Vertical Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.1.1. Estonia
2.1.2. China
2.1.3. New Zealand
2.1.4. Norway
2.2. The Studied DEMs
2.2.1. ASTER
2.2.2. AW3D30
2.2.3. MERIT
2.2.4. TanDEM-X DEM
2.2.5. SRTM
2.2.6. NASADEM
2.3. Reference Models
2.3.1. LiDAR DEMs
2.3.2. Pleiades-1A DEM
2.4. Pre-processing
2.5. Accuracy Assessment
3. Results
3.1. Overall Vertical Accuracy
3.2. Effect of Slope and Aspect on Accuracy
3.3. Effect of Land Cover on Accuracy
4. Discussion
4.1. Overall Accuracy
4.2. Effect of Slope and Aspect on Accuracy
4.3. Effect of Land Cover on the Accuracy
4.4. Effect of Spatial Resolution
4.5. Limitations of Our Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Papaioannou, G.; Loukas, A.; Vasiliades, L.; Aronica, G.T. Flood inundation mapping sensitivity to riverine spatial resolution and modelling approach. Nat. Hazards 2016. [Google Scholar] [CrossRef]
- Bajat, B.; Blagojević, D.; Kilibarda, M.; Luković, J.; Tošić, I. Spatial analysis of the temperature trends in Serbia during the period 1961–2010. Theor. Appl. Clim. 2015, 121, 289–301. [Google Scholar] [CrossRef]
- Saint-Laurent, D.; Paradis, R.; Drouin, A.; Gervais-Beaulac, V. Impacts of floods on organic carbon concentrations in alluvial soils along hydrological gradients using a digital elevation model (DEM). Water 2016, 8, 208. [Google Scholar] [CrossRef] [Green Version]
- Balzter, H.; Cole, B.; Thiel, C.; Schmullius, C. Mapping CORINE land cover from Sentinel-1A SAR and SRTM digital elevation model data using random forests. Remote Sens. 2015, 7, 14876–14898. [Google Scholar] [CrossRef] [Green Version]
- Rahmati, O.; Yousefi, S.; Kalantari, Z.; Uuemaa, E.; Teimurian, T.; Keesstra, S.; Pham, T.D.; Bui, D.T. Multi-hazard exposure mapping using machine learning techniques: A case study from Iran. Remote Sens. 2019, 11, 1943. [Google Scholar] [CrossRef] [Green Version]
- Scown, M.W.; Thoms, M.C.; De Jager, N.R. Floodplain complexity and surface metrics: Influences of scale and geomorphology. Geomorphology 2015, 245, 102–116. [Google Scholar] [CrossRef]
- Fenta, A.A.; Kifle, A.; Gebreyohannes, T.; Hailu, G. Spatial analysis of groundwater potential using remote sensing and GIS-based multi-criteria evaluation in Raya Valley, northern Ethiopia. Hydrogeol. J. 2014, 23, 195–206. [Google Scholar] [CrossRef]
- Bonilla-Sierra, V.; Scholtès, L.; Donzé, F.V.; Elmouttie, M.K. Rock slope stability analysis using photogrammetric data and DFN–DEM modelling. Acta Geotech. 2015, 10, 497–511. [Google Scholar] [CrossRef]
- Lakshmi, S.E.; Yarrakula, K. Review and critical analysis on digital elevation models. Geofizika 2019, 35, 129–157. [Google Scholar] [CrossRef]
- Purinton, B.; Bookhagen, B. Validation of digital elevation models (DEMs) and comparison of geomorphic metrics on the southern Central Andean Plateau. Earth Surf. Dyn. 2017. [Google Scholar] [CrossRef] [Green Version]
- Jarihani, A.A.; Callow, J.N.; McVicar, T.R.; Van Niel, T.G.; Larsen, J.R. Satellite-derived Digital Elevation Model (DEM) selection, preparation and correction for hydrodynamic modelling in large, low-gradient and data-sparse catchments. J. Hydrol. 2015, 524, 489–506. [Google Scholar] [CrossRef]
- Hawker, L.; Bates, P.; Neal, J.; Rougier, J. Perspectives on digital elevation model (DEM) simulation for flood modeling in the absence of a high-accuracy open access global DEM. Front. Earth Sci. 2018, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.; Sandwell, D. Accuracy and resolution of shuttle radar topography mission data. Geophys. Res. Lett. 2003, 30, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Eineder, M. Problems and solutions for Insar digital elevation model generation of mountainous terrain. Aerospace 2000, 2003, 1–5. [Google Scholar]
