Understanding Inter-Hemispheric Traveling Ionospheric Disturbances and Their Mechanisms
Abstract
:1. Background Introduction
2. Materials and Methods
2.1. Magnetometer and Geophysical Data
2.2. TIE-GCM Model
3. Results
3.1. 2017 Memorial Day Weekend Geomagnetic Disturbance
3.2. Interhemispheric TID Coupling Investigation, May 2017
3.3. August 2018 Geomagnetic Storm
3.4. Interhemispheric TID Coupling Investigation, August 2018
4. Discussion
4.1. Observed TEC Asymmetry
4.2. Mechanism Responsible for TECo and TID Asymmetry on Geomagnetically Disturbed Day
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hines, C.O. Internal atmospheric gravity waves at ionospheric heights. Can. J. Phys. 1960, 38, 1441–1481. [Google Scholar] [CrossRef]
- Hunsucker, R.D. Atmospheric gravity waves generated in the high latitude ionosphere: A review. Rev. Geophys. 1982, 20, 293–315. [Google Scholar] [CrossRef]
- Jonah, O.F.; Kherani, E.A.; de Paula, E.R. Observation of TEC perturbation associated with medium-scale traveling ionospheric disturbance and possible seeding mechanism of atmospheric gravity wave at a Brazilian sector. J. Geophys. Res. 2016, 121, 2531–2546. [Google Scholar] [CrossRef] [Green Version]
- Jonah, O.F.; Kherani, E.A.; De Paula, E.R. Investigations of conjugate MSTIDS over the Brazilian sector during daytime. J. Geophys. Res. Space Phys. 2017, 122. [Google Scholar] [CrossRef]
- Frissell, N.A.; Baker, J.B.H.; Ruohoniemi, J.M.; Gerrard, A.J.; Miller, E.S.; Marini, J.P.; West, M.L.; Bristow, W.A. Climatology of medium-scale traveling ionospheric disturbances observed by the midlatitude Blackstone SuperDARN radar. J. Geophys. Res. 2014, 119, 7679–7697. [Google Scholar] [CrossRef]
- Jonah, O.F.; Coster, A.; Zhang, S.; Goncharenko, L.; Erickson, P.J.; de Paula, E.R.; Kherani, E.A. TID observations and source analysis during the 2017 Memorial Day weekend geomagnetic storm over North America. J. Geophys. Res. Space Phys. 2018, 123. [Google Scholar] [CrossRef]
- MacDougall, J.W.; Jayachandran, P.T. Spaced transmitter measurements of medium scale traveling ionospheric disturbance near equator. Geophys. Res. Lett. 2011, 38, L16806. [Google Scholar] [CrossRef] [Green Version]
- Jonah, O.F. A Study of Daytime MSTIDS over Equatorial and Low Latitude Regions during Tropospheric Convection: Observations and Simulations, The Graduate Course in Space Geophysics. Ph.D. Thesis, National Institute for Space Research (INPE) Sao Jose dos Campos, Sao Paulo, Brazil, 2017. [Google Scholar]
- Davis, M.J.; Ross, A.V. Traveling Ionospheric Disturbances Originating in the Auroral Oval during Polar Substorms. J. Geophys. Res. 1969, 74, 5721–5735. [Google Scholar] [CrossRef]
- MacDougall, J.W.; Li, G.; Jayachandran, P.T. Traveling ionospheric disturbances near London. Can. J. Atmos. Sol. Terr. Phys. 2009, 71, 2077–2084. [Google Scholar] [CrossRef]
- Otsuka, Y.; Shiokawa, K.; Ogawa, T.; Wilkinson, P. Geomagnetic conjugate observations of medium-scale traveling ionospheric disturbances at midlatitude using all-sky airglow imagers. Geophys. Res. Lett. 2004, 31, L15803. [Google Scholar] [CrossRef]
- Tsugawa, T.; Otsuka, Y. A statistical study of large-scale traveling ionospheric disturbances using the GPS network in Japan. J. Geophys. Res. 2004, 109, A06302. [Google Scholar] [CrossRef]
- Afraimovich, E.L.; Kosogorov, E.A.; Leonovich, L.A.; Palamarchouk, K.S.; Perevalova, N.P.; Pirog, O.M. Determining parameters of large-scale traveling ionospheric disturbances of auroral origin using GPS-arrays. J. Atm. Sol. Ter. Phys. 2000, 62, 553–565. [Google Scholar] [CrossRef]
