Earth Observation Based Monitoring of Forests in Germany: A Review
Abstract
:1. Introduction
1.1. Forests in Germany: Relevance and Current Challenges
1.2. Earth Observation-Based Analyses Supporting Informed Decision-Making
- present a well-rounded, up to date, fact-based introduction to forests in Germany, including spatial distribution, composition, management, the institutional landscape, and current pressing challenges of societal relevance
- present the results of an in-depth review and analyses of all EO-based research studies focusing on forests in Germany including a categorization on topic, location, extent, spatial resolution, temporal interval, thematic focus, and outcome
- critically discuss what spaceborne EO can contribute to informed decision-making by agencies and stakeholders from the forest sector, and what information cannot be provided by EO-based analyses
- identify national-scale research gaps and geo-information-product gaps
- discuss how a concerted effort of EO-based, national-scale mapping can contribute to forest characterization, forest monitoring, and, finally, forest protection and ecosystem preservation in Germany.
2. Forests in Germany
2.1. Historic Development and Current Status of German Forests
2.2. Current Forest Monitoring and Reporting Practice in Germany
Title | Repetition Interval | Grid | Purpose | Recorded Properties | Executing Institution |
---|---|---|---|---|---|
national forest inventory, NFI (Bundeswaldinventur) | decadal the next NFI is scheduled for 2021/2022 | base: 4 × 4 km2 grid; double density: 2.83 × 2.83 km2; quadruple density: 2 × 2 km2 | large-scale inventory and wood production potential, i.e. an economically motivated initiative | approx. 150 parameters (e.g. tree species, tree height, diameter, age, amount of deadwood) | data collection by individual forest specialists, reporting and analyses by Federal Research Institute for Rural Areas, Forestry and Fisheries (Thünen Institut) |
national forest soil inventory, NFSI (Bodenzustandserhebung) | approx. 15 years the last survey was conducted 2006–2008 | 16 × 16 km2 grid corresponding to 420 plots intersecting with forests in Germany during the first inventory; 8 × 8 km2 corresponding to 1859 plots | generatation of reliable data on the current state and changes in forest soils and selected features of the forests | soil chemistry, soil reaction, aqua regia, C, N, S, P, 1:2 extraction nitrogen, cation exchange capacity, soil water, tree growth, ground vegetation, tree nutrition (leave/needle chemistry) | individual data collection of the 16 federal states - reporting and analyses by the Federal Research Institute for Rural Areas, Forestry and Fisheries (Thünen Institut) |
crown condition survey, CCS (Waldzustandserhebung) | annual | 16 × 16 km2 grid corresponding to 420 plots at national level; some federal states perform the assessment on denser grids and assess additional points for the monitoring at federal state level (e.g. 4 × 4 km2 or 2 × 2 km2) | assessment of spatial and temporal variation of tree vitality; detection of drivers and effects of plant stress | crown condition, impact factors (e.g. insects) | |
intensive monitoring | continuous some parameters are assessed periodically (e.g. soil assessment on decadal basis) | case studies at 68 sites | understanding cause-effect relationships in forest ecosystems | crown condition, impacts factors, soil chemistry, soil reaction, aqua regia, C, N, S, P, cation exchange capacity, soil solution, tree growth, ground vegetation, tree nutrition, litterfall, deposition, meteorology, air quality |
3. Major Challenges for Forests in Germany
3.1. Forest Disturbances in Germany
3.1.1. Drought and Heat Stress
3.1.2. Vulnerability Due to Pests and Pathogens
3.1.3. Wind Storms and Snow Break Vulnerability
3.2. Climate Change Adaptation Strategies
4. Institutional Landscape in the Forest Sector
5. Methodology of the Review
- General information:
- ○
- Publication year
- ○
- 1st author’s institution, institution category (e.g., federal state research institution), and research background (EO, forestry)
- ○
- Publishing journal and journal category (e.g., ecology)
- ○
- Affiliated project and funding / financing (e.g., BMEL)
- ○
- Potential users of results (e.g., timber industry)
- Site specific information:
- ○
- Name and location of study area including federal state (e.g., Black Forest, Baden-Wuerttemberg)
- ○
- Spatial coverage of study area (in hectares)
- ○
- Predominant forest type (deciduous, coniferous, mixed)
- ○
- Information on forest management (e.g., protected area)
- Information about remote sensing data:
- ○
- Platform (satellite, aircraft, UAV)
- ○
- Sensor type (e.g., multispectral) and instrument name (e.g., Sentinel-2)
- ○
- Geometric resolution of EO data (ground sampling distance)
- ○
- Temporal resolution of EO data (mono-temporal or multi-temporal, subdivided in mono-annual or multi-annual)
- ○
- Time period observed (e.g., March-October 2007)
- Information on research:
- ○
- Research topic considered (e.g., forest disturbance)
- ○
- Parameters examined within the study (e.g., tree species)
- ○
- Examined object scale (leave, tree, stand, forest, landscape)
- ○
- Applied methodology (e.g., linear regression)
- ○
- Information about validation and accuracy of results
6. Results: Present Remote Sensing-Based Forest Research
6.1. Temporal Development of Publications, Author Affiliation, and Funding of Studies
6.2. Spatial Coverage, Spatial Extent, and Investigated Forest Types
6.3. Employed Remote Sensing Sensors
6.4. Temporal Resolution
6.5. Research Topics
6.5.1. Biomass/Productivity
6.5.2. Forest Structure
6.5.3. Disturbance
6.5.4. Biodiversity/Habitats
6.5.5. Forest Cover/Type
6.5.6. Plant Traits
6.5.7. Phenology
7. Discussion
8. Conclusions
- We reviewed 166 research articles published since 1997 mainly in journals associated with remote sensing, ecology, or forestry. The publications could be subdivided into seven main research topics. In summary, ~27% of all studies focused on parameters related to biomass and productivity, ~23% on forest structure, 16% on forest disturbances, ~14% on biodiversity and habitats, ~10% on forest cover and forest type, ~6% on plant traits, and ~4% on phenology.
- Considering the spatial extent and coverage of the studies, we found that the majority focused on a local to regional scale (~90%) observing parameters mainly at the stand level. The review pointed out the existence of several “hot spots” when it comes to the surveyed forest areas in Germany. One example is the Bavarian Forest National Park serving as a study area in 34% of the reviewed articles.
- Regarding the employed remote sensing platforms and sensor types, airborne platforms are the most frequently used (57%), but they are increasingly being replaced or supplemented by spaceborne platforms (41%). Airborne lidar data and spaceborne multispectral data were mostly employed data types for forest studies in Germany. We found a direct correlation between the remote sensing platform, spatial resolution of the input data, size of the study area, and the investigated object scale (tree, stand, forest, and landscape).
- Throughout the different research topics, the majority of studies relied on mono-temporal input data (67%). Multi-temporal analysis is mainly found in studies investigating forest disturbances and phenology. Since 2017, there is a notable increase in multi-temporal studies.
- Looking at the different research topics, the forest structure is an essential parameter to most of the forestry related aspects, such as linking canopy closure with habitat characterisation. Horizontal and vertical structure information is, therefore, often used as an additional input parameter to most of the reviewed studies.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Acharya, R.P.; Maraseni, T.; Cockfield, G. Global trend of forest ecosystem services valuation—An analysis of publications. Ecosyst. Serv. 2019, 39. [Google Scholar] [CrossRef]
- De Rigo, D.; Bosco, C.; San-Miguel-Ayanz, J.; Houston Durrant, T.; Barredo, J.I.; Strona, G.; Caudullo, G.; Di Leo, M.; Boca, R. Forest resources in Europe: An overview on ecosystem services, disturbances and threats. In European Atlas of Forest Tree Species; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Ninan, K.; Inoue, M. Valuing forest ecosystem services: What we know and what we don’t. In Valuing Ecosystem Services; Edward Elgar Publishing: Cheltenham, UK, 2014; p. 464. [Google Scholar] [CrossRef] [Green Version]
- Krieger, D.J. The Economiv Value of Forest Ecosystem Services: A Review; The Wilderness Society: Washington, DC, USA, 2001. [Google Scholar]
- Bohn, U. Karte der Natürlichen Vegetation Europas/Map of the Natural Vegetation of Europe. Maßstab/Scale 1: 2,500,000. Available online: https://is.muni.cz/el/1431/podzim2012/Bi9420/um/Bohn_etal2004_Map-Nat-Veg-Europe.pdf (accessed on 11 May 2020).
- Giesecke, T.; Brewer, S.; Finsinger, W.; Leydet, M.; Bradshaw, R.H.W. Patterns and dynamics of European vegetation change over the last 15,000 years. J. Biogeogr. 2017, 44, 1441–1456. [Google Scholar] [CrossRef] [Green Version]
- Elsasser, P. Waldnutzung in Deutschland—Einige wirtschaftliche, rechtliche und politische Hintergründe. Forsch. Lehre 2018, 8, 660–662. [Google Scholar]
- Tree Cover Loss in Germany. Available online: www.globalforestwatch.org (accessed on 12 July 2020).