- Rizzoli, P.; Martone, M.; Gonzalez, C.; Wecklich, C.; Borla Tridon, D.; Bräutigam, B.; Bachmann, M.; Schulze, D.; Fritz, T.; Huber, M.; et al. Generation and performance assessment of the global TanDEM-X digital elevation model. ISPRS J. Photogramm. Remote Sens. 2017, 132, 119–139. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Peng, J.; Hou, Y.; Shan, J. Evaluation of recently released open global digital elevation models of Hubei, China. Remote Sens. 2017, 9, 262. [Google Scholar] [CrossRef] [Green Version]
- Ariza-Villaverde, A.B.; Jiménez-Hornero, F.J.; Gutiérrez de Ravé, E. Influence of DEM resolution on drainage network extraction: A multifractal analysis. Geomorphology 2015, 241, 243–254. [Google Scholar] [CrossRef]
- Dong, Y.; Chang, H.C.; Chen, W.; Zhang, K.; Feng, R. Accuracy assessment of GDEM, SRTM, and DLR-SRTM in Northeastern China. Geocarto Int. 2015. [Google Scholar] [CrossRef]
- Walczak, Z.; Sojka, M.; Wrózyński, R.; Laks, I. Estimation of polder retention capacity based on ASTER, SRTM and LIDAR DEMs: The case of Majdany Polder (West Poland). Water 2016, 8, 230. [Google Scholar] [CrossRef]
- Varga, M.; Bašić, T. Accuracy validation and comparison of global digital elevation models over Croatia. Int. J. Remote Sens. 2015. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Tawatari, R.; Yamaguchi, T.; O’Loughlin, F.; Neal, J.C.; Sampson, C.C.; Kanae, S.; Bates, P.D. A high-accuracy map of global terrain elevations. Geophys. Res. Lett. 2017, 44, 5844–5853. [Google Scholar] [CrossRef] [Green Version]
- Takaku, J.; Tadono, T.; Doutsu, M.; Ohgushi, F.; Kai, H. Updates of “AW3D30” ALOS global digital surface model with other open access datasets. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020. [Google Scholar] [CrossRef]
- Crippen, R.; Buckley, S.; Agram, P.; Belz, E.; Gurrola, E.; Hensley, S.; Kobrick, M.; Lavalle, M.; Martin, J.; Neumann, M.; et al. Nasadem global elevation model: Methods and progress. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives; XXIII ISPRS Congress: Prague, Czech Republic, 2016; Volume XLI-B4. [Google Scholar]
- Gdulová, K.; Marešová, J.; Moudrý, V. Accuracy assessment of the global TanDEM-X digital elevation model in a mountain environment. Remote Sens. Environ. 2020, 241, 111724. [Google Scholar] [CrossRef]
- Bhardwaj, A. Assessment of Vertical Accuracy for TanDEM-X 90 m DEMs in Plain, Moderate, and Rugged Terrain. Proceedings 2019, 24, 6208. [Google Scholar] [CrossRef] [Green Version]
- Hawker, L.; Neal, J.; Bates, P. Accuracy assessment of the TanDEM-X 90 Digital Elevation Model for selected floodplain sites. Remote Sens. Environ. 2019, 232. [Google Scholar] [CrossRef]
- Moudrý, V.; Lecours, V.; Gdulová, K.; Gábor, L.; Moudrá, L.; Kropáček, J.; Wild, J. On the use of global DEMs in ecological modelling and the accuracy of new bare-earth DEMs. Ecol. Modell. 2018, 383, 3–9. [Google Scholar] [CrossRef]
- Liu, K.; Song, C.; Ke, L.; Jiang, L.; Pan, Y.; Ma, R. Global open-access DEM performances in Earth’s most rugged region High Mountain Asia: A multi-level assessment. Geomorphology 2019, 338, 16–26. [Google Scholar] [CrossRef]
- Schumann, G.J.-P.; Bates, P.D. The The need for a high-accuracy, open-access global DEM. Front. Earth Sci. 2018, 6, 1–5. [Google Scholar] [CrossRef]
- del Rosario González-Moradas, M.; Viveen, W. Evaluation of ASTER GDEM2, SRTMv3.0, ALOS AW3D30 and TanDEM-X DEMs for the Peruvian Andes against highly accurate GNSS ground control points and geomorphological-hydrological metrics. Remote Sens. Environ. 2020. [Google Scholar] [CrossRef]