- Kil, H.; Paxton, L.J. Global distribution of nighttime medium-scale traveling ionospheric disturbances seen by Swarm satellites. Geophys. Res. Lett. 2017, 44, 9176–9182. [Google Scholar] [CrossRef]
- Habarulema, J.B.; Yizengaw, E.; Katamzi-Joseph, Z.T.; Moldwin, M.B.; Buchert, S. Storm time global observations of large scale TIDs from ground-based and in situ satellite measurements. J. Geophys. Res. Space Phys. 2018, 123, 711–724. [Google Scholar] [CrossRef] [Green Version]
- Candido, C.M.N.; Pimenta, A.A.; Bittencourt, J.A.; Beckerguedes, F. Statistical analysis of the occurrence of medium-scale traveling ionospheric disturbances over Brazilian low latitudes using OI 630.0 nm emission all-sky images. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Coster, A.J.; Goncharenko, L.; Zhang, S.; Erickson, P.J.; Rideout, W.; Vierinen, J. GNSS observations of ionospheric variations during the 21 August 2017 solar eclipse. Geophy. Res. Lett. 2017, 17, 349–352. [Google Scholar] [CrossRef] [Green Version]
- Ngwira, C.M.; Habarulema, J.B.; Astafyeva, E.; Yizengaw, E.; Jonah, O.F.; Crowley, G.; Gisler, A.; Coffey, V. Dynamic response of ionospheric plasma density to the geomagnetic storm of 22–23 June 2015. J. Geophys. Res. Space Phys. 2019, 124. [Google Scholar] [CrossRef]
- Tsugawa, T.; Otsuka, Y.; Coster, A.J.; Saito, A. Medium-scale traveling ionospheric disturbances detected with dense and wide TEC maps over North America. Geophys. Res. Lett. 2007, 34, L22101. [Google Scholar] [CrossRef]
- Zhang, S.; Erickson, P.J.; Goncharenko, L.; Coster, A.J.; Rideout, W.; Vierinen, J. Ionospheric bow waves and perturbations induced by the 21 august 2017 solar eclipse. Geophys. Res. Lett. 2017, 44, 12–67. [Google Scholar] [CrossRef] [Green Version]
- Cowling, D.H.; Webb, D.; Yeh, K.C. Group Rays of Internal Gravity Waves in a Wind-Stratified Atmosphere. J. Geophys. Res. 1971, 76, 213–220. [Google Scholar] [CrossRef]
- Waldock, J.A.; Jones, T.B. The effects of neutral winds on the propagation of medium-scale atmospheric gravity waves at mid-latitudes. J. Atm. Terr. Phys. 1983, 46, 217–231. [Google Scholar] [CrossRef]
- Vasseur, G. Dynamics of the F-region observed with Thomson scatter. J. Atmos. Terr. Phys. 1969, 31, 397–420. [Google Scholar] [CrossRef]
- Fujiwara, H.; Maeda, S.; Fukunishi, H.; Fuller-Rowell, T.J.; Evans, D.S. Global variations of thermospheric winds and temperatures caused by substorm energy injection. J. Geophys. Res. Space Phys. 1996, 101, 225–239. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.J.; Codrescu, M.V.; Moffett, R.J.; Quegan, S. Responses of the thermosphere and ionosphere to geomagnetic storms. J. Geophys. Res. Space Phys. 1994, 99, 3893–3914. [Google Scholar] [CrossRef]
- Blanc, M.; Richmond, A.D. The ionospheric disturbance dynamo. J. Geophys. Res. 1980, 85, 1669–1686. [Google Scholar] [CrossRef]
- Rideout, W.; Coster, A. Automated GPS processing for global total electron content data. GPS Solut. 2006, 10, 219–228. [Google Scholar] [CrossRef]
- Vierinen, J.; Coster, A.J.; Rideout, W.C.; Erickson, P.J.; Norberg, J. Statistical framework for estimating GNSS bias. Atmos. Meas. Tech. Discuss. 2017, 8, 9373–9398. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.R.; Coster, A.J.; Erickson, P.J.; Goncharenko, L.P.; Rideout, W.; Vierinen, J. Traveling Ionospheric Disturbances and Ionospheric Perturbations Associated with Solar Flares in September 2017. J. Geophys. Res. Space Phys. 2019, 60, 895. [Google Scholar] [CrossRef] [Green Version]
