Surface Temperature of the Planet Earth from Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. MODIS Earth Surface Temperature Matches NOAA NCDC Global Air Temperature Estimations
Air Temperature Versus Satellite Temperature
3.2. Regional Analysis: Northern Hemisphere Land Surface Contributes Most to Temperature Increases
3.3. High Latitudes Show the Highest Land Surface Temperature Increases
3.4. Local Analysis: Northern Atlantic Ocean Is Cooling Fast, While SIBERIA and Boreal America Is Heating Faster
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Field, C.B.; Barros, V.R.; Dokken, D.J.; Mach, K.J.; Mastrandrea, M.D.; Bilir, T.E.; Chatterjee, M.; Ebi, K.L.; Estrada, Y.O.; Genova, R.C.; et al. (Eds.) Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; p. 1132. [Google Scholar]
- CERSAT. Sea Surface Temperature In Situ Data. Available online: http://cersat.ifremer.fr/data/tools-and-services/match-up-databases/item/298-sea-surface-temperature-in-situ-data (accessed on 5 September 2019).
- Copernicus. In Situ Observations. Available online: https://insitu.copernicus.eu/observations (accessed on 5 September 2019).
- Mao, K.B.; Ma, Y.; Tan, X.L.; Shen, X.Y.; Liu, G.; Li, Z.L.; Chen, J.M.; Xia, L. Global surface temperature change analysis based on MODIS data in recent twelve years. Adv. Space Res. 2017, 59, 503–551. [Google Scholar] [CrossRef] [Green Version]
- NASA. Modis Specifications. Available online: https://modis.gsfc.nasa.gov/about/specifications.php (accessed on 4 June 2019).
- Wan, Z. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote Sens. Environ. 2014, 140, 36–45. [Google Scholar] [CrossRef]
- NOAA National Centers for Environmental Information, State of the Climate: Global Climate Report for Annual 2018. Available online: https://www.ncdc.noaa.gov/sotc/global/201813 (accessed on 3 April 2019).
- Physical Oceanography Distributed Active Archive Center (PO.DAAC). Firefox ESR v38.4.0. Web Page. NASA EOSDIS PO.DAAC, Pasadena, CA. 2018. Available online: https://podaac.jpl.nasa.gov/ (accessed on 5 January 2019).
- Land Processes Distributed Active Archive Center (LP DAAC). NASA EOSDIC LP.DAAC, Sioux Falls, South Dakota. 2018. Available online: https://lpdaac.isgs.gov/ (accessed on 5 January 2019).
- Brown, B.; Minnett, P.J. MODIS Infrared Sea Surface Temperature Algorithm. Algorithm Theoretical Basis Document; Version 2.0; University of Miami: Miami, FL, USA, 1999. [Google Scholar]
- Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.-L. Quality assessment and validation of the MODIS global land surface temperature. Int. J. Remote Sens. 2004, 25, 261–274. [Google Scholar] [CrossRef]
- Wan, Z. Collection-6. MODIS Land Surface Temperature Products Users’ Guide; ERI, University of California: Santa Barbara, CA, USA, 2013. [Google Scholar]
- Wan, Z. New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote Sens. Environ. 2008, 112, 59–74. [Google Scholar] [CrossRef]
- Skokovic, D. Calibration and Validation of Thermal Infrared Remote Sensing Sensors and Land/Sea Surface Temperature algorithms over the Iberian Peninsula. Ph.D. Thesis, University of Valencia, Valencia, Spain, 2017; p. 98. [Google Scholar]
- Ghanea, M.; Moradi, M.; Kabiri, K.; Mehdinia, A. Investigation and validation of MODIS SST in the northern Persian Gulf. Adv. Space Res. 2016, 57, 127–136. [Google Scholar] [CrossRef]
- Vose, R.S.; Arndt, D.; Banzon, V.F.; Easterling, D.R.; Gleason, B.; Huang, B.; Kearns, E.; Lawrimore, J.H.; Menne, M.J.; Peterson, T.C. NOAA’s Merged Land-Ocean Surface Temperature Analysis. Bull. Am. Meteorol. Soc. 2012, 93, 1677–1685. [Google Scholar] [CrossRef]
- Merchant, C.J.; Embury, O.; Bulgin, C.E.; Block, T.; Corlett, G.K.; Fiedler, E.; Good, S.A.; Mittaz, J.; Rayner, N.A.; Berry, D.; et al. Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci. Data 2019, 6, 223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jim, M.; Dickinson, R.E.; Vogelmann, A.M. A comnparison of CCM2-BATS Skin Temperature and Surface-Air Temperature with Satellite and Surface Observations. Am. Meteorol. Soc. 1997, 10, 1505–1524. [Google Scholar]
- Hooker, J.; Duveiller, G.; Cescatti, A. A global dataset of air temperature derived from satellite remote sensing and weather stations. Sci. Data 2018, 5, 180246. [Google Scholar] [CrossRef] [Green Version]
- Price, J.C. Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Trans. Geosci. Remote Sens. 28, 940–948. [CrossRef] [Green Version]
- Julien, Y.; Sobrino, J.A. Correcting Long Term Data Record V3 estimated LST from orbital drift effects. Remote Sens. Environ. 2012, 123, 207–219. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Julien, Y.; Atitar, M.; Nerry, F. NOAA-AVHRR orbital drift correction from solar zenithal angle data. IEEE Trans. Geosci. Remote sens. 2008, 46, 4014–4019. [Google Scholar] [CrossRef]