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying drivers of global forest loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef]
- Bundesministerium für Ernährung und Landwirtschaft (BMEL) Referat 515—Nachhaltige Waldbewirtschaftung. Ergebnisse der Waldzustandserhebung 2019; BMEL: Bonn, Germany, 2020; p. 60. [Google Scholar]
- Hickler, T.; Vohland, K.; Feehan, J.; Miller, P.A.; Smith, B.; Costa, L.; Giesecke, T.; Fronzek, S.; Carter, T.R.; Cramer, W.; et al. Projecting the future distribution of European potential natural vegetation zones with a generalized, tree species-based dynamic vegetation model: Future changes in European vegetation zones. Glob. Ecol. Biogeogr. 2012, 21, 50–63. [Google Scholar] [CrossRef]
- Adelheid Wallner, M.I.; Koch, V.; Tian, J.; Reinartz, P.; Atzberger, C.; Seitz, R. Waldstrukturbeschreibung aus dem All. LWF Aktuell 2015, 104, 37. [Google Scholar]
- Dash, J.; Ogutu, B.O. Recent advances in space-borne optical remote sensing systems for monitoring global terrestrial ecosystems. Prog. Phys. Geogr. Earth Environ. 2016, 40, 322–351. [Google Scholar] [CrossRef]
- Kramer, H.J.; Cracknell, A.P. An overview of small satellites in remote sensing. Int. J. Remote. Sens. 2008, 29, 4285–4337. [Google Scholar] [CrossRef]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote Sensing Technologies for Enhancing Forest Inventories: A Review. Can. J. Remote. Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef] [Green Version]
- Forestry Thematic Exploitation Platform (Forestry TEP). Available online: https://f-tep.com/ (accessed on 26 June 2020).
- Copernicus Land Monitoring Service—High Resolution Layers—Forests. Available online: https://land.copernicus.eu/pan-european/high-resolution-layers/forests (accessed on 26 June 2020).
- Langanke, D.H.T.; Ramminger, G.; Buzzo, G.; Berndt, F. Copernicus Land Monitoring Service—High Resolution Layer Forest: Product Specifications Document; Copernicus: Copenhagen, Denmark, 2017. [Google Scholar]
- Brus, D.J.; Hengeveld, G.M.; Walvoort, D.J.J.; Goedhart, P.W.; Heidema, A.H.; Nabuurs, G.J.; Gunia, K. Statistical mapping of tree species over Europe. Eur. J. For. Res. 2011, 131, 145–157. [Google Scholar] [CrossRef]
- Gesetz zur Erhaltung des Waldes und zur Förderung der Forstwirtschaft (Bundeswaldgesetz). Verbraucherschutz; Federal Ministry of Justice and Consumer Protection (Bundesministerium der Justiz und für Verbraucherschutz): Berlin, Germany, 1975.
- BMEL. Der Wald in Deutschland—Ausgewählte Ergebnisse der Dritten Bundeswaldinventur; BMEL: Bonn, Germany, 2014; p. 56. [Google Scholar]
- BMEL. Ergebnisse der Bundeswaldinventur 2012; BMEL: Bonn, Germany, 2016; p. 280. [Google Scholar]
- BMEL. Forstliches Umweltmonitoring in Deutschland. Durchführungskonzept Forstliches Umweltmonitoring; BMEL: Bonn, Germany, 2016; p. 40. [Google Scholar]
- Monitoringbericht 2019 zur Deutschen Anpassungsstrategie an den Klimawandel; Umweltbundesamt: Bonn, Germany, 2019.
- Schuldt, B.; Buras, A.; Arend, M.; Vitasse, Y.; Beierkuhnlein, C.; Damm, A.; Gharun, M.; Grams, T.E.E.; Hauck, M.; Hajek, P.; et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 2020, 45, 86–103. [Google Scholar] [CrossRef]
- Wellbrock, N.; Eickenscheidt, N.; Hilbrig, L.; Dühnelt, P.; Holzhausen, M.; Bauer, A.; Dammann, I.; Strich, S.; Engels, F.; Wauer, A. Leitfaden und Dokumentation zur Waldzustandserhebung in Deutschland; Johann Heinrich von Thünen-Institut: Braunschweig, Germany, 2018; p. 97. [Google Scholar]
- BMEL. Am Puls des Waldes (Umweltwandel und Seine Folgen—Ausgewählte Ergebnisse des Intensiven Forstlichen Umweltmonitorings); BMEL: Bonn, Germany, 2020. [Google Scholar]
- Wellbrock, N.; Bolte, A. Status and Dynamics of Forests in Germany; Springer Open: Berlin/Heidelberg, Germany, 2019; p. 388. [Google Scholar] [CrossRef] [Green Version]
- BMJV. Verordnung Über die Durchführung Einer Vierten Bundeswaldinventur; BMJV: Bonn, Germany, 2019. [Google Scholar]
- Riedel, T.; Hennig, P.; Kroiher, F.; Polley, H.; Schmitz, F.; Schwitzgebel, F. Die 3. Bundeswaldinventur (BWI 2012). Inventur- und Auswertemethoden; BMEL: Bonn, Germany, 2017; p. 124. [Google Scholar]
- BMEL. Waldböden in Deutschland (Ausgewählte Ergebnisse der Zweiten Bodenzustandserhebung); BMEL: Bonn, Germany, 2018. [Google Scholar]
- Selected Results of the Third National Forest Inventory. Available online: https://www.bundeswaldinventur.de/en/third-national-forest-inventory/surveying-the-forest/ (accessed on 17 July 2020).
- Senf, C.; Muller, J.; Seidl, R. Post-disturbance recovery of forest cover and tree height differ with management in Central Europe. Landsc. Ecol. 2019, 34, 2837–2850. [Google Scholar] [CrossRef] [Green Version]
- Lindenmayer, D.B.; Foster, D.R.; Franklin, J.F.; Hunter, M.L.; Noss, R.F.; Schmiegelow, F.A.; Perry, D. Ecology. Salvage harvesting policies after natural disturbance. Science 2004, 303, 1303. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.G. Disturbance and landscape dynamics in a changing world. Ecology 2010, 91, 2833–2849. [Google Scholar] [CrossRef] [Green Version]
- Seidl, R.; Muller, J.; Hothorn, T.; Bassler, C.; Heurich, M.; Kautz, M. Small beetle, large-scale drivers: How regional and landscape factors affect outbreaks of the European spruce bark beetle. J. Appl. Ecol. 2015, 53, 530–540. [Google Scholar] [CrossRef]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Forestry Department. Global Forest Resources Assessment 2010, Country Report, Germany; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010.
- Schlossmacher, M. State-aid to protect Germany’s forests (Waldgipfel). In Resilience Blog; EFI: Nurnberg, Germany, 2019. [Google Scholar]
- UNESCO. World Social Science Report 2013, Changing Global Environments; UNESCO: Paris, France, 2013. [Google Scholar]
- SMUL. Sächsisches Staatsministerium für energie, klimaschutz, umwelt und landwirtschaft. In Waldzustandsbericht 2019; SMUL: Dresden, Germany, 2019; p. 48. [Google Scholar]
- D.W. Storms and Drought Destroy Thousands of Acres of German Forests. 2019. Available online: https://www.dw.com/en/storms-and-drought-destroy-thousands-of-acres-of-german-forests/a-48493443 (accessed on 17 July 2020).
