Investigation of Daytime Total Electron Content Enhancements over the Asian-Australian Sector Observed from the Beidou Geostationary Satellite during 2016–2018
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Assessment of Ionospheric, Geomagnetic and Solar Conditions
3.2. Quiet Time Seasonal Variations of the Occurrence of TEC Enhancements
3.3. Dependence of TEC Enhancements Occurrence on the Geomagnetic Storm Phases
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rishbeth, H.; Mendillo, M. Patterns of F2-layer variability. J. Atmos. Sol. Terr. Phys. 2001, 63, 1661–1680. [Google Scholar] [CrossRef]
- Mikhailov, A.; Depueva, A.K.; Leschinskaya, T.Y. Morphology of quiet time F2-layer disturbances: High and lower latitudes. Int. J. Geomagn. Aeron 2004, 5, GI1006. [Google Scholar] [CrossRef]
- Mikhailov, A.V.; Depueva, A.H.; Depuev, V.H. Quiet time F2-layer disturbances: Seasonal variations of the occurrence in the daytime sector. Ann. Geophys. 2009, 27, 329–337. [Google Scholar] [CrossRef]
- Altadill, D.; Apostolov, E.M. Vertical propagating signatures of wave-type oscillations (2- and 6.5-days) in the ionosphere obtained from electron-density profiles. J. Atmos. Sol. Terr. Phys. 2001, 63, 823–834. [Google Scholar] [CrossRef]
- Goncharenko, L.P.; Chau, J.L.; Liu, H.-L.; Coster, A.J. Unexpected connections between the stratosphere and ionosphere. Geophys. Res. Lett. 2010, 37, L10101. [Google Scholar] [CrossRef]
- Gonzalez, W.D.; Joselyn, J.A.; Kamide, Y.; Kroehl, H.W.; Rostoker, G.; Tsurutani, B.T.; Vasyliunas, V.M. What is a geomagnetic storm? J. Geophys. Res. Space Phys. 1994, 99, 5771–5792. [Google Scholar] [CrossRef]
- Buonsanto, M.J. Ionospheric storms—A review. Space Sci. Rev. 1999, 88, 563–601. [Google Scholar] [CrossRef]
- Burns, A.; Solomon, S.; Wang, W.; Killeen, T. The ionospheric and thermospheric response to CMEs: Challenges and successes. J. Atmos. Sol. Terr. Phys. 2007, 69, 77–85. [Google Scholar] [CrossRef]
- Prölss, G.W. Thermosphere-Ionosphere Coupling during Disturbed Conditions. J. Geomagn. Geoelectr. 1991, 43, 537–549. [Google Scholar] [CrossRef] [Green Version]
- Prölss, G.W.; Werner, S. Vibrationally excited nitrogen and oxygen and the origin of negative ionospheric storms. J. Geophys. Res. Space Phys. 2002, 107, IUA 5-1–IUA 5-12. [Google Scholar] [CrossRef]
- Prölss, G. Ionospheric F-region storms: Unresolved problems. In Proceedings of the Characterising the Ionosphere, Meeting Proceedings RTO-MP-IST-056, Neuilly-sur-Seine, France, 1 June 2006; pp. 10-11–10-20. [Google Scholar]
- Burns, A.; Killeen, T.; Wang, W.; Roble, R. The solar-cycle-dependent response of the thermosphere to geomagnetic storms. J. Atmos. Sol. Terr. Phys. 2004, 66, 1–14. [Google Scholar] [CrossRef]
- Mendillo, M. Storms in the ionosphere: Patterns and processes for total electron content. Rev. Geophys. 2006, 44, RG4001. [Google Scholar] [CrossRef]
- Lei, J.; Thayer, J.P.; Forbes, J.M.; Wu, Q.; She, C.; Wan, W.; Wang, W. Ionosphere response to solar wind high-speed streams. Geophys. Res. Lett. 2008, 35, L19105. [Google Scholar] [CrossRef] [Green Version]
- Lei, J.; Wang, W.; Burns, A.G.; Yue, X.; Dou, X.; Luan, X.; Solomon, S.C.; Liu, Y.C.-M. New aspects of the ionospheric response to the October 2003 superstorms from multiple-satellite observations. J. Geophys. Res. Space Phys. 2014, 119, 2298–2317. [Google Scholar] [CrossRef]
- Lei, J.; Zhu, Q.; Wang, W.; Burns, A.G.; Zhao, B.; Luan, X.; Zhong, J.; Dou, X. Response of the topside and bottomside ionosphere at low and middle latitudes to the October 2003 superstorms. J. Geophys. Res. Space Phys. 2015, 120, 6974–6986. [Google Scholar] [CrossRef]