- Zhang, K.; Gann, D.; Ross, M.; Robertson, Q.; Sarmiento, J.; Santana, S.; Rhome, J.; Fritz, C. Accuracy assessment of ASTER, SRTM, ALOS, and TDX DEMs for Hispaniola and implications for mapping vulnerability to coastal flooding. Remote Sens. Environ. 2019, 225, 290–306. [Google Scholar] [CrossRef]
- Dewitt, J.D.; Warner, T.A.; Conley, J.F. Comparison of DEMS derived from USGS DLG, SRTM, a statewide photogrammetry program, ASTER GDEM and LiDAR: Implications for change detection. GISci. Remote Sens. 2015, 52, 179–197. [Google Scholar] [CrossRef]
- Tachikawa, T.; Kaku, M.; Iwasaki, A.; Gesch, D.; Oimoen, M.; Zhang, Z.; Danielson, J.; Krieger, T.; Curtis, B.; Haase, J.; et al. ASTER global digital elevation model version 2—Summary of validation results. Arch. Cent. Jt. Japan US ASTER Sci. Team 2011, 2, 1–25. [Google Scholar]
- Hirano, A.; Welch, R.; Lang, H. Mapping from ASTER stereo image data: DEM validation and accuracy assessment. ISPRS J. Photogramm. Remote Sens. 2003, 57, 356–370. [Google Scholar] [CrossRef]
- Florinsky, I.V.; Skrypitsyna, T.N.; Luschikova, O.S. Comparative accuracy of the AW3D30 DSM, ASTER GDEM, and SRTM1 DEM: A case study on the Zaoksky testing ground, central European Russia. Remote Sens. Lett. 2018, 9, 706–714. [Google Scholar] [CrossRef]
- Gesch, D.B.; Oimoen, M.J.; Evans, G.A. Accuracy Assessment of the U.S. Geological Survey National Elevation Dataset, and Comparison with Other Large-Area Elevation Datasets-SRTM and ASTER. Open-File Rep. 2014. [Google Scholar] [CrossRef]
- Takaku, J.; Tadono, T.; Tsutsui, K. Generation of high resolution global DSM from ALOS PRISM. ISPRS Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2014, 40, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Courty, L.G.; Soriano-Monzalvo, J.C.; Pedrozo-Acuña, A. Evaluation of open-access global digital elevation models (AW3D30, SRTM, and ASTER) for flood modelling purposes. J. Flood Risk Manag. 2019, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.O.; Thaker, T.; Chaurasia, A.; Patel, P.; Singh, A.K. Vertical accuracy evaluation of SRTM-GL1, GDEM-V2, AW3D30 and CartoDEM-V3.1 of 30-m resolution with dual frequency GNSS for lower Tapi Basin India. Geocarto Int. 2018, 33, 1237–1256. [Google Scholar] [CrossRef]
- Hirt, C. Artefact detection in global digital elevation models (DEMs): The Maximum Slope Approach and its application for complete screening of the SRTM v4.1 and MERIT DEMs. Remote Sens. Environ. 2018, 207, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Gruber, A.; Wessel, B.; Martone, M.; Roth, A. The TanDEM-X DEM mosaicking: Fusion of multiple acquisitions using InSAR quality parameters. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1047–1057. [Google Scholar] [CrossRef]
- Zink, M.; Bachmann, M.; Bräutigam, B.; Fritz, T.; Hajnsek, I.; Krieger, G.; Moreira, A.; Wessel, B. TanDEM-X: The new global DEM takes shape. IEEE Geosci. Remote Sens. Mag. 2014, 2, 8–23. [Google Scholar] [CrossRef]
- Wessel, B. TanDEM-X Ground Segment DEM Products Specification Document; Public Doc. TD-GS-PS-0021 2018, TD-GS-PS-0; Public Document TD-GS-PS-0021; EOC–Earth Observation Center: Oberpfaffenhofen, Germany, 2018; Issue 3.2, pp. 1–49. [Google Scholar]
- Chen, X.; Sun, Q.; Hu, J. Generation of Complete SAR Geometric Distortion Maps Based on DEM and Neighbor Gradient Algorithm. Appl. Sci. 2018, 8, 2206. [Google Scholar] [CrossRef] [Green Version]
- Farr, T.G.; Kobrick, M. Shuttle radar topography mission produces a wealth of data. Eos Trans. Am. Geophys. Union 2000, 81, 583–585. [Google Scholar] [CrossRef]