- Joe/AFP. Mehr als 110.000 Hektar Wald Verloren Gegangen. Spiegel, 26 April 2019. [Google Scholar]
- Gutsch, M.; Lasch-Born, P.; Kollas, C.; Suckow, F.; Reyer, C.P.O. Balancing trade-offs between ecosystem services in Germany’s forests under climate change. Environ. Res. Lett. 2018, 13, 045012. [Google Scholar] [CrossRef]
- IUFRO. Adaptation of Forests and People to Climate Change. A Global Assessment Report; International Union of Forest Research Organizations (IUFRO): Vienna, Austria, 2009. [Google Scholar]
- Schelhaas, M.-J.; Nabuurs, G.-J.; Schuck, A. Natural disturbances in the European forests in the 19th and 20th centuries. Glob. Chang. Biol. 2003, 9, 1620–1633. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W.; Spies, T.A. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol. Appl. 2014, 24, 2063–2077. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- BMEL. Deutschlands Wald im Klimawandel Eckpunkte und Maßnahmen; BMEL: Bonn, Germany, 2019. [Google Scholar]
- Brinkmann, N.; Eugster, W.; Buchmann, N.; Kahmen, A. Species-specific differences in water uptake depth of mature temperate trees vary with water availability in the soil. Plant Biol. 2019, 21, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Brinkmann, N.; Eugster, W.; Zweifel, R.; Buchmann, N.; Kahmen, A. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying. Tree Physiol. 2016, 36, 1508–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigling, A.; Bebi, P.; Brang, P.; Ferretti, M.; Forrester, D.; Gärtner, H.; Gessler, A.; Ginzler, C.; Moser, B.; Schaub, M.; et al. Wie viel Trockenheit ertragen unsere Wälder? Lehren aus extremen Trockenjahren; Eidg. Forschungsanstalt für Wald, Schnee und Landschaft: Zürich, Switzerland, 2019; pp. 39–51. [Google Scholar]
- Vitali, V.; Buntgen, U.; Bauhus, J. Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south-western Germany. Glob. Chang. Biol. 2017, 23, 5108–5119. [Google Scholar] [CrossRef] [PubMed]
- Vitasse, Y.; Bottero, A.; Cailleret, M.; Bigler, C.; Fonti, P.; Gessler, A.; Levesque, M.; Rohner, B.; Weber, P.; Rigling, A.; et al. Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Glob. Chang. Biol. 2019, 25, 3781–3792. [Google Scholar] [CrossRef]
- Zang, C.; Rothe, A.; Weis, W.; Pretzsch, H. Zur baumarteneignung bei klimawandel: Ableitung der trockenstress-anfälligkeit wichtiger waldbaumarten aus jahrringbreiten. Allg. Forst Jagdztg. 2011, 182, 98–112. [Google Scholar]
- Landwirtschaft. Waldschäden: Bundesministerium Veröffentlicht Aktuelle Zahlen; BMEL: Bonn, Germany, 2020. [Google Scholar]
- BDF. Der Wald ist in Gefahr—Die Politik Muss Handeln. Marshallplan für den Wald; BDF: Berlin, Germany, 2019. [Google Scholar]
- Visintini, F.; Niemann, K.O. Assessment of Potential for Remote Sensing Detection of Bark Beetle-Infested Areas During Green Attack: A literature review; Natural Resources Canada, Canadian Forest Service: Victoria, BC, Canada, 2005. [Google Scholar]
- Vodde, F.; Jactel, H. Prevalence of Biotic and Abiotic Hazards in European Forests; EFI: Joensuu, Finland, 2011. [Google Scholar]
- Fassnacht, F.E.; Latifi, H.; Ghosh, A.; Joshi, P.K.; Koch, B. Assessing the potential of hyperspectral imagery to map bark beetle-induced tree mortality. Remote Sens. Environ. 2014, 140, 533–548. [Google Scholar] [CrossRef]
- Eidmann, H.H. Impact of bark beetles on forests and forestry in Sweden. J. Appl. Entomol. 1992, 114, 193–200. [Google Scholar] [CrossRef]
- Seidl, R.; Rammer, W.; Jäger, D.; Lexer, M.J. Impact of bark beetle (Ips typographus L.) disturbance on timber production and carbon sequestration in different management strategies under climate change. For. Ecol. Manag. 2008, 256, 209–220. [Google Scholar] [CrossRef]
- Lagergren, F.; Anna Maria, J. Climate Change and Forests’ Sensitivity to Storm and Spruce Bark Beetle Damage; Deparment of Physical Geography and Ecosystem Science: Lund, Sweden, 2010. [Google Scholar]
- Marini, L.; Økland, B.; Jönsson, A.M.; Bentz, B.; Carroll, A.; Forster, B.; Grégoire, J.-C.; Hurling, R.; Nageleisen, L.M.; Netherer, S.; et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography 2017, 40, 1426–1435. [Google Scholar] [CrossRef]
- Netherer, S.; Matthews, B.; Katzensteiner, K.; Blackwell, E.; Henschke, P.; Hietz, P.; Pennerstorfer, J.; Rosner, S.; Kikuta, S.; Schume, H.; et al. Do water-limiting conditions predispose Norway spruce to bark beetle attack? New Phytol. 2015, 205, 1128–1141. [Google Scholar] [CrossRef]
- Thom, D.; Seidl, R. Natural disturbance impacts on ecosystemservices and biodiversity in temperateand boreal forests. Biol. Rev. 2015, 91, 760–781. [Google Scholar] [CrossRef]
- Kazda, M.; Pichler, M. Priority assessment for conversion of Norway spruce forests through introduction of broadleaf species. For. Ecol. Manag. 1998, 102, 245–258. [Google Scholar] [CrossRef]
- Peltola, H.; Kellomäki, S.; Hassinen, A.; Granander, M. Mechanical stability of Scots pine, Norway spruce and birch: An analysis of tree-pulling experiments in Finland. For. Ecol. Manag. 2000, 135, 143–153. [Google Scholar] [CrossRef]
- Schroeder, L.M. Colonization of storm gaps by the spruce bark beetle: Influence of gap and landscape characteristics. Agric. For. Entomol. 2010, 12, 29–39. [Google Scholar] [CrossRef]
- Bentz, B.J.; Régnière, J.; Fettig, C.J.; Hansen, E.M.; Hayes, J.L.; Hicke, J.A.; Kelsey, R.G.; Negrón, J.F.; Seybold, S.J. Climate change and bark beetles of the Western United States and Canada: Direct and indirect effects. BioScience 2010, 60, 602–613. [Google Scholar] [CrossRef]
- Faccoli, M.; Bernardinelli, I. Composition and elevation of spruce forests affect susceptibility to bark beetle attacks: Implications for forest management. Forests 2014, 5, 88–102. [Google Scholar] [CrossRef]
- Filchev, L. An assessment of European Spruce Bark Beetle Infestation Using WorldView-2 Satellite Data. In Proceedings of the 1st European SCGIS Conference, Sofia, Bulgaria, 21–23 May 2012; pp. 21–23. [Google Scholar]
- Wermelinger, B. Ecology and management of the spruce bark beetle Ips typographus—A review of recent research. For. Ecol. Manag. 2004, 202, 67–82. [Google Scholar] [CrossRef]
- Destatis. Land- und Forstwirtschaft, Fischerei—Forstwirtschaftliche Bodennutzung—Holzeinschalgsstatistik; DESTATIS: Wiesbaden, Germany, 2018. [Google Scholar]
- Destatis. Auswirkungen extremer Wind- und Wetterlagen auf den Wald; DESTATIS: Wiesbaden, Germany, 2020. [Google Scholar]
- Albert, M.; Hansen, J.; Nagel, J.; Schmidt, M.; Spellmann, H. Assessing risks and uncertainties in forest dynamics under different management scenarios and climate change. For. Ecosyst. 2015, 2. [Google Scholar] [CrossRef] [Green Version]
- Jactel, H.; Bauhus, J.; Boberg, J.; Bonal, D.; Castagneyrol, B.; Gardiner, B.; Gonzalez-Olabarria, J.R.; Koricheva, J.; Meurisse, N.; Brockerhoff, E.G. Tree diversity drives forest stand resistance to natural disturbances. Curr. For. Rep. 2017, 3, 223–243. [Google Scholar] [CrossRef]
- Valinger, E.; Fridman, J. Factors affecting the probability of windthrow at stand level as a result of Gudrun winter storm in southern Sweden. For. Ecol. Manag. 2011, 262, 398–403. [Google Scholar] [CrossRef]
- Dietz, A.J.; Wohner, C.; Kuenzer, C. European snow cover characteristics between 2000 and 2011 derived from improved MODIS daily snow cover products. Remote Sens. 2012, 4, 2432–2454. [Google Scholar] [CrossRef] [Green Version]
- Destatis. Land- und Forstwirtschaft, Fischerei—Forstwirtschaftliche Bodennutzung—Holzeinschlagsstatistik; DESTATIS: Wiesbaden, Germany, 2019. [Google Scholar]
- Destatis. Land- und Forstwirtschaft, Fischerei—Forstwirtschaftliche Bodennutzung—Holzeinschalgsstatistik; DESTATIS: Wiesbaden, Germany, 2020. [Google Scholar]
- Waldstrategie. 2020. Available online: https://www.bmel.de/DE/Wald-Fischerei/Forst-Holzwirtschaft/_texte/Waldstrategie2020.html (accessed on 17 April 2020).
- Bundesregierung. German Strategy for Adaptation to Climate Change; Bundesregierung: Berlin, Germany, 2008. [Google Scholar]
- Bundeswaldgesetz. Available online: https://www.bmel.de/DE/Wald-Fischerei/Waldpolitik/_texte/Bundeswaldgesetz.html (accessed on 17 April 2020).
- Internationale Waldpolitik. Available online: https://www.bmel.de/DE/Wald-Fischerei/Waldpolitik/waldpolitik-node.html (accessed on 17 April 2020).
- Nationale Waldschutzpolitik. Available online: https://www.bmu.de/themen/natur-biologische-vielfalt-arten/naturschutz-biologische-vielfalt/waelder/nationale-waldschutzpolitik/ (accessed on 18 April 2020).
- Aufgaben des UBA. Available online: https://www.umweltbundesamt.de/tags/aufgaben-des-uba (accessed on 19 April 2020).
- Waldklimafonds. Available online: https://www.waldklimafonds.de/ (accessed on 17 April 2020).
- BWaldG—Gesetz zur Erhaltung des Waldes und zur Förderung der Forstwirtschaft. Available online: http://www.gesetze-im-internet.de/bwaldg/BJNR010370975.html (accessed on 17 April 2020).
- BfN: Naturschutz als Gesamtgesellschaftliche Aufgabe. Available online: https://www.bfn.de/ueber-das-bfn/aufgaben.html (accessed on 19 April 2020).
- Höltermann, A.; Jessel, B. Wälder im Klimawandel—Steigerung von Anpassungsfähigkeit und Resilienz durch mehr Vielfalt und Heterogenität; BFN: Bonn, Germany, 2019; p. 31. [Google Scholar]
- Die Bayerische Forstverwaltung. Available online: http://www.stmelf.bayern.de/wald/forstverwaltung/ (accessed on 16 June 2020).