- Vogt, J.V.; Viau, A.A.; Paquet, A.F. Mapping regional air temperature fields using satellite-derived surface skin temperatures. Int. J. Climatol. 1997, 17, 1559–1579. [Google Scholar] [CrossRef]
- Alfieri, S.M.; de Lorenzi, F.; Menenti, M. Mapping air temperature using time series analysis of LST: The SINTESI approach. Nonlinear Process. Geophys. 2013, 20, 513–527. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.; Dickinson, R.E. A generalized algorithm for retrieving cloudy sky skin temperature from satellite thermal infrared radiances. J. Geophys. Res. 2000, 105, 27037–27047. [Google Scholar] [CrossRef]
- Mildrexler, D.J.; Zhao, M.; Running, S.W. A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Prihodko, L.; Goward, S.N. Estimation of air temperature from remotely sensed surface observations. Remote Sens. Environ. 1997, 60, 335–346. [Google Scholar] [CrossRef]
- Urban, M.; Eberle, J.; Hüttich, C.; Schmullius, C.; Herold, M. Comparison of satellite-derived land surface temperature and air temperature from meteorological stations on the pan-arctic scale. Remote Sens. 2013, 5, 2348–2367. [Google Scholar] [CrossRef] [Green Version]
- Jin, M.; Dickinson, R. Land surface skin temperature climatology: Benefitting from the strengths of satellite observations. Environ. Res. Lett. 2010, 5, 044004. [Google Scholar] [CrossRef] [Green Version]
- Benali, A.; Carvalho, A.C.; Nunes, J.P.; Carvalhais, N.; Santos, A. Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens. Environ. 2012, 124, 108–121. [Google Scholar] [CrossRef]
- Hameed, S.N.; Jin, D.; Thilakan, V. A model for super El Niños. Nat. Commun. 2018, 9, 2528. [Google Scholar] [CrossRef] [PubMed]
- Klein, S.A.; Soden, B.J.; Lau, N. Remote Sea Surface Temperature Variations during ENSO: Evidence for a Tropical Atmospheric Bridge. J. Clim. 1999, 12, 917–932. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Xie, S.-P.; Wu, L.; Yu, K.; Li, J. ENSO forced and local variability of North Tropical Atlantic SST: Model simulations and biases. Clim. Dyn. 2018, 51, 4511–4524. [Google Scholar] [CrossRef]
- Von Schuckmann, K.; Le Traon, P.Y.; Alvarez-Fanjul, E.; Axell, L.; Balmaseda, M.; Breivik, L.A.; Brewin, R.J.; Bricaud, C.; Drevillon, M.; Drillet, Y.; et al. The Copernicus Marine Environment Monitoring Service Ocean State Report. J. Oper. Oceanogr. 2016, 9, 235–320. [Google Scholar] [CrossRef]
- Hausfather, Z.; Cowtan, K.; Clarke, D.C.; Jacobs, P.; Richardson, M.; Rohde, R. Assessing recent warming using instrumentally homogenous sea surface temperature records. Sci. Adv. 2017, 3, e1601207. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, S.P.; Llewelyn-Jones, D.T.; Smith, S.J. The measurement of climate change using data from the Advanced Very High Resolution and Along Track Scanning Radiometers. J. Geophys. Res. 2004, 109, C08017. [Google Scholar] [CrossRef] [Green Version]
- Von Schuckmann, K.; Le Traon, P.Y.; Smith, N.; Pascual, A.; Djavidnia, S.; Gattuso, J.P.; Grégoire, M.; Nolan, G.; Aaboe, S.; Aguiar, E.; et al. Copernicus Marine Service Ocean State Report, Issue 3. J. Oper. Oceanogr. 2019, 12, 1–23. [Google Scholar] [CrossRef]
- Retamales-Muñoz, G.; Durán-Alarcón, C.; Mattar, C. Recent land Surface temperature patterns in Antarctica using satellite and reanalysis data. J. S. Am. Earth Sci. 2019, 95, 102304. [Google Scholar] [CrossRef]
Latitudinal Zone | LST (°C/yr.) | SST (°C/yr.) | EST (°C/yr.) |
---|---|---|---|
90°–66.5° NH | 0.080 | 0.0026 | 0.032 |
66.5°–23.5° NH | 0.036 | 0.018 | 0.028 |
23.5°– 0 NH | 0.023 | 0.021 | 0.021 |
0–23.5° SH | 0.035 | 0.022 | 0.025 |
23.5°–66.5° SH | 0.012 | 0.010 | 0.011 |
66.5°–90° SH | 0.064 | −0.013 | 0.031 |
NH | 0.036 | 0.013 | 0.022 |
SH | 0.019 | 0.013 | 0.014 |
Global | 0.030 | 0.013 | 0.018 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sobrino, J.A.; Julien, Y.; García-Monteiro, S. Surface Temperature of the Planet Earth from Satellite Data. Remote Sens. 2020, 12, 218. https://doi.org/10.3390/rs12020218
Sobrino JA, Julien Y, García-Monteiro S. Surface Temperature of the Planet Earth from Satellite Data. Remote Sensing. 2020; 12(2):218. https://doi.org/10.3390/rs12020218
Chicago/Turabian StyleSobrino, José Antonio, Yves Julien, and Susana García-Monteiro. 2020. "Surface Temperature of the Planet Earth from Satellite Data" Remote Sensing 12, no. 2: 218. https://doi.org/10.3390/rs12020218
APA StyleSobrino, J. A., Julien, Y., & García-Monteiro, S. (2020). Surface Temperature of the Planet Earth from Satellite Data. Remote Sensing, 12(2), 218. https://doi.org/10.3390/rs12020218