- Rabus, B.; Eineder, M.; Roth, A.; Bamler, R. The shuttle radar topography mission—A new class of digital elevation models acquired by spaceborne radar. ISPRS J. Photogramm. Remote Sens. 2003, 57, 241–262. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, E.; Morris, C.S.; Belz, J.E. A global assessment of the SRTM performance. Photogramm. Eng. Remote Sens. 2006. [Google Scholar] [CrossRef] [Green Version]
- Kolecka, N.; Kozak, J. Assessment of the accuracy of SRTM C- and X-Band high mountain elevation data: A case study of the Polish Tatra Mountains. Pure Appl. Geophys. 2014, 171, 897–912. [Google Scholar] [CrossRef] [Green Version]
- NASA. The Shuttle Radar Topography Mission (SRTM) Collection User Guide. Available online: https://lpdaac.usgs.gov/documents/179/SRTM_User_Guide_V3.pdf (accessed on 13 September 2020).
- Gesch, D.B. Best practices for elevation-based assessments of sea-level rise and coastal flooding exposure. Front. Earth Sci. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- USGS. EarthExplorer. Available online: https://earthexplorer.usgs.gov/ (accessed on 3 February 2018).
- JAXA. ALOS Global Digital Surface Model (DSM) ALOS World 3D-30m (AW3D30) Version 3.1: Product Description; Earth Obs. Res. Cent. Japan Aerosp. Explor.; Agency (JAXA EORC): Tsukuba Japan, 2020; p. 13. [Google Scholar]
- MERIT DEM. Available online: http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_DEM/ (accessed on 3 February 2018).
- EOC Geoservice. The TanDEM-X 90 m Digital Elevation Model. Available online: https://geoservice.dlr.de/web/dataguide/tdm90/#further_information_mission (accessed on 2 March 2020).
- DAAC.; N.E.L.P. NASADEM Merged DEM Global 1 arc second V001. Available online: https://doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001 (accessed on 10 September 2020).
- Passalacqua, P.; Belmont, P.; Staley, D.M.; Simley, J.D.; Arrowsmith, J.R.; Bode, C.A.; Crosby, C.; DeLong, S.B.; Glenn, N.F.; Kelly, S.A.; et al. Analyzing high resolution topography for advancing the understanding of mass and energy transfer through landscapes: A review. Earth Sci. Rev. 2015, 148, 174–193. [Google Scholar] [CrossRef] [Green Version]
- Estonian Land Board Geoportal. Available online: https://geoportaal.maaamet.ee/eng/Spatial-Data/Ele (accessed on 9 September 2020).
- Høydedata. Available online: https://hoydedata.no/LaserInnsyn/ (accessed on 4 April 2018).
- Linz Data Service. Available online: https://data.linz.govt.nz/layer/53621-wellington-l (accessed on 10 September 2020).
- Middleton, T.A.; Walker, R.T.; Parsons, B.; Lei, Q.; Zhou, Y.; Ren, Z. A major, intraplate, normal-faulting earthquake: The 1739 Yinchuan event in northern China. JGR Solid Earth 2015, 121, 293–320. [Google Scholar] [CrossRef]
- OpenTopography. Available online: https://opentopography.org/ (accessed on 7 August 2020).
- Zhou, Y.; Parsons, B.; Elliott, J.R.; Barisin, I.; Walker, R.T. Assessing the ability of Pleiades stereo imagery to determine height changes in earthquakes: A case study for the El Mayor-Cucapah epicentral area. J. Geophys. Res. Solid Earth 2015, 120, 8793–8808. [Google Scholar] [CrossRef] [Green Version]
- Bagnardi, M.; González, P.J.; Hooper, A. High-resolution digital elevation model from tri-stereo Pleiades-1 satellite imagery for lava flow volume estimates at Fogo Volcano. Geophys. Res. Lett. 2016, 43, 6267–6275. [Google Scholar] [CrossRef] [Green Version]
- Agisoft Geoid. Available online: https://www.agisoft.com/downloads/geoids/ (accessed on 12 October 2020).