- Bundeswaldinventur. Available online: https://www.bundeswaldinventur.de/ (accessed on 19 April 2020).
- JKI Forst. Available online: https://www.julius-kuehn.de/gf/ab/forst/ (accessed on 21 April 2020).
- Der Nationalpark Bayerischer Wald im Porträt. Available online: https://www.nationalpark-bayerischer-wald.bayern.de/ueber_uns/steckbrief/index.htm (accessed on 19 April 2020).
- Heiland, S.; Hoffmann, A. Erste evaluierung der deutschen nationalparks: Erfahrungen und ergebnisse. Natur Landsch. 2013, 88, 303–308. [Google Scholar] [CrossRef]
- Abdullah, H.; Darvishzadeh, R.; Skidmore, A.K.; Heurich, M. Sensitivity of landsat-8 OLI and TIRS data to foliar properties of early stage bark beetle (Ips typographus, L.) Infestation. Remote Sens. 2019, 11, 22. [Google Scholar] [CrossRef] [Green Version]
- Abdullahi, S.; Kugler, F.; Pretzsch, H. Prediction of stem volume in complex temperate forest stands using TanDEM-X SAR data. Remote Sens. Environ. 2016, 174, 197–211. [Google Scholar] [CrossRef]
- Abdullahi, S.; Schardt, M.; Pretzsch, H. An unsupervised two-stage clustering approach for forest structure classification based on X-band InSAR data—A case study in complex temperate forest stands. Int. J. Appl. Earth Obs. Geoinf. 2017, 57, 36–48. [Google Scholar] [CrossRef]
- Ali, A.M.; Darvishzadeh, R.; Skidmore, A.K. Retrieval of specific leaf area from landsat-8 surface reflectance data using statistical and physical models. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3529–3536. [Google Scholar] [CrossRef]
- Ali, A.M.; Skidmore, A.K.; Darvishzadeh, R.; van Duren, I.; Holzwarth, S.; Mueller, J. Retrieval of forest leaf functional traits from HySpex imagery using radiative transfer models and continuous wavelet analysis. ISPRS J. Photogramm. Remote Sens. 2016, 122, 68–80. [Google Scholar] [CrossRef] [Green Version]
- Amiri, N.; Krzystek, P.; Heurich, M.; Skidmore, A. Classification of tree species as well as standing dead trees using triple wavelength ALS in a temperate forest. Remote Sens. 2019, 11, 19. [Google Scholar] [CrossRef] [Green Version]
- Amiri, N.; Polewski, P.; Heurich, M.; Krzystek, P.; Skidmore, A.K. Adaptive stopping criterion for top-down segmentation of ALS point clouds in temperate coniferous forests. ISPRS J. Photogramm. Remote Sens. 2018, 141, 265–274. [Google Scholar] [CrossRef]
- Ardo, J.; Lambert, N.; Henzlik, V.; Rock, B.N. Satellite-based estimations of coniferous forest cover changes: Krusne Hory, Czech Republic 1972–1989. Ambio 1997, 26, 158–166. [Google Scholar]
- Bachmair, S.; Tanguy, M.; Hannaford, J.; Stahl, K. How well do meteorological indicators represent agricultural and forest drought across Europe? Environ. Res. Lett. 2018, 13, 10. [Google Scholar] [CrossRef]
- Bae, S.; Levick, S.R.; Heidrich, L.; Magdon, P.; Leutner, B.F.; Wollauer, S.; Serebryanyk, A.; Nauss, T.; Krzystek, P.; Gossner, M.M.; et al. Radar vision in the mapping of forest biodiversity from space. Nat. Commun. 2019, 10, 10. [Google Scholar] [CrossRef]
- Bae, S.; Muller, J.; Lee, D.; Vierling, K.T.; Vogeler, J.C.; Vierling, L.A.; Hudak, A.T.; Latifi, H.; Thorn, S. Taxonomic, functional, and phylogenetic diversity of bird assemblages are oppositely associated to productivity and heterogeneity in temperate forests. Remote Sens. Environ. 2018, 215, 145–156. [Google Scholar] [CrossRef]
- Bae, S.; Reineking, B.; Ewald, M.; Mueller, J. Comparison of airborne lidar, aerial photography, and field surveys to model the habitat suitability of a cryptic forest species—The hazel grouse. Int. J. Remote Sens. 2014, 35, 6469–6489. [Google Scholar] [CrossRef]
- Baron, D.; Erasmi, S. High Resolution Forest Maps from Interferometric TanDEM-X and multitemporal sentinel-1 SAR Data. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2017, 85, 389–405. [Google Scholar] [CrossRef]
- Bassler, C.; Stadler, J.; Muller, J.; Forster, B.; Gottlein, A.; Brandl, R. LiDAR as a rapid tool to predict forest habitat types in Natura 2000 networks. Biodivers. Conserv. 2011, 20, 465–481. [Google Scholar] [CrossRef]
- Bayr, C.; Gallaun, H.; Kleb, U.; Kornberger, B.; Steinegger, M.; Winter, M. Satellite-based forest monitoring: Spatial and temporal forecast of growing index and short-wave infrared band. Geospat. Health 2016, 11, 31–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breidenbach, J.; Ortiz, S.M.; Reich, M. Forest monitoring with TerraSAR-X: First results. Eur. J. For. Res. 2010, 129, 813–823. [Google Scholar] [CrossRef]
- Buddenbaum, H.; Schlerf, M.; Hill, J. Classification of coniferous tree species and age classes using hyperspectral data and geostatistical methods. Int. J. Remote Sens. 2005, 26, 5453–5465. [Google Scholar] [CrossRef]
- Buddenbaum, H.; Seeling, S.; Hill, J. Fusion of full-waveform lidar and imaging spectroscopy remote sensing data for the characterization of forest stands. Int. J. Remote Sens. 2013, 34, 4511–4524. [Google Scholar] [CrossRef]
- Buras, A.; Schunk, C.; Zeitrag, C.; Herrmann, C.; Kaiser, L.; Lemme, H.; Straub, C.; Taeger, S.; Gosswein, S.; Klemmt, H.J.; et al. Are Scots pine forest edges particularly prone to drought-induced mortality? Environ. Res. Lett. 2018, 13, 11. [Google Scholar] [CrossRef]
- Carl, G.; Doktor, D.; Koslowsky, D.; Kuhn, I. Phase difference analysis of temperature and vegetation phenology for beech forest: A wavelet approach. Stoch. Environ. Res. Risk Assess. 2013, 27, 1221–1230. [Google Scholar] [CrossRef]
- Cazcarra-Bes, V.; Pardini, M.; Tello, M.; Papathanassiou, K.P. Comparison of tomographic SAR reflectivity reconstruction algorithms for forest applications at L-band. IEEE Trans. Geosci. Remote Sens. 2020, 58, 147–164. [Google Scholar] [CrossRef]
- Clasen, A.; Somers, B.; Pipkins, K.; Tits, L.; Segl, K.; Brell, M.; Kleinschmit, B.; Spengler, D.; Lausch, A.; Forster, M. Spectral unmixing of forest crown components at close range, airborne and simulated sentinel-2 and EnMAP spectral imaging scale. Remote Sens. 2015, 7, 15361–15387. [Google Scholar] [CrossRef] [Green Version]
- Darvishzadeh, R.; Skidmore, A.; Abdullah, H.; Cherenet, E.; Ali, A.; Wang, T.J.; Nieuwenhuis, W.; Heurich, M.; Vrieling, A.; O’Connor, B.; et al. Mapping leaf chlorophyll content from Sentinel-2 and RapidEye data in spruce stands using the invertible forest reflectance model. Int. J. Appl. Earth Obs. Geoinf. 2019, 79, 58–70. [Google Scholar] [CrossRef] [Green Version]
- Dees, M. Regression estimation using a cluster design in large scale forest inventories. Allg. Forst Jagdztg. 1998, 169, 177–185. [Google Scholar]
- Doktor, D.; Bondeau, A.; Koslowski, D.; Badeck, F.W. Influence of heterogeneous landscapes on computed green-up dates based on daily AVHRR NDVI observations. Remote Sens. Environ. 2009, 113, 2618–2632. [Google Scholar] [CrossRef]
- Dotzler, S.; Hill, J.; Buddenbaum, H.; Stoffels, J. The potential of EnMAP and sentinel-2 data for detecting drought stress phenomena in deciduous forest communities. Remote Sens. 2015, 7, 14227–14258. [Google Scholar] [CrossRef] [Green Version]
- Einzmann, K.; Immitzer, M.; Bock, S.; Bauer, O.; Schmitt, A.; Atzberger, C. Windthrow detection in European forests with very high-resolution optical data. Forests 2017, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Eisfelder, C.; Kraus, T.; Bock, M.; Werner, M.; Buchroithner, M.F.; Strunz, G. Towards automated forest-type mapping—A service within GSE forest monitoring based on SPOT-5 and IKONOS data. Int. J. Remote Sens. 2009, 30, 5015–5038. [Google Scholar] [CrossRef]
- Elatawneh, A.; Wallner, A.; Manakos, I.; Schneider, T.; Knoke, T. Forest cover database updates using multi-seasonal rapideye data-storm event assessment in the Bavarian forest national park. Forests 2014, 5, 1284–1303. [Google Scholar] [CrossRef] [Green Version]
- Erasmi, S.; Semmler, M.; Schall, P.; Schlund, M. Sensitivity of bistatic TanDEM-X Data to stand structural parameters in temperate forests. Remote Sens. 2019, 11, 18. [Google Scholar] [CrossRef] [Green Version]
- Ewald, M.; Dupke, C.; Heurich, M.; Muller, J.; Reineking, B. LiDAR Remote sensing of forest structure and GPS telemetry data provide insights on winter habitat selection of European roe deer. Forests 2014, 5, 1374–1390. [Google Scholar] [CrossRef] [Green Version]