- Roble, R. The NCAR thermosphere-ionosphere-mesophere-electrodynamics general circulation model (TIME-GCM). In Solar-Terrestrial Energy Program: Handbook of Ionospheric Models; Schunk, R., Ed.; Utah State University: Logaan, UT, USA, 1996; pp. 281–288. [Google Scholar]
- Abdu, M.A.; Kherani, E.A.; Batista, I.S.; Sobral, J.H.A. Equatorial evening prereversal vertical drift and spread F suppression by disturbance penetration electric fields. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.M.; Abdu, M.A.; Souza, J.R.; Sobral, J.H.A.; Batista, I.S. Disturbance zonal and vertical plasma drifts in the Peruvian sector during solar minimum phases. J. Geophys. Res. Space Phys. 2016, 121. [Google Scholar] [CrossRef] [Green Version]
- Abdu, M.A.; de Souza, J.R.; Sobral, J.H.A.; Batista, I.S. Magnetic storm associated disturbance dynamo effects in the low and equatorial latitude ionosphere, in Recurrent Magnetic Storms: Corotating Solar Wind Streams. Geophys. Monogr. Ser. 2006, 167, 283–304. [Google Scholar] [CrossRef]
- Richmond, A.D.; Peymirat, C.; Roble, R.G. Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere-ionosphere-thermosphere model. J. Geophys. Res. 2003, 108, 1118. [Google Scholar] [CrossRef]
- Sobral, J.H.A.; Abdu, M.A.; Gonzalez, W.D.; Gonzalez, A.C.; Tsurutani, B.T.; Da Silva, R.R.; Barbosa, I.G.; Arruda, D.C.; Denardini, C.M.; Zamlutti, C.J.; et al. Equatorial ionospheric responses to high intensity long-duration auroral electrojet activity (HILDCAA). J. Geophys. Res. 2006, 111, A07S02. [Google Scholar] [CrossRef] [Green Version]
- Kelley, M.C. The Earth’s Ionosphere; Academic Press: London, UK, 1989. [Google Scholar]
- Burns, A.G.; Killeen, T.L.; Deng, W.; Carignan, G.R.; Roble, R.G. Geomagnetic storm effects in the low- to middle-latitude upper thermosphere. J. Geophys. Res. 1995, 100, 14673–14691. [Google Scholar] [CrossRef]
- Yeh, K.C.; Webb, H.D.; Cowling, D.H. Evidence of Directional Filtering of Traveling Ionospheric Disturbances. Nat. Phys. Sci. 1972, 235, 131–132. [Google Scholar] [CrossRef]
- Crowley, G.; Rodrigues, F.S. Characteristics of traveling ionospheric disturbances observed by the TIDDBIT sounder. Radio Sci. 2012, 47, 1–12. [Google Scholar] [CrossRef]
- Zhang, S.R.; Foster, J.C.; Holt, J.M.; Erickson, P.J.; Coster, A.J. Magnetic declination and zonal wind effects on longitudinal differences of ionospheric electron density at midlatitudes. J. Geophys. Res. Space Phys. 2012, 117, A08329. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jonah, O.F.; Zhang, S.; Coster, A.J.; Goncharenko, L.P.; Erickson, P.J.; Rideout, W.; de Paula, E.R.; de Jesus, R. Understanding Inter-Hemispheric Traveling Ionospheric Disturbances and Their Mechanisms. Remote Sens. 2020, 12, 228. https://doi.org/10.3390/rs12020228
Jonah OF, Zhang S, Coster AJ, Goncharenko LP, Erickson PJ, Rideout W, de Paula ER, de Jesus R. Understanding Inter-Hemispheric Traveling Ionospheric Disturbances and Their Mechanisms. Remote Sensing. 2020; 12(2):228. https://doi.org/10.3390/rs12020228
Chicago/Turabian StyleJonah, Olusegun F., Shunrong Zhang, Anthea J. Coster, Larisa P. Goncharenko, Philip J. Erickson, William Rideout, Eurico R. de Paula, and Rodolfo de Jesus. 2020. "Understanding Inter-Hemispheric Traveling Ionospheric Disturbances and Their Mechanisms" Remote Sensing 12, no. 2: 228. https://doi.org/10.3390/rs12020228
APA StyleJonah, O. F., Zhang, S., Coster, A. J., Goncharenko, L. P., Erickson, P. J., Rideout, W., de Paula, E. R., & de Jesus, R. (2020). Understanding Inter-Hemispheric Traveling Ionospheric Disturbances and Their Mechanisms. Remote Sensing, 12(2), 228. https://doi.org/10.3390/rs12020228