- Ellmann, A.; Märdla, S.; Oja, T. Eesti Geoidi Mudel EST-GEOID2017; 2017. TalTech, Estonia, 2017.
- ESRI ArcGIS Desktop: Release 10.6; Environmental Systems Research Institute: Redlands, CA, USA, 2018.
- Yap, L.; Kandé, L.H.; Nouayou, R.; Kamguia, J.; Ngouh, N.A.; Makuate, M.B. Vertical accuracy evaluation of freely available latest high-resolution (30 m) global digital elevation models over Cameroon (Central Africa) with GPS/leveling ground control points. Int. J. Digit. Earth 2019, 12, 500–524. [Google Scholar] [CrossRef]
- Nardi, F.; Annis, A.; Baldassarre, G.D.; Vivoni, E.R.; Grimaldi, S. GFPLAIN250m, a global high-resolution dataset of Earth’s floodplains. Nat. Sci. Data 2019. [Google Scholar] [CrossRef]
- Yamazaki, D.; Ikeshima, D.; Sosa, J.; Bates, P.D.; Allen, G.H.; Pavelsky, T.M. MERIT Hydro: A high-resolution global hydrography map based on latest topography dataset. Water Resour. Res. 2019, 55, 5053–5073. [Google Scholar] [CrossRef] [Green Version]
- Copernicus Global Land Cover Layers—Collection. Available online: https://lcviewer.vito.be/download (accessed on 16 September 2020).
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013. [Google Scholar] [CrossRef] [Green Version]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010. [Google Scholar]
- Höhle, J.; Höhle, M. Accuracy assessment of digital elevation models by means of robust statistical methods. ISPRS J. Photogramm. Remote Sens. 2009, 64, 398–406. [Google Scholar] [CrossRef] [Green Version]
- Van Der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy array: A structure for efficient numerical computation. Comput. Sci. Eng. 2011. [Google Scholar] [CrossRef] [Green Version]
- Nikolakopoulos, K.G. Accuracy assessment of ALOS AW3D30 DSM and comparison to ALOS PRISM DSM created with classical photogrammetric techniques. Eur. J. Remote Sens. 2020. [Google Scholar] [CrossRef]
- Mukherjee, S.; Joshi, P.K.; Mukherjee, S.; Ghosh, A.; Garg, R.D.; Mukhopadhyay, A. Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). Int. J. Appl. Earth Obs. Geoinf. 2012, 21, 205–217. [Google Scholar] [CrossRef]
- Szabó, G.; Singh, S.K.; Szabó, S. Slope angle and aspect as influencing factors on the accuracy of the SRTM and the ASTER GDEM databases. Phys. Chem. Earth 2015. [Google Scholar] [CrossRef]
- Treuhaft, R.N.; Siqueira, P.R. Vertical structure of vegetated land surfaces from interferometric and polarimetric radar. Radio Sci. 2000. [Google Scholar] [CrossRef] [Green Version]
- Gorokhovich, Y.; Voustianiouk, A. Accuracy assessment of the processed SRTM-based elevation data by CGIAR using field data from USA and Thailand and its relation to the terrain characteristics. Remote Sens. Environ. 2006, 104, 409–415. [Google Scholar] [CrossRef]
- Passini, R.; Jacobsen, K. Accuracy analysis of SRTM height models. In Proceedings of the American Society for Photogrammetry and Remote Sensing—ASPRS Annual Conference, Tampa, Florida, USA, 7 May 2007. [Google Scholar]
- Allen, R.B.; Bellingham, P.J.; Holdaway, R.J.; Wiser, S.K. New Zealand’s indigenous forests and shrublands. In Ecosystem Services in New Zealand—Conditions and Trends; Manaaki Whenua Press: Lincoln, New Zealand, 2013. [Google Scholar]