- Fassnacht, F.E.; Hartig, F.; Latifi, H.; Berger, C.; Hernandez, J.; Corvalan, P.; Koch, B. Importance of sample size, data type and prediction method for remote sensing-based estimations of aboveground forest biomass. Remote Sens. Environ. 2014, 154, 102–114. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Latifi, H.; Koch, B. An angular vegetation index for imaging spectroscopy data—Preliminary results on forest damage detection in the Bavarian National Park, Germany. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 308–321. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Mangold, D.; Schafer, J.; Immitzer, M.; Kattenborn, T.; Koch, B.; Latifi, H. Estimating stand density, biomass and tree species from very high resolution stereo-imagery—Towards an all-in-one sensor for forestry applications? Forestry 2017, 90, 613–631. [Google Scholar] [CrossRef]
- Fassnacht, F.E.; Neumann, C.; Forster, M.; Buddenbaum, H.; Ghosh, A.; Clasen, A.; Joshi, P.K.; Koch, B. Comparison of feature reduction algorithms for classifying tree species with hyperspectral data on three Central European test sites. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2547–2561. [Google Scholar] [CrossRef]
- Fischer, R.; Knapp, N.; Bohn, F.; Shugart, H.H.; Huth, A. The relevance of forest structure for biomass and productivity in temperate forests: New perspectives for remote sensing. Surv. Geophys. 2019, 40, 709–734. [Google Scholar] [CrossRef]
- Forster, M.; Frick, A.; Walentowski, H.; Kleinschmit, B. Approaches to utilising QuickBird data for the monitoring of NATURA 2000 habitats. Community Ecol. 2008, 9, 155–168. [Google Scholar] [CrossRef]
- Forster, M.; Kleinschmit, B. Significance analysis of different types of ancillary geodata utilized in a multisource classification process for forest identification in Germany. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3453–3463. [Google Scholar] [CrossRef]
- Frey, J.; Asbeck, T.; Bauhus, J. Predicting tree-related microhabitats by multisensor close-range remote sensing structural parameters for the selection of retention elements. Remote Sens. 2020, 12, 867. [Google Scholar] [CrossRef] [Green Version]
- Gara, T.W.; Darvishzadeh, R.; Skidmore, A.K.; Wang, T.J.; Heurich, M. Accurate modelling of canopy traits from seasonal Sentinel-2 imagery based on the vertical distribution of leaf traits. ISPRS J. Photogramm. Remote Sens. 2019, 157, 108–123. [Google Scholar] [CrossRef]
- Getzin, S.; Nuske, R.S.; Wiegand, K. Using unmanned aerial vehicles (UAV) to quantify spatial gap patterns in forests. Remote Sens. 2014, 6, 6988–7004. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, R.S.; Latifi, H.; Weinacker, H.; Dees, M.; Koch, B.; Heurich, M. Integrating LiDAR and high-resolution imagery for object-based mapping of forest habitats in a heterogeneous temperate forest landscape. Int. J. Remote Sens. 2018, 39, 8859–8884. [Google Scholar] [CrossRef]
- Graf, W.; Kleinn, C.; Schall, P.; Nauss, T.; Detsch, F.; Magdon, P. Analyzing the relationship between historic canopy dynamics and current plant species diversity in the herb layer of temperate forests using long-term Landsat time series. Remote Sens. Environ. 2019, 232. [Google Scholar] [CrossRef]
- Gupta, S.; Weinacker, H.; Koch, B. Comparative analysis of clustering-based approaches for 3-D single tree detection using airborne full wave lidar data. Remote Sens. 2010, 2, 968–989. [Google Scholar] [CrossRef] [Green Version]
- Hamdi, Z.M.; Brandmeier, M.; Straub, C. Forest damage assessment using deep learning on high resolution remote sensing data. Remote Sens. 2019, 11, 14. [Google Scholar] [CrossRef] [Green Version]
- Heurich, M. Automatic recognition and measurement of single trees based on data from airborne laser scanning over the richly structured natural forests of the Bavarian Forest National Park. For. Ecol. Manag. 2008, 255, 2416–2433. [Google Scholar] [CrossRef]
- Heurich, M.; Kennel, E. Evaluation of tree height determination from airborne laser scanner data over the richly structured natural forests of the Bavarian Forest National Park. Photogramm. Fernerkund. Geoinf. 2008, 4, 253–263. [Google Scholar]
- Heurich, M.; Thoma, F. Estimation of forestry stand parameters using laser scanning data in temperate, structurally rich natural European beech (Fagus sylvatica) and Norway spruce (Picea abies) forests. Forestry 2008, 81, 645–661. [Google Scholar] [CrossRef] [Green Version]
- Hilbert, C.; Schmullius, C. Influence of surface topography on ICESat/GLAS forest height estimation and waveform shape. Remote Sens. 2012, 4, 2210–2235. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.; Buddenbaum, H.; Mandallaz, D. Combining canopy height and tree species map information for large-scale timber volume estimations under strong heterogeneity of auxiliary data and variable sample plot sizes. Eur. J. For. Res. 2018, 137, 489–505. [Google Scholar] [CrossRef] [Green Version]
- Hill, A.; Mandallaz, D.; Langshausen, J. A double-sampling extension of the German national forest inventory for design-based small area estimation on forest district levels. Remote Sens. 2018, 10, 1052. [Google Scholar] [CrossRef] [Green Version]
- Hill, S.; Latifi, H.; Heurich, M.; Muller, J. Individual-tree-and stand-based development following natural disturbance in a heterogeneously structured forest: A LiDAR-based approach. Ecol. Inform. 2017, 38, 12–25. [Google Scholar] [CrossRef]
- Hilmers, T.; Friess, N.; Bassler, C.; Heurich, M.; Brandl, R.; Pretzsch, H.; Seidl, R.; Muller, J. Biodiversity along temperate forest succession. J. Appl. Ecol. 2018, 55, 2756–2766. [Google Scholar] [CrossRef] [Green Version]
- Immitzer, M.; Bock, S.; Einzmann, K.; Vuolo, F.; Pinnel, N.; Wallner, A.; Atzberger, C. Fractional cover mapping of spruce and pine at 1 ha resolution combining very high and medium spatial resolution satellite imagery. Remote Sens. Environ. 2018, 204, 690–703. [Google Scholar] [CrossRef] [Green Version]
- Immitzer, M.; Stepper, C.; Bock, S.; Straub, C.; Atzberger, C. Use of WorldView-2 stereo imagery and National Forest Inventory data for wall-to-wall mapping of growing stock. For. Ecol. Manag. 2016, 359, 232–246. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with sentinel-2 data for crop and tree species classifications in Central Europe. Remote Sens. 2016, 8, 27. [Google Scholar] [CrossRef]
- Jung, K.; Kaiser, S.; Bohm, S.; Nieschulze, J.; Kalko, E.K.V. Moving in three dimensions: Effects of structural complexity on occurrence and activity of insectivorous bats in managed forest stands. J. Appl. Ecol. 2012, 49, 523–531. [Google Scholar] [CrossRef]
- Kattenborn, T.; Maack, J.; Fassnacht, F.; Enssle, F.; Ermert, J.; Koch, B. Mapping forest biomass from space—Fusion of hyperspectral EO1-hyperion data and Tandem-X and WorldView-2 canopy height models. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 359–367. [Google Scholar] [CrossRef]
- Kirchhoefer, M.; Schumacher, J.; Adler, P. Potential of remote sensing-based forest attribute models for harmonising large-scale forest inventories on regional level: A case study in Southwest Germany. Ann. For. Sci. 2019, 76, 17. [Google Scholar] [CrossRef] [Green Version]
- Kirchhoefer, M.; Schumacher, J.; Adler, P.; Kandler, G. Considerations towards a novel approach for integrating angle-count sampling data in remote sensing based forest inventories. Forests 2017, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Koch, B.; Straub, C.; Dees, M.; Wang, Y.; Weinacker, H. Airborne laser data for stand delineation and information extraction. Int. J. Remote Sens. 2009, 30, 935–963. [Google Scholar] [CrossRef]
- Kohl, M.; Hussendorfer, E. Conversion of forests: Approaches for describing the potential extension of regeneration by means of remote sensing and GIS. Allg. Forst Jagdztg. 2000, 171, 102–109. [Google Scholar]
- Krause, S.; Sanders, T.G.M.; Mund, J.-P.; Greve, K. UAV-based photogrammetric tree height measurement for intensive forest monitoring. Remote Sens. 2019, 11, 758. [Google Scholar] [CrossRef] [Green Version]