- Jimoh, O.E.; Yesufu, T.K.; Ariyibi, E.A. Investigation of Ionospheric Response to Geomagnetic Storms over a Low Latitude Station, Ile-Ife, Nigeria. Acta Geophys. 2016, 64, 772–795. [Google Scholar] [CrossRef] [Green Version]
- Jimoh, O.; Lei, J.; Zhong, J.; Owolabi, C.; Luan, X.; Dou, X. Topside Ionospheric Conditions During the 7–8 September 2017 Geomagnetic Storm. J. Geophys. Res. Space Phys. 2019, 124, 9381–9404. [Google Scholar] [CrossRef]
- Adeniyi, J.O. Magnetic storm effects on the morphology of the equatorial F2-layer. J. Atmos. Terr. Phys. 1986, 48, 695–702. [Google Scholar] [CrossRef]
- Chukwuma, V. On positive and negative ionospheric storms. Acta Geod. Geophys. Hung. 2007, 42, 1–21. [Google Scholar] [CrossRef]
- Lei, J.; Wang, W.; Burns, A.G.; Solomon, S.C.; Richmond, A.D.; Wiltberger, M.; Goncharenko, L.P.; Coster, A.; Reinisch, B.W. Observations and simulations of the ionospheric and thermospheric response to the December 2006 geomagnetic storm: Initial phase. J. Geophys. Res. Space Phys. 2008, 113, A01314. [Google Scholar] [CrossRef]
- Liu, H.-L.; Wang, W.; Richmond, A.D.; Roble, R.G. Ionospheric variability due to planetary waves and tides for solar minimum conditions. J. Geophys. Res. Space Phys. 2010, 115, A00G01. [Google Scholar] [CrossRef]
- Danilov, A.; Lastovicka, J. Effects of geomagnetic storms on the ionosphere and atmosphere. Int. J. Geomagn. Aeron. 2001, 2, 209–224. [Google Scholar]
- Lin, C.H.; Richmond, A.D.; Liu, J.Y.; Yeh, H.C.; Paxton, L.J.; Lu, G.; Tsai, H.F.; Su, S.-Y. Large-scale variations of the low-latitude ionosphere during the october–november 2003 superstorm: Observational results. J. Geophys. Res. 2005, 110, A09S28. [Google Scholar] [CrossRef] [Green Version]
- Kutiev, I.; Otsuka, Y.; Saito, A.; Watanabe, S. GPS observations of post-storm TEC enhancements at low latitudes. Earth Planets Space 2006, 58, 1479–1486. [Google Scholar] [CrossRef] [Green Version]
- Kutiev, I.; Otsuka, Y.; Saito, A.; Tsugawa, T. Low-latitude total electron content enhancement at low geomagnetic activity observed over Japan. J. Geophys. Res. Space Phys. 2007, 112, A07306. [Google Scholar] [CrossRef] [Green Version]
- Kutiev, I.; Watanabe, S.; Otsuka, Y.; Saito, A. Total electron content behavior over Japan during geomagnetic storms. J. Geophys. Res. Space Phys. 2005, 110, A01308. [Google Scholar] [CrossRef] [Green Version]
- Pedatella, N.M.; Liu, H.-L. The Influence of Internal Atmospheric Variability on the Ionosphere Response to a Geomagnetic Storm. Geophys. Res. Lett. 2018, 45, 4578–4585. [Google Scholar] [CrossRef]
- Lei, J.; Huang, F.; Chen, X.; Zhong, J.; Ren, D.; Wang, W.; Yue, X.; Luan, X.; Jia, M.; Dou, X.; et al. Was Magnetic Storm the Only Driver of the Long-Duration Enhancements of Daytime Total Electron Content in the Asian-Australian Sector Between 7 and 12 September 2017? J. Geophys. Res. Space Phys. 2018, 123, 3217–3232. [Google Scholar] [CrossRef]
- Xiong, C.; Lühr, H.; Yamazaki, Y. An Opposite Response of the Low-Latitude Ionosphere at Asian and American Sectors During Storm Recovery Phases: Drivers From Below or Above. J. Geophys. Res. Space Phys. 2019, 124, 6266–6280. [Google Scholar] [CrossRef]
- Ren, D.; Lei, J.; Zhou, S.; Li, W.; Huang, F.; Luan, X.; Dang, T.; Liu, Y. High-Speed Solar Wind Imprints on the Ionosphere During the Recovery Phase of the August 2018 Geomagnetic Storm. Space Weather 2020, 18, e2020SW002480. [Google Scholar] [CrossRef]