- Gesch, D.; Oimoen, M.; Danielson, J.; Meyer, D. Validation of the ASTER global digital elevation model version 3 over the Conterminous United States. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2016, 41, 143–148. [Google Scholar] [CrossRef]
- Wessel, B.; Huber, M.; Wohlfart, C.; Marschalk, U.; Kosmann, D.; Roth, A. Accuracy assessment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS J. Photogramm. Remote Sens. 2018. [Google Scholar] [CrossRef]
- Gardelle, J.; Berthier, E.; Arnaud, Y. Impact of resolution and radar penetration on glacier elevation changes computed from DEM differencing. J. Glaciol. 2012, 58, 419–422. [Google Scholar] [CrossRef] [Green Version]
- Dehecq, A.; Millan, R.; Berthier, E.; Gourmelen, N.; Trouvé, E.; Vionnet, V. Elevation Changes Inferred from TanDEM-X Data over the Mont-Blanc Area: Impact of the X-Band Interferometric Bias. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016. [Google Scholar] [CrossRef] [Green Version]
- Pipaud, I.; Loibl, D.; Lehmkuhl, F. Evaluation of TanDEM-X elevation data for geomorphological mapping and interpretation in high mountain environments—A case study from SE Tibet, China. Geomorphology 2015. [Google Scholar] [CrossRef]
- Potapov, P.; Li, X.; Hernandez-Serna, A.; Tyukavina, A.; Hansen, M.C.; Kommareddy, A.; Pickens, A.; Turubanova, S.; Tang, H.; Silva, C.E.; et al. Mapping and monitoring global forest canopy height through integration of GEDI and Landsat data. 2020; in review. [Google Scholar]
- Zalite, K.; Voormansik, K.; Olesk, A.; Noorma, M.; Reinart, A. Effects of inundated vegetation on X-band HH-VV backscatter and phase difference. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014. [Google Scholar] [CrossRef]
- Yue, L.; Shen, H.; Zhang, L.; Zheng, X.; Zhang, F.; Yuan, Q. High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations. ISPRS J. Photogramm. Remote Sens. 2017, 123, 20–34. [Google Scholar] [CrossRef] [Green Version]
- Su, Y.; Guo, Q.; Ma, Q.; Li, W. SRTM DEM correction in vegetated mountain areas through the integration of spaceborne LiDAR, airborne LiDAR, and optical imagery. Remote Sens. 2015, 7, 11202–11225. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.W.; Zebker, H.A. Phase unwrapping for large SAR interferograms: Statistical segmentation and generalized network models. IEEE Trans. Geosci. Remote Sens. 2002. [Google Scholar] [CrossRef] [Green Version]
Dataset | Horizontal Resolution (m) | Method | Estimated Vertical Accuracy (m) | Data collection Period | Source |
---|---|---|---|---|---|
ASTER GDEM V3 | 30 | Photogrammetry | 17 [33] | 2011 | [52] |
AW3D30 | 30 | Photogrammetry | 5 [22] | 2006–2011 | [53] |
MERIT DEM | 90 | Computational | 12 [21] | 2000–2017 | [54] |
TanDEM-X DEM | 90 | Interferometry synthetic aperture radar | <10 [43] | 2011–2015 | [55] |
SRTM DEM V3 | 30 | Interferometry synthetic aperture radar | 9 [48] | 2000 | [52] |
NASADEM | 30 | Interferometry synthetic aperture radar | 2000 | [56] |
Slope (°) | Slope Class | Azimuth | Aspect | Land Cover Class | Land Cover Type |
---|---|---|---|---|---|