- Kreyling, J.; Stahlmann, R.; Beierkuhnlein, C. Spatial variation in leaf damage of forest trees and the regeneration after the extreme spring frost event in May 2011. Allg. Forst Jagdztg. 2012, 183, 15–22. [Google Scholar]
- Lamprecht, S.; Hill, A.; Stoffels, J.; Udelhoven, T. A machine learning method for co-registration and individual tree matching of forest inventory and airborne laser scanning data. Remote Sens. 2017, 9, 505. [Google Scholar] [CrossRef] [Green Version]
- Lange, M.; Dechant, B.; Rebmann, C.; Vohland, M.; Cuntz, M.; Doktor, D. Validating MODIS and sentinel-2 NDVI products at a temperate deciduous forest site using two independent ground-based sensors. Sensors 2017, 17, 1855. [Google Scholar] [CrossRef] [Green Version]
- Latifi, H.; Dahms, T.; Beudert, B.; Heurich, M.; Kubert, C.; Dech, S. Synthetic RapidEye data used for the detection of area-based spruce tree mortality induced by bark beetles. GISci. Remote Sens. 2018, 55, 839–859. [Google Scholar] [CrossRef]
- Latifi, H.; Fassnacht, F.; Koch, B. Forest structure modeling with combined airborne hyperspectral and LiDAR data. Remote Sens. Environ. 2012, 121, 10–25. [Google Scholar] [CrossRef]
- Latifi, H.; Fassnacht, F.E.; Hartig, F.; Berger, C.; Hernandez, J.; Corvalan, P.; Koch, B. Stratified aboveground forest biomass estimation by remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 229–241. [Google Scholar] [CrossRef]
- Latifi, H.; Fassnacht, F.E.; Muller, J.; Tharani, A.; Dech, S.; Heurich, M. Forest inventories by LiDAR data: A comparison of single tree segmentation and metric-based methods for inventories of a heterogeneous temperate forest. Int. J. Appl. Earth Obs. Geoinf. 2015, 42, 162–174. [Google Scholar] [CrossRef]
- Latifi, H.; Fassnacht, F.E.; Schumann, B.; Dech, S. Object-based extraction of bark beetle (Ips typographus L.) infestations using multi-date LANDSAT and SPOT satellite imagery. Prog. Phys. Geogr. 2014, 38, 755–785. [Google Scholar] [CrossRef]
- Latifi, H.; Heurich, M.; Hartig, F.; Muller, J.; Krzystek, P.; Jehl, H.; Dech, S. Estimating over- and understorey canopy density of temperate mixed stands by airborne LiDAR data. Forestry 2016, 89, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Latifi, H.; Koch, B. Evaluation of most similar neighbour and random forest methods for imputing forest inventory variables using data from target and auxiliary stands. Int. J. Remote Sens. 2012, 33, 6668–6694. [Google Scholar] [CrossRef]
- Latifi, H.; Nothdurft, A.; Koch, B. Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: Application of multiple optical/LiDAR-derived predictors. Forestry 2010, 83, 395–407. [Google Scholar] [CrossRef] [Green Version]
- Latifi, H.; Nothdurft, A.; Straub, C.; Koch, B. Modelling stratified forest attributes using optical/LiDAR features in a central European landscape. Int. J. Digit. Earth 2012, 5, 106–132. [Google Scholar] [CrossRef]
- Latifi, H.; Schumann, B.; Kautz, M.; Dech, S. Spatial characterization of bark beetle infestations by a multidate synergy of SPOT and Landsat imagery. Environ. Monit. Assess. 2014, 186, 441–456. [Google Scholar] [CrossRef]
- Lausch, A.; Heurich, M.; Gordalla, D.; Dobner, H.J.; Gwillym-Margianto, S.; Salbach, C. Forecasting potential bark beetle outbreaks based on spruce forest vitality using hyperspectral remote-sensing techniques at different scales. For. Ecol. Manag. 2013, 308, 76–89. [Google Scholar] [CrossRef]
- Le Toan, T.; Quegan, S.; Woodward, I.; Lomas, M.; Delbart, N.; Picard, G. Relating radar remote sensing of biomass to modelling of forest carbon budgets. Clim. Chang. 2004, 67, 379–402. [Google Scholar] [CrossRef]
- Leiterer, R.; Mucke, W.; Morsdorf, F.; Hollaus, M.; Pfeifer, N.; Schaepman, M.E. Operational forest structure monitoring using airborne laser scanning. Photogramm. Fernerkund. Geoinf. 2013, 173–184. [Google Scholar] [CrossRef]
- Leutner, B.F.; Reineking, B.; Muller, J.; Bachmann, M.; Beierkuhnlein, C.; Dech, S.; Wegmann, M. Modelling forest alpha-diversity and floristic composition—On the added value of LiDAR plus hyperspectral remote sensing. Remote Sens. 2012, 4, 2818–2845. [Google Scholar] [CrossRef] [Green Version]
- Levick, S.R.; Hessenmoller, D.; Schulze, E.D. Scaling wood volume estimates from inventory plots to landscapes with airborne LiDAR in temperate deciduous forest. Carbon Balance Manag. 2016, 11, 14. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Skidmore, A.K.; Heurich, M.; Wang, T.J. Significant effect of topographic normalization of airborne LiDAR data on the retrieval of plant area index profile in mountainous forests. ISPRS J. Photogramm. Remote Sens. 2017, 132, 77–87. [Google Scholar] [CrossRef]
- Maack, J.; Kattenborn, T.; Fassnacht, F.E.; Enssle, F.; Hernandez, J.; Corvalan, P.; Koch, B. Modeling forest biomass using Very-High-Resolution data—Combining textural, spectral and photogrammetric predictors derived from spaceborne stereo images. Eur. J. Remote Sens. 2015, 48, 245–261. [Google Scholar] [CrossRef] [Green Version]
- Maack, J.; Lingenfelder, M.; Eilers, C.; Smaltschinski, T.; Weinacker, H.; Jaeger, D.; Koch, B. Estimating the spatial distribution, extent and potential lignocellulosic biomass supply of trees outside forests in baden-wuerttemberg using airborne LiDAR and OpenStreetMap data. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 118–125. [Google Scholar] [CrossRef]
- Maack, J.; Lingenfelder, M.; Weinacker, H.; Koch, B. Modelling the standing timber volume of Baden-Wurttemberg-A large-scale approach using a fusion of Landsat, airborne LiDAR and National Forest Inventory data. Int. J. Appl. Earth Obs. Geoinf. 2016, 49, 107–116. [Google Scholar] [CrossRef]
- Magnussen, S.; Naesset, E.; Kandler, G.; Adler, P.; Renaud, J.P.; Gobakken, T. A functional regression model for inventories supported by aerial laser scanner data or photogrammetric point clouds. Remote Sens. Environ. 2016, 184, 496–505. [Google Scholar] [CrossRef]
- Matiu, M.; Bothmann, L.; Steinbrecher, R.; Menzel, A. Monitoring succession after a non-cleared windthrow in a Norway spruce mountain forest using webcam, satellite vegetation indices and turbulent CO2 exchange. Agric. For. Meteorol. 2017, 244, 72–81. [Google Scholar] [CrossRef]
- Misra, G.; Buras, A.; Heurich, M.; Asam, S.; Menzel, A. LiDAR derived topography and forest stand characteristics largely explain the spatial variability observed in MODIS land surface phenology. Remote Sens. Environ. 2018, 218, 231–244. [Google Scholar] [CrossRef]
- Misra, G.; Buras, A.; Menzel, A. Effects of different methods on the comparison between land surface and ground PhenologyA methodological case study from South-Western Germany. Remote Sens. 2016, 8, 753. [Google Scholar] [CrossRef] [Green Version]
- Muller, J.; Bae, S.; Roder, J.; Chao, A.; Didham, R.K. Airborne LiDAR reveals context dependence in the effects of canopy architecture on arthropod diversity. For. Ecol. Manag. 2014, 312, 129–137. [Google Scholar] [CrossRef]
- Muller, J.; Brandl, R. Assessing biodiversity by remote sensing in mountainous terrain: The potential of LiDAR to predict forest beetle assemblages. J. Appl. Ecol. 2009, 46, 897–905. [Google Scholar] [CrossRef]
- Muller, J.; Brandl, R.; Brandle, M.; Forster, B.; de Araujo, B.C.; Gossner, M.M.; Ladas, A.; Wagner, M.; Maraun, M.; Schall, P.; et al. LiDAR-derived canopy structure supports the more-individuals hypothesis for arthropod diversity in temperate forests. Oikos 2018, 127, 814–824. [Google Scholar] [CrossRef]
- Muller, J.; Moning, C.; Bassler, C.; Heurich, M.; Brandl, R. Using airborne laser scanning to model potential abundance and assemblages of forest passerines. Basic Appl. Ecol. 2009, 10, 671–681. [Google Scholar] [CrossRef]
- Muller, J.; Stadler, J.; Brandl, R. Composition versus physiognomy of vegetation as predictors of bird assemblages: The role of lidar. Remote Sens. Environ. 2010, 114, 490–495. [Google Scholar] [CrossRef]
- Neinavaz, E.; Darvishzadeh, R.; Skidmore, A.K.; Abdullah, H. Integration of Landsat-8 thermal and visible-short wave infrared data for improving prediction accuracy of forest leaf area index. Remote Sens. 2019, 11, 15. [Google Scholar] [CrossRef] [Green Version]
