Ground and Volume Decomposition as a Proxy for AGB from P-Band SAR Data
Abstract
:1. Introduction
- 2D SAR intensity is poorly correlated to AGB;
- TomoSAR intensity at 0 m is poorly and negatively correlated to AGB;
- TomoSAR intensity at 15 m is poorly correlated with AGB;
- TomoSAR intensity at 30 m is highly correlated to AGB and follows a log-linear relation for AGB values from 250 to 450 t/ha.
2. Paracou Data
3. Methodology
3.1. Model-Based Analysis of Tomographic Intensities
3.2. Ground/Volume Decomposition
- is the expected correlation between the SLC (single look complex) image in pass n and polarization and the SLC image in pass m and polarization ;
- and are the polarimetric correlations of ground and volume scattering in polarizations and polarization ;
- and are the interferometric coherences of ground and volume scattering in passes n and m.
- by casting the problem into an algebraic point of view, which leads to the algebraic synthesis technique [35].
- Outer ground solution: point-like ground structure and high entropy volume polarimetry;
- Inner ground solution: distributed ground structure and low/medium entropy volume;
- Outer volume solution: point-like volume structure and high entropy ground polarimetry;
- Inner volume solution: distributed volume structure and low/medium entropy ground polarimetry.
4. Results
4.1. Tomography
4.2. Ground/Volume Decomposition
5. Discussion and Conclusions
- It was shown that total volume backscatter, as extracted from the observed tomographic intensities, does not correlate with AGB, unless it is corrected by accounting for wave extinction and forest height. Most interestingly, very similar results in terms of correlation and sensitivity with respect to AGB were obtained by retrieving (uncorrected) total volume backscatter by tomography or by ground/volume decomposition when assuming a physically-based solution. Accordingly, we found actually no reason why the total volume backscatter should correlate with AGB;
- Removing ground scattering is not sufficient to ensure a strong correlation between Radar intensities and forest AGB: volume structure does matter. Admitting that ground rejection is a sufficient condition for AGB retrieval would contradict experimental observations, in that: any tomographic layer should provide the same sensitivity to AGB; the classical solution of the ground/volume decomposition problem should be the one that provides the best sensitivity to AGB;
- Tomography appears to bring the most complete information about AGB in dense tropical forests, not only because of rejection of ground scattering, but also by virtue of its capability to single out the returns from different layers within the vegetation. Characterizing ground scattering as a volumetric target and volume scattering as a point-like target results in scattering from the midcanopy to be mostly ascribed to ground scattering, whereas volume scattering mainly accounts for the main and upper canopy layer. Accordingly, although this solution is not physical, it approximates as much as possible the layering capabilities of SAR tomography, which improves correlation and sensitivity with respect to AGB. It is worth noting that this solution is not guaranteed in presence of temporal decorrelation or in case of multiple baselines as the range of permitted interferometric coherence of ground and volume scattering in the complex plane shrink from the outer boundaries toward the true ground and volume coherences [36].