- Foelsche, U.; Kirchengast, G. A simple “geometric” mapping function for the hydrostatic delay at radio frequencies and assessment of its performance. Geophys. Res. Lett. 2002, 29, 111-1–111-4. [Google Scholar] [CrossRef] [Green Version]
- Zhong, J.; Lei, J.; Yue, X.; Dou, X. Determination of Differential Code Bias of GNSS Receiver Onboard Low Earth Orbit Satellite. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4896–4905. [Google Scholar] [CrossRef]
- Bilitza, D. International reference ionosphere 2000. Radio Sci. 2001, 36, 261–275. [Google Scholar] [CrossRef] [Green Version]
- Huang, F.; Otsuka, Y.; Lei, J.; Luan, X.; Dou, X.; Li, G. Daytime Periodic Wave-like Structures in the Ionosphere Observed at Low Latitudes over the Asian-Australian Sector Using Total Electron Content from Beidou Geostationary Satellites. J. Geophys. Res. Space Phys. 2019, 124, 2312–2322. [Google Scholar] [CrossRef]
- Thébault, E.; Finlay, C.C.; Beggan, C.D.; Alken, P.; Aubert, J.; Barrois, O.; Bertrand, F.; Bondar, T.; Boness, A.; Brocco, L.; et al. International Geomagnetic Reference Field: The 12th generation. Earth Planets Space 2015, 67, 79. [Google Scholar] [CrossRef]
- Richmond, A.D. Ionospheric Electrodynamics Using Magnetic Apex Coordinates. J. Geomagn. Geoelectr. 1995, 47, 191–212. [Google Scholar] [CrossRef]
- Hanson, W.B.; Moffett, R.J. lonization transport effects in the equatorial F region. J. Geophys. Res. (1896–1977) 1966, 71, 5559–5572. [Google Scholar] [CrossRef]
- Balan, N.; Bailey, G.J. Equatorial plasma fountain and its effects: Possibility of an additional layer. J. Geophys. Res. Space Phys. 1995, 100, 21421–21432. [Google Scholar] [CrossRef]
- Anderson, D.N. Modeling the ambient, low latitude F-region ionosphere—A review. J. Atmos. Terr. Phys. 1981, 43, 753–762. [Google Scholar] [CrossRef]
- Rishbeth, H. The equatorial F-layer: Progress and puzzles. Ann. Geophys. 2000, 18, 730–739. [Google Scholar] [CrossRef]
- Martyn, D.F. Theory of Height and Ionization Density Changes at the Maximum of a Chapman-like Region, taking account of Ion Production, Decay, Diffusion and Tidal Drift. In Proceedings of the Physics of the Ionosphere, Cavendish Laboratory, Cambridge, September 1954; The Physical Society: London, UK, 1955; p. 254. [Google Scholar]
- Burešová, D.; Laštovička, J. Pre-storm enhancements of foF2 above Europe. Adv. Space Res. 2007, 39, 1298–1303. [Google Scholar] [CrossRef]
- Liu, L.; Wan, W.; Zhang, M.-L.; Zhao, B. Case study on total electron content enhancements at low latitudes during low geomagnetic activities before the storms. Ann. Geophys. 2008, 26, 893–903. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Wan, W.; Zhang, M.-L.; Zhao, B.; Ning, B. Prestorm enhancements in NmF2 and total electron content at low latitudes. J. Geophys. Res. Space Phys. 2008, 113, A02311. [Google Scholar] [CrossRef]
- Wang, W.; Lei, J.; Burns, A.G.; Solomon, S.C.; Wiltberger, M.; Xu, J.; Zhang, Y.; Paxton, L.; Coster, A. Ionospheric response to the initial phase of geomagnetic storms: Common features. J. Geophys. Res. Space Phys. 2010, 115, A07321. [Google Scholar] [CrossRef]
- Forbes, J.M.; Palo, S.E.; Zhang, X. Variability of the ionosphere. J. Atmos. Sol. Terr. Phys. 2000, 62, 685–693. [Google Scholar] [CrossRef]
- Fuller-Rowell, T.; Codrescu, M.; Wilkinson, P. Quantitative modeling of the ionospheric response to geomagnetic activity. Ann. Geophys. 2000, 18, 766–781. [Google Scholar] [CrossRef]