- Neinavaz, E.; Skidmore, A.K.; Darvishzadeh, R. Effects of prediction accuracy of the proportion of vegetation cover on land surface emissivity and temperature using the NDVI threshold method. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 13. [Google Scholar] [CrossRef]
- Nielsen, M.M.; Heurich, M.; Malmberg, B.; Brun, A. Automatic mapping of standing dead trees after an insect outbreak using the window independent context segmentation method. J. For. 2014, 112, 564–571. [Google Scholar] [CrossRef]
- Nink, S.; Hill, J.; Buddenbaum, H.; Stoffels, J.; Sachtleber, T.; Langshausen, J. Assessing the suitability of future multi- and hyperspectral satellite systems for mapping the spatial distribution of Norway spruce timber volume. Remote Sens. 2015, 7, 12009–12040. [Google Scholar] [CrossRef] [Green Version]
- Nink, S.; Hill, J.; Stoffels, J.; Buddenbaum, H.; Frantz, D.; Langshausen, J. Using landsat and Sentinel-2 data for the generation of continuously updated forest type information layers in a cross-border region. Remote Sens. 2019, 11, 2337. [Google Scholar] [CrossRef] [Green Version]
- Nothdurft, A.; Saborowski, J.; Breidenbach, J. Spatial prediction of forest stand variables. Eur. J. For. Res. 2009, 128, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Nuske, R.S.; Nieschulze, J. The vegetation height as a tool for stand height determination: An application of automated digital photogrammetry in forestry. Allg. Forst Jagdztg. 2004, 175, 13–21. [Google Scholar]
- Oehmichen, K.; Kohl, M. Proposal for a satellite based method to obtain forest maps for the German national forest inventory (“Bundeswaldinventur”). Photogramm. Fernerkund. Geoinf. 2008, 499–507. [Google Scholar]
- Oertel, D.; Briess, K.; Halle, W.; Neidhardt, M.; Lorenz, E.; Sandau, R.; Schrandt, F.; Skrbek, W.; Venus, H.; Walter, I.; et al. Airborne forest fire mapping with an adaptive infrared sensor. Int. J. Remote Sens. 2003, 24, 3663–3682. [Google Scholar] [CrossRef]
- Ortiz, S.M.; Breidenbach, J.; Kandler, G. Early detection of bark beetle green attack using TerraSAR-X and RapidEye Data. Remote Sens. 2013, 5, 1912–1931. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, S.M.; Breidenbach, J.; Knuth, R.; Kandler, G. The influence of DEM quality on mapping accuracy of coniferous- and deciduous-dominated forest using TerraSAR-X images. Remote Sens. 2012, 4, 661–681. [Google Scholar] [CrossRef] [Green Version]
- Pellikka, P. Application of vertical skyward wide-angle photography and airborne video data for phenological studies of beech forests in the German Alps. Int. J. Remote Sens. 2001, 22, 2675–2700. [Google Scholar] [CrossRef]
- Peura, M.; Gonzalez, R.S.; Muller, J.; Heurich, M.; Vierling, L.A.; Monkkonen, M.; Bassler, C. Mapping a ‘cryptic kingdom’: Performance of lidar derived environmental variables in modelling the occurrence of forest fungi. Remote Sens. Environ. 2016, 186, 428–438. [Google Scholar] [CrossRef]
- Polewski, P.; Yao, W.; Heurich, M.; Krzystek, P.; Stilla, U. Detection of fallen trees in ALS point clouds using a Normalized Cut approach trained by simulation. ISPRS J. Photogramm. Remote Sens. 2015, 105, 252–271. [Google Scholar] [CrossRef]
- Polewski, P.; Yao, W.; Heurich, M.; Krzystek, P.; Stilla, U. Learning a constrained conditional random field for enhanced segmentation of fallen trees in ALS point clouds. ISPRS J. Photogramm. Remote Sens. 2018, 140, 33–44. [Google Scholar] [CrossRef]
- Propastin, P.; Panferov, O. Retrieval of remotely sensed LAI using Landsat ETM plus data and ground measurements of solar radiation and vegetation structure: Implication of leaf inclination angle. Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 38–46. [Google Scholar] [CrossRef]
- Reichstein, M.; Ciais, P.; Papale, D.; Valentini, R.; Running, S.; Viovy, N.; Cramer, W.; Granier, A.; OgÉE, J.; Allard, V.; et al. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: A joint flux tower, remote sensing and modelling analysis. Glob. Chang. Biol. 2007, 13, 634–651. [Google Scholar] [CrossRef]
- Reinermann, S.; Gessner, U.; Asam, S.; Kuenzer, C.; Dech, S. The effect of droughts on vegetation condition in Germany: An analysis based on two decades of satellite earth observation time series and crop yield statistics. Remote Sens. 2019, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- Reitberger, J.; Schnorr, C.; Krzystek, P.; Stilla, U. 3D segmentation of single trees exploiting full waveform LIDAR data. ISPRS J. Photogramm. Remote Sens. 2009, 64, 561–574. [Google Scholar] [CrossRef]
- Roder, M.; Latifi, H.; Hill, S.; Wild, J.; Svoboda, M.; Bruna, J.; Macek, M.; Novakova, M.H.; Gulch, E.; Heurich, M. Application of optical unmanned aerial vehicle-based imagery for the inventory of natural regeneration and standing deadwood in post-disturbed spruce forests. Int. J. Remote Sens. 2018, 39, 5288–5309. [Google Scholar] [CrossRef]
- Ruetschi, M.; Small, D.; Waser, L.T. Rapid detection of windthrows using sentinel-1 C-Band SAR data. Remote Sens. 2019, 11, 23. [Google Scholar] [CrossRef] [Green Version]
- Scheuber, M. Potentials and limits of the k-nearest-neighbour method for regionalising sample-based data in forestry. Eur. J. For. Res. 2010, 129, 825–832. [Google Scholar] [CrossRef]
- Schlerf, M.; Atzberger, C.; Hill, J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens. Environ. 2005, 95, 177–194. [Google Scholar] [CrossRef] [Green Version]
- Schlerf, M.; Atzberger, C.; Hill, J.; Buddenbaum, H.; Werner, W.; Schuler, G. Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2010, 12, 17–26. [Google Scholar] [CrossRef]
- Schlund, M.; Baron, D.; Magdon, P.; Erasmi, S. Canopy penetration depth estimation with TanDEM-X and its compensation in temperate forests. ISPRS J. Photogramm. Remote Sens. 2019, 147, 232–241. [Google Scholar] [CrossRef]
- Schlund, M.; Magdon, P.; Eaton, B.; Aumann, C.; Erasmi, S. Canopy height estimation with TanDEM-X in temperate and boreal forests. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 13. [Google Scholar] [CrossRef]
- Schumacher, J.; Rattay, M.; Kirchhofer, M.; Adler, P.; Kandler, G. Combination of multi-temporal sentinel 2 images and aerial image based canopy height models for timber volume modelling. Forests 2019, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Seibold, S.; Bassler, C.; Brandl, R.; Fahrig, L.; Forster, B.; Heurich, M.; Hothorn, T.; Scheipl, F.; Thorn, S.; Muller, J. An experimental test of the habitat-amount hypothesis for saproxylic beetles in a forested region. Ecology 2017, 98, 1613–1622. [Google Scholar] [CrossRef]
- Senf, C.; Laštovička, J.; Okujeni, A.; Heurich, M.; van der Linden, S. A generalized regression-based unmixing model for mapping forest cover fractions throughout three decades of Landsat data. Remote Sens. Environ. 2020, 240. [Google Scholar] [CrossRef]
- Senf, C.; Pflugmacher, D.; Heurich, M.; Krueger, T. A Bayesian hierarchical model for estimating spatial and temporal variation in vegetation phenology from Landsat time series. Remote Sens. Environ. 2017, 194, 155–160. [Google Scholar] [CrossRef]
- Senf, C.; Pflugmacher, D.; Hostert, P.; Seidl, R. Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe. ISPRS J. Photogramm. Remote Sens. 2017, 130, 453–463. [Google Scholar] [CrossRef]
- Shataee, S. Forest attributes estimation using aerial laser scanner and TM data. For. Syst. 2013, 22, 484–496. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.F.; Skidmore, A.K.; Wang, T.J.; Holzwarth, S.; Heiden, U.; Pinnel, N.; Zhu, X.; Heurich, M. Tree species classification using plant functional traits from LiDAR and hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 207–219. [Google Scholar] [CrossRef]
- Shi, Y.F.; Wang, T.J.; Skidmore, A.K.; Heurich, M. Important LiDAR metrics for discriminating forest tree species in Central Europe. ISPRS J. Photogramm. Remote Sens. 2018, 137, 163–174. [Google Scholar] [CrossRef]
- Shi, Y.F.; Wang, T.J.; Skidmore, A.K.; Heurich, M. Improving LiDAR-based tree species mapping in Central European mixed forests using multi-temporal digital aerial colour-infrared photographs. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 10. [Google Scholar] [CrossRef]