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- UNFCCC. Key Decisions Relevant for Reducing Emissions from Deforestation andForest Degradation in Developing Countries (REDD+); Decision Booklet REDD+, UNFCCC Secretariat: Bonn, Germany, 2016. [Google Scholar]
- Meyer, V.; Saatchi, S.S.; Chave, J.; Dalling, J.W.; Bohlman, S.; Fricker, G.A.; Robinson, C.; Neumann, M.; Hubbell, S. Detecting tropical forest biomass dynamics from repeated airborne lidar measurements. Biogeosciences 2013, 10, 5421–5438. [Google Scholar] [CrossRef] [Green Version]
- Chave, J.; Réjou-Méchain, M.; Búrquez, A.; Chidumayo, E.; Colgan, M.S.; Delitti, W.B.; Duque, A.; Eid, T.; Fearnside, P.M.; Goodman, R.C.; et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 2014, 20, 3177–3190. [Google Scholar] [CrossRef] [PubMed]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santoro, M.; Beer, C.; Cartus, O.; Schmullius, C.; Shvidenko, A.; McCallum, I.; Wegmüller, U.; Wiesmann, A. Retrieval of growing stock volume in boreal forest using hyper-temporal series of Envisat ASAR ScanSAR backscatter measurements. Remote Sens. Environ. 2011, 115, 490–507. [Google Scholar] [CrossRef]
- Silva, C.A.; Saatchi, S.; Garcia, M.; Labrière, N.; Klauberg, C.; Ferraz, A.; Meyer, V.; Jeffery, K.J.; Abernethy, K.; White, L.; et al. Comparison of Small- and Large-Footprint Lidar Characterization of Tropical Forest Aboveground Structure and Biomass: A Case Study From Central Gabon. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 11, 3512–3526. [Google Scholar] [CrossRef] [Green Version]
- Rosen, P.; Hensley, S.; Shaffer, S.; Edelstein, W.; Kim, Y.; Kumar, R.; Misra, T.; Bhan, R.; Sagi, R. The NASA-ISRO SAR (NISAR) mission dual-band radar instrument preliminary design. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 3832–3835. [Google Scholar]
- ESA, ESTEC, Noordwijk. BIOMASS—Report for Mission Selection—An Earth Explorer to Observe Forest Biomass; SP-1324/1; ESA Communication Production Office: Noordwijk, The Netherlands, 2012. [Google Scholar]
- Praks, J.; Antropov, O.; Hallikainen, M.T. LIDAR-Aided SAR Interferometry Studies in Boreal Forest: Scattering Phase Center and Extinction Coefficient at X- and L-Band. IEEE Trans. Geosci. Remote Sens. 2012, 50, 3831–3843. [Google Scholar] [CrossRef]
- Treuhaft, R.; Gonçalves, F.; dos Santos, J.R.; Keller, M.; Palace, M.; Madsen, S.N.; Sullivan, F.; Graça, P.M.L.A. Tropical-Forest Biomass Estimation at X-Band From the Spaceborne TanDEM-X Interferometer. IEEE Geosci. Remote Sens. Lett. 2015, 12, 239–243. [Google Scholar] [CrossRef] [Green Version]
- Soja, M.J.; Persson, H.J.; Ulander, L.M.H. Estimation of Forest Biomass From Two-Level Model Inversion of Single-Pass InSAR Data. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5083–5099. [Google Scholar] [CrossRef] [Green Version]
- Villard, L.; Le Toan, T. Relating P-Band SAR Intensity to Biomass for Tropical Dense Forests in Hilly Terrain: γ0 or t0? IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 214–223. [Google Scholar] [CrossRef]
- Soja, M.J.; Sandberg, G.; Ulander, L.M.H. Regression-Based Retrieval of Boreal Forest Biomass in Sloping Terrain Using P-Band SAR Backscatter Intensity Data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2646–2665. [Google Scholar] [CrossRef] [Green Version]
- Truong-Loi, M.L.; Saatchi, S.; Jaruwatanadilok, S. Soil Moisture Estimation Under Tropical Forests Using UHF Radar Polarimetry. IEEE Trans. Geosci. Remote Sens. 2015, 53, 1718–1727. [Google Scholar] [CrossRef]
- Reigber, A.; Moreira, A. First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2142–2152. [Google Scholar] [CrossRef]
- Tebaldini, S.; Rocca, F.; Mariotti d’Alessandro, M.; Ferro-Famil, L. Phase Calibration of Airborne Tomographic SAR Data via Phase Center Double Localization. IEEE Trans. Geosci. Remote Sens. 2016, 54, 1775–1792. [Google Scholar] [CrossRef]