- Qian, L.; Burns, A.G.; Chamberlin, P.C.; Solomon, S.C. Variability of thermosphere and ionosphere responses to solar flares. J. Geophys. Res. Space Phys. 2011, 116, A10309. [Google Scholar] [CrossRef] [Green Version]
- Obayashi, T. World-wide electron density changes and associated thermospheric winds during an ionospheric storm. Planet. Space Sci. 1972, 20, 511–520. [Google Scholar] [CrossRef]
- Kane, R.P. Global evolution of F2-region storms. J. Atmos. Terr. Phys. 1973, 35, 1953–1966. [Google Scholar] [CrossRef]
- Roosen, J. The seasonal variation of geomagnetic disturbance amplitudes. Bull. Astron. Inst. Neth. 1966, 18, 295. [Google Scholar]
- Mikhailov, A.V.; Schlegel, K. Equinoctial transitions in the ionosphere and thermosphere. Ann. Geophys. 2001, 19, 783–796. [Google Scholar] [CrossRef] [Green Version]
- Mikhailov, A.V.; Depuev, V.H.; Depueva, A.H. Synchronous NmF2 and NmE daytime variations as a key to the mechanism of quiet-time F2-layer disturbances. Ann. Geophys. 2007, 25, 483. [Google Scholar] [CrossRef] [Green Version]
- Ward, W.E.; Solheim, B.H.; Shepherd, G.G. Two day wave induced variations in the oxygen green line volume emission rate: WINDII observations. Geophys. Res. Lett. 1997, 24, 1127–1130. [Google Scholar] [CrossRef]
- Huang, C.-S. Continuous penetration of the interplanetary electric field to the equatorial ionosphere over eight hours during intense geomagnetic storms. J. Geophys. Res. Space Phys. 2008, 113, A11305. [Google Scholar] [CrossRef]
- Huang, C.-S.; Rich, F.J.; Burke, W.J. Storm time electric fields in the equatorial ionosphere observed near the dusk meridian. J. Geophys. Res. Space Phys. 2010, 115, A08313. [Google Scholar] [CrossRef]
- Maruyama, T.; Nakamura, M. Conditions for intense ionospheric storms expanding to lower midlatitudes. J. Geophys. Res. Space Phys. 2007, 112, A05310. [Google Scholar] [CrossRef] [Green Version]
- Balan, N.; Shiokawa, K.; Otsuka, Y.; Kikuchi, T.; Vijaya Lekshmi, D.; Kawamura, S.; Yamamoto, M.; Bailey, G.J. A physical mechanism of positive ionospheric storms at low latitudes and midlatitudes. J. Geophys. Res. Space Phys. 2010, 115, A02304. [Google Scholar] [CrossRef]
- Chen, P.-R. Two-day oscillations of the equatorial ionization anomaly. J. Geophys. Res. 1992, 97, 6343–6357. [Google Scholar] [CrossRef]
- Goncharenko, L.P.; Coster, A.J.; Chau, J.L.; Valladares, C.E. Impact of sudden stratospheric warmings on equatorial ionization anomaly. J. Geophys. Res. Space Phys. 2010, 115, A00G07. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jimoh, O.; Lei, J.; Huang, F. Investigation of Daytime Total Electron Content Enhancements over the Asian-Australian Sector Observed from the Beidou Geostationary Satellite during 2016–2018. Remote Sens. 2020, 12, 3406. https://doi.org/10.3390/rs12203406
Jimoh O, Lei J, Huang F. Investigation of Daytime Total Electron Content Enhancements over the Asian-Australian Sector Observed from the Beidou Geostationary Satellite during 2016–2018. Remote Sensing. 2020; 12(20):3406. https://doi.org/10.3390/rs12203406
Chicago/Turabian StyleJimoh, Oluwaseyi, Jiuhou Lei, and Fuqing Huang. 2020. "Investigation of Daytime Total Electron Content Enhancements over the Asian-Australian Sector Observed from the Beidou Geostationary Satellite during 2016–2018" Remote Sensing 12, no. 20: 3406. https://doi.org/10.3390/rs12203406
APA StyleJimoh, O., Lei, J., & Huang, F. (2020). Investigation of Daytime Total Electron Content Enhancements over the Asian-Australian Sector Observed from the Beidou Geostationary Satellite during 2016–2018. Remote Sensing, 12(20), 3406. https://doi.org/10.3390/rs12203406