0–5 | 1 | 337.501°–22.5° | N | 1 | Closed forest |
5–10 | 2 | 22.501°–67.5° | NE | 2 | Open forest |
10–15 | 3 | 67.501°–112.5° | E | 3 | Shrubs |
15–20 | 4 | 112.501°–157.5° | SE | 4 | Herbaceous vegetation |
20–25 | 5 | 157.501°–202.5° | S | 5 | Cultivated area |
25–30 | 6 | 202.501°–247.5° | SW | 6 | Urban/built up |
30–35 | 7 | 247.501°–292.5° | W | 7 | Bare/sparse vegetation |
>35 | 8 | 292.501°–337.5° | NW | 8 | Wetland |
9 | Snow and ice | ||||
10 | Water |
Global DEM | No of Pixels | ME | STD | 25% | 75% | MedE | NMAD | RMSE | |
---|---|---|---|---|---|---|---|---|---|
Estonia | ASTER | 210 787 413 | −3.16 | 9.86 | −9.75 | 3.42 | −3.29 | 7.81 | 10.36 |
AW3D30 | 210 787 413 | 4.87 | 6.25 | 0.25 | 8.77 | 2.89 | 5.03 | 7.92 | |
MERIT | 210 787 413 | 0.87 | 2.88 | −0.57 | 2.44 | 0.93 | 2.11 | 3.01 | |
TanDEM-X | 210 787 413 | 4.81 | 5.31 | 0.92 | 7.36 | 3.06 | 4.14 | 7.16 | |
SRTM | 210 787 413 | 4.57 | 4.75 | 0.44 | 8.11 | 3.51 | 4.03 | 6.59 | |
NASADEM | 210 787 413 | 4.31 | 4.72 | 0.23 | 7.8 | 3.21 | 4 | 6.39 | |
China | ASTER | 99 105 968 | 3.89 | 12.95 | −3.88 | 10.02 | 1.99 | 9.53 | 13.52 |
AW3D30 | 99 105 968 | 3.77 | 6.11 | 1.36 | 5.72 | 3.5 | 3.83 | 7.18 | |
MERIT | 99 105 968 | 2.76 | 12.12 | −1.07 | 6.69 | 2.83 | 7.57 | 12.43 | |
TanDEM-X | 99 105 968 | −0.51 | 11.09 | −3.55 | 2.55 | -0.05 | 6.65 | 11.1 | |
SRTM | 99 105 968 | 3.27 | 9.45 | −0.13 | 6.7 | 3.41 | 5.73 | 10 | |
NASADEM | 99 105 968 | 0.59 | 8.51 | −2.89 | 4 | 0.68 | 5.62 | 8.53 | |
New Zealand | ASTER | 106 101 374 | −0.43 | 11.76 | −8.22 | 7.39 | −0.89 | 9.33 | 11.77 |
AW3D30 | 106 101 374 | 7.75 | 8.38 | 1.76 | 13.37 | 7.48 | 6.72 | 11.42 | |
MERIT | 106 101 374 | 2.38 | 13.37 | −6.39 | 10.64 | 2.01 | 10.41 | 13.58 | |
TanDEM-X | 106 101 374 | 8.03 | 12.74 | −0.17 | 16.27 | 7.26 | 10.1 | 15.05 | |
SRTM | 106 101 374 | 9 | 9.47 | 2.32 | 15.1 | 8.27 | 7.53 | 13.07 | |
NASADEM | 106 101 374 | 7.55 | 9.43 | 0.95 | 13.59 | 6.79 | 7.49 | 12.08 | |
Norway | ASTER | 192 759 974 | −4.36 | 8.12 | −9.57 | 0.28 | −4.7 | 6.18 | 9.22 |
AW3D30 | 192 759 974 | 2.99 | 3.98 | 0.86 | 4.46 | 2.45 | 2.69 | 4.98 | |
MERIT | 192 759 974 | 0.2 | 10.49 | −2.47 | 4.35 | 1.13 | 6.24 | 10.49 | |
TanDEM-X | 192 759 974 | 1.52 | 6.67 | −1.7 | 4.15 | 0.87 | 4.51 | 6.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uuemaa, E.; Ahi, S.; Montibeller, B.; Muru, M.; Kmoch, A. Vertical Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sens. 2020, 12, 3482. https://doi.org/10.3390/rs12213482
Uuemaa E, Ahi S, Montibeller B, Muru M, Kmoch A. Vertical Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sensing. 2020; 12(21):3482. https://doi.org/10.3390/rs12213482
Chicago/Turabian StyleUuemaa, Evelyn, Sander Ahi, Bruno Montibeller, Merle Muru, and Alexander Kmoch. 2020. "Vertical Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM)" Remote Sensing 12, no. 21: 3482. https://doi.org/10.3390/rs12213482
APA StyleUuemaa, E., Ahi, S., Montibeller, B., Muru, M., & Kmoch, A. (2020). Vertical Accuracy of Freely Available Global Digital Elevation Models (ASTER, AW3D30, MERIT, TanDEM-X, SRTM, and NASADEM). Remote Sensing, 12(21), 3482. https://doi.org/10.3390/rs12213482