- Mariotti d’Alessandro, M.; Tebaldini, S. Digital Terrain Model Retrieval in Tropical Forests Through P-Band SAR Tomography. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6774–6781. [Google Scholar] [CrossRef]
- Mariotti d’Alessandro, M.; Tebaldini, S. Cross Sensor Simulation of Tomographic SAR Stacks. Remote Sens. 2019, 11, 2099. [Google Scholar] [CrossRef] [Green Version]
- Ho Tong Minh, D.; Tebaldini, S.; Rocca, F.; Le Toan, T. The Impact of Temporal Decorrelation on BIOMASS Tomography of Tropical Forests. IEEE Geosci. Remote Sens. Lett. 2015, 12, 1297–1301. [Google Scholar] [CrossRef]
- Banda, F.; Dall, J.; Tebaldini, S. Single and Multipolarimetric P-Band SAR Tomography of Subsurface Ice Structure. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2832–2845. [Google Scholar] [CrossRef]
- Le, T.T.; Quegan, S.; Davidson, M.W.J.; Balzter, H.; Paillou, P.; Papathanassiou, K.; Plummer, S.; Rocca, F.; Saatchi, S.; Shugart, H.; et al. The BIOMASS mission: Mapping global forest biomass to better understand the terrestrial carbon cycle. Remote Sens. Environ. 2011, 115, 2850–2860. [Google Scholar]
- Ho Tong Minh, D.; Toan, T.L.; Rocca, F.; Tebaldini, S.; d’Alessandro, M.M.; Villard, L. Relating P-Band Synthetic Aperture Radar Tomography to Tropical Forest Biomass. IEEE Trans. Geosci. Remote Sens. 2014, 52, 967–979. [Google Scholar] [CrossRef]
- Minh, D.H.T.; Toan, T.L.; Rocca, F.; Tebaldini, S.; Villard, L.; Réjou-Méchain, M.; Phillips, O.L.; Feldpausch, T.R.; Dubois-Fernandez, P.; Scipal, K.; et al. SAR tomography for the retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guiana. Remote Sens. Environ. 2016, 175, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Quegan, S.; Toan, T.L.; Chave, J.; Dall, J.; Exbrayat, J.F.; Minh, D.; Lomas, M.; D’Alessandro, M.M.; Paillou, P.; Papathanassiou, K.; et al. The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space. Remote Sens. Environ. 2019, 227, 44–60. [Google Scholar] [CrossRef] [Green Version]
- Meyer, V.; Saatchi, S.; Clark, D.B.; Keller, M.; Vincent, G.; Ferraz, A.; Espírito-Santo, F.; d’Oliveira, M.V.N.; Kaki, D.; Chave, J. Canopy area of large trees explains aboveground biomass variations across neotropical forest landscapes. Biogeosciences 2018, 15, 3377–3390. [Google Scholar] [CrossRef] [Green Version]
- Tang, S. Quantifying Differences in Forest Structures with Quantitative Structure Models from TLS Data. Master’s Thesis, UCL, London, UK, 2017. [Google Scholar]
- Chave, J. Study of structural, successional and spatial patterns in tropical rain forests using TROLL, a spatially explicit forest model. Ecol. Model. 1999, 124, 233–254. [Google Scholar] [CrossRef]
- Blomberg, E.; Ferro-Famil, L.; Soja, M.J.; Ulander, L.M.H.; Tebaldini, S. Forest Biomass Retrieval From L-Band SAR Using Tomographic Ground Backscatter Removal. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1030–1034. [Google Scholar] [CrossRef]
- D’Alessandro, M.M.; Tebaldini, S.; Rocca, F. Phenomenology of Ground Scattering in a Tropical Forest Through Polarimetric Synthetic Aperture Radar Tomography. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4430–4437. [Google Scholar] [CrossRef]
- Cloude, S.R.; Papathanassiou, K.P. Three-stage inversion process for polarimetric SAR interferometry. IEE Proc. Radar Sonar Navig. 2003, 150, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Papathanassiou, K.P.; Cloude, S.R. Single-baseline polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2352–2363. [Google Scholar] [CrossRef] [Green Version]
- Treuhaft, R.N.; Madsen, S.N.; Moghaddam, M.; van Zyl, J.J. Vegetation characteristics and underlying topography from interferometric radar. Radio Sci. 1996, 31, 1449–1485. [Google Scholar] [CrossRef]
