, P. A Multi Sensor Approach to Forest Type Mapping for Advancing Monitoring of Sustainable Development Goals (SDG) in Myanmar. Remote Sens. 2020, 12, 3220. https://doi.org/10.3390/rs12193220
Biswas S, Huang Q, Anand A, Mon MS, Arnold F-E, Leimgruber P. A Multi Sensor Approach to Forest Type Mapping for Advancing Monitoring of Sustainable Development Goals (SDG) in Myanmar. Remote Sensing. 2020; 12(19):3220. https://doi.org/10.3390/rs12193220
Chicago/Turabian StyleBiswas, Sumalika, Qiongyu Huang, Anupam Anand, Myat Su Mon, Franz-Eugen Arnold, and Peter Leimgruber. 2020. "A Multi Sensor Approach to Forest Type Mapping for Advancing Monitoring of Sustainable Development Goals (SDG) in Myanmar" Remote Sensing 12, no. 19: 3220. https://doi.org/10.3390/rs12193220
APA StyleBiswas, S., Huang, Q., Anand, A., Mon, M. S., Arnold, F. -E., & Leimgruber, P. (2020). A Multi Sensor Approach to Forest Type Mapping for Advancing Monitoring of Sustainable Development Goals (SDG) in Myanmar. Remote Sensing, 12(19), 3220. https://doi.org/10.3390/rs12193220