- Kugler, F.; Lee, S.; Hajnsek, I.; Papathanassiou, K.P. Forest Height Estimation by Means of Pol-InSAR Data Inversion: The Role of the Vertical Wavenumber. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5294–5311. [Google Scholar] [CrossRef]
- Banda, F.; Giudici, D.; Quegan, S.; Scipal, K. The Retrieval Concept of the Biomass Forest Biomass Prototype Processor. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8582–8585. [Google Scholar]
- Tebaldini, S. Algebraic Synthesis of Forest Scenarios From Multibaseline PolInSAR Data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 4132–4142. [Google Scholar] [CrossRef]
- Tebaldini, S.; Rocca, F. Multibaseline Polarimetric SAR Tomography of a Boreal Forest at P- and L-Bands. IEEE Trans. Geosci. Remote Sens. 2012, 50, 232–246. [Google Scholar] [CrossRef]
- Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. [Google Scholar] [CrossRef]
- Choi, C.; Pardini, M.; Papathanassiou, K. A Structure-Based Framework for the Combination of GEDI and Tandem-X Measurements Over Forest Scenarios. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 4488–4490. [Google Scholar] [CrossRef]
Parameter | Description | Unit | Correlation | Sensitivity |
---|---|---|---|---|
Volumetric backscattering | dB/m | 0.18 | 400 t/ha per dB/m | |
Forest height | m | 0.62 | 42 t/ha per m | |
Total volume backscatter (w/out extinction) | dB | 0.76 | 86 t/ha per dB | |
Total attenuation | dB | 0.1 | 714 t/ha per dB | |
Total volume backscatter (w extinction) | dB | 0.19 | 400 t/ha per dB | |
Approximated tomographic intensity at 30 m | dB | 0.5 | 120 t/ha per dB |
Solution (Ground/Volume) | Ground Vertical Structure | Volume Vertical Structure | Ground Polarimetry | Volume Polarimetry | Sensitivity | |
---|---|---|---|---|---|---|
Outer / Inner | Ground-locked pointlike target (coherence 1, phase center 0 m) | Distributed target (low coherence, phase center 13 m) | Low Entropy Multiple Scattering Events (60 < < 70 entropy 0.45) | High Entropy Vegetation Scattering (47 < < 52 entropy 0.95) | 0.20 | 370 t/ha per dB |
Outer / Outer | Ground-locked pointlike target (coherence 1, phase center 0 m) | Point-like target within forest canopy (coherence 1, phase center 24 m) | High Entropy Vegetation Scattering (50 < < 55 entropy 0.95) | High Entropy Vegetation Scattering (47 < < 52 entropy 0.95) | 0.26 | 238 t/ha per dB |
Inner / Outer | Distributed target (low coherence, phase center 6 m) | Point-like target within forest canopy (coherence 1, phase center 24 m) | High Entropy Vegetation Scattering (50 < < 55 entropy 0.95) | Medium Entropy Vegetation Scattering (40 < < 45 entropy 0.6) | 0.75 | 59 t/ha per dB |
Inner / Inner | Distributed target (low coherence, phase center 6 m) | Distributed target (low coherence, phase center 13 m) | Low Entropy Multiple Scattering Events (60 < < 70 entropy 0.45) | Medium Entropy Vegetation Scattering (40 < < 45 entropy 0.6) | 0.72 | 80 t/ha per dB |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banda, F.; Mariotti d’Alessandro, M.; Tebaldini, S. Ground and Volume Decomposition as a Proxy for AGB from P-Band SAR Data. Remote Sens. 2020, 12, 240. https://doi.org/10.3390/rs12020240
Banda F, Mariotti d’Alessandro M, Tebaldini S. Ground and Volume Decomposition as a Proxy for AGB from P-Band SAR Data. Remote Sensing. 2020; 12(2):240. https://doi.org/10.3390/rs12020240
Chicago/Turabian StyleBanda, Francesco, Mauro Mariotti d’Alessandro, and Stefano Tebaldini. 2020. "Ground and Volume Decomposition as a Proxy for AGB from P-Band SAR Data" Remote Sensing 12, no. 2: 240. https://doi.org/10.3390/rs12020240
APA StyleBanda, F., Mariotti d’Alessandro, M., & Tebaldini, S. (2020). Ground and Volume Decomposition as a Proxy for AGB from P-Band SAR Data. Remote Sensing, 12(2), 240. https://doi.org/10.3390/rs12020240