- Stepper, C.; Straub, C.; Immitzer, M.; Pretzsch, H. Using canopy heights from digital aerial photogrammetry to enable spatial transfer of forest attribute models: A case study in central Europe. Scand. J. For. Res. 2017, 32, 748–761. [Google Scholar] [CrossRef]
- Stepper, C.; Straub, C.; Pretzsch, H. Assessing height changes in a highly structured forest using regularly acquired aerial image data. Forestry 2015, 88, 304–316. [Google Scholar] [CrossRef] [Green Version]
- Stepper, C.; Straub, C.; Pretzsch, H. Using semi-global matching point clouds to estimate growing stock at the plot and stand levels: Application for a broadleaf-dominated forest in central Europe. Can. J. For. Res. 2015, 45, 111–123. [Google Scholar] [CrossRef]
- Stoffels, J.; Hill, J.; Sachtleber, T.; Mader, S.; Buddenbaum, H.; Stern, O.; Langshausen, J.; Dietz, J.; Ontrup, G. Satellite-based derivation of high-resolution forest information layers for operational forest management. Forests 2015, 6, 1982–2013. [Google Scholar] [CrossRef]
- Stoffels, J.; Mader, S.; Hill, J.; Werner, W.; Ontrup, G. Satellite-based stand-wise forest cover type mapping using a spatially adaptive classification approach. Eur. J. For. Res. 2012, 131, 1071–1089. [Google Scholar] [CrossRef]
- Straub, C.; Dees, M.; Weinacker, H.; Koch, B. Using airborne laser scanner data and CIR orthophotos to estimate the stem volume of forest stands. Photogramm. Fernerkund. Geoinf. 2009, 277–287. [Google Scholar] [CrossRef]
- Straub, C.; Koch, B. Enhancement of bioenergy estimations within forests using airborne laser scanning and multispectral line scanner data. Biomass Bioenergy 2011, 35, 3561–3574. [Google Scholar] [CrossRef]
- Straub, C.; Koch, B. Estimating single tree stem volume of pinus sylvestris using airborne laser scanner and multispectral line scanner data. Remote Sens. 2011, 3, 929–944. [Google Scholar] [CrossRef] [Green Version]
- Straub, C.; Stepper, C. Using digital aerial photogrammetry and the random forest approach to model forest inventory attributes in beech- and spruce-dominated Central European forests. Photogramm. Fernerkund. Geoinf. 2016, 109–123. [Google Scholar] [CrossRef]
- Straub, C.; Stepper, C.; Seitz, R.; Waser, L.T. Potential of UltraCamX stereo images for estimating timber volume and basal area at the plot level in mixed European forests. Can. J. For. Res. 2013, 43, 731–741. [Google Scholar] [CrossRef]
- Straub, C.; Tian, J.J.; Seitz, R.; Reinartz, P. Assessment of Cartosat-1 and WorldView-2 stereo imagery in combination with a LiDAR-DTM for timber volume estimation in a highly structured forest in Germany. Forestry 2013, 86, 463–473. [Google Scholar] [CrossRef] [Green Version]
- Straub, C.; Weinacker, H.; Koch, B. A comparison of different methods for forest resource estimation using information from airborne laser scanning and CIR orthophotos. Eur. J. For. Res. 2010, 129, 1069–1080. [Google Scholar] [CrossRef]
- Stumer, W.; Kenter, B.; Kohl, M. Spatial interpolation of in situ data by self-organizing map algorithms (neural networks) for the assessment of carbon stocks in European forests. For. Ecol. Manag. 2010, 260, 287–293. [Google Scholar] [CrossRef]
- Tanase, M.A.; Aponte, C.; Mermoz, S.; Bouvet, A.; Toan, T.L.; Heurich, M. Detection of windthrows and insect outbreaks by L-band SAR: A case study in the Bavarian Forest National Park. Remote Sens. Environ. 2018, 209, 700–711. [Google Scholar] [CrossRef]
- Tello, M.; Cazcarra-Bes, V.; Pardini, M.; Papathanassiou, K. Forest structure characterization from SAR tomography at L-Band. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 3402–3414. [Google Scholar] [CrossRef] [Green Version]
- Thiel, C.; Drezet, P.; Weise, C.; Quegan, S.; Schmullius, C. Radar remote sensing for the delineation of forest cover maps and the detection of deforestation. Forestry 2006, 79, 589–597. [Google Scholar] [CrossRef] [Green Version]
- Tian, J.J.; Schneider, T.; Straub, C.; Kugler, F.; Reinartz, P. Exploring digital surface models from nine different sensors for forest monitoring and change detection. Remote Sens. 2017, 9, 287. [Google Scholar] [CrossRef] [Green Version]
- Tigges, J.; Churkina, G.; Lakes, T. Modeling above-ground carbon storage: A remote sensing approach to derive individual tree species information in urban settings. Urban Ecosyst. 2017, 20, 97–111. [Google Scholar] [CrossRef]
- Tigges, J.; Lakes, T. High resolution remote sensing for reducing uncertainties in urban forest carbon offset life cycle assessments. Carbon Balance Manag. 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Tigges, J.; Lakes, T.; Hostert, P. Urban vegetation classification: Benefits of multitemporal RapidEye satellite data. Remote Sens. Environ. 2013, 136, 66–75. [Google Scholar] [CrossRef]
- Tramontana, G.; Ichii, K.; Camps-Valls, G.; Tomelleri, E.; Papale, D. Uncertainty analysis of gross primary production upscaling using Random Forests, remote sensing and eddy covariance data. Remote Sens. Environ. 2015, 168, 360–373. [Google Scholar] [CrossRef]
- Tum, M.; Buchhorn, M.; Gunther, K.P.; Haller, B.C. Validation of modelled forest biomass in Germany using BETHY/DLR. Geosci. Model Dev. 2011, 4, 1019–1034. [Google Scholar] [CrossRef] [Green Version]
- Vauhkonen, J.; Ene, L.; Gupta, S.; Heinzel, J.; Holmgren, J.; Pitkanen, J.; Solberg, S.; Wang, Y.S.; Weinacker, H.; Hauglin, K.M.; et al. Comparative testing of single-tree detection algorithms under different types of forest. Forestry 2012, 85, 27–40. [Google Scholar] [CrossRef] [Green Version]
- Vierling, K.T.; Bassler, C.; Brandl, R.; Vierling, L.A.; Weiss, I.; Muller, J. Spinning a laser web: Predicting spider distributions using LiDAR. Ecol. Appl. 2011, 21, 577–588. [Google Scholar] [CrossRef]
- Vohland, M.; Stoffels, J.; Hau, C.; Schuler, G. Remote sensing techniques for forest parameter assessment: Multispectral classification and linear spectral mixture analysis. Silva Fenn. 2007, 41, 441–456. [Google Scholar] [CrossRef] [Green Version]
- Wagner, J.; Munnich, R.; Hill, J.; Stoffels, J.; Udelhoven, T. Non-parametric small area models using shape-constrained penalized B-splines. J. R. Stat. Soc. Ser. aStatistics Soc. 2017, 180, 1089–1109. [Google Scholar] [CrossRef]
- Wallner, A.; Elatawneh, A.; Schneider, T.; Kindu, M.; Ossig, B.; Knoke, T. Remotely sensed data controlled forest inventory concept. Eur. J. Remote Sens. 2018, 51, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.H.; Wang, T.J.; Darvishzadeh, R.; Skidmore, A.K.; Jones, S.; Suarez, L.; Woodgate, W.; Heiden, U.; Heurich, M.; Hearne, J. Vegetation indices for mapping canopy foliar nitrogen in a mixed temperate forest. Remote Sens. 2016, 8, 491. [Google Scholar] [CrossRef] [Green Version]
- Waser, L.T.; Kuchler, M.; Jutte, K.; Stampfer, T. Evaluating the potential of WorldView-2 Data to classify tree species and different levels of ash mortality. Remote Sens. 2014, 6, 4515–4545. [Google Scholar] [CrossRef] [Green Version]
- Wessel, M.; Brandmeier, M.; Tiede, D. Evaluation of different machine learning algorithms for scalable classification of tree types and tree species based on sentinel-2 data. Remote Sens. 2018, 10, 21. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.W.; Yao, W.; Choi, S.; Park, T.; Myneni, R.B. A Comparative study of predicting DBH and stem volume of individual trees in a temperate forest using airborne waveform LiDAR. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2267–2271. [Google Scholar] [CrossRef]
- Zhu, X.; Skidmore, A.K.; Darvishzadeh, R.; Wang, T.J. Estimation of forest leaf water content through inversion of a radiative transfer model from LiDAR and hyperspectral data. Int. J. Appl. Earth Obs. Geoinf. 2019, 74, 120–129. [Google Scholar] [CrossRef]
- Zielewska-Buttner, K.; Adler, P.; Ehmann, M.; Braunisch, V. Automated detection of forest gaps in spruce dominated stands using canopy height models derived from stereo aerial imagery. Remote Sens. 2016, 8, 175. [Google Scholar] [CrossRef] [Green Version]
- Zielewska-Buttner, K.; Heurich, M.; Muller, J.; Braunisch, V. Remotely sensed single tree data enable the determination of habitat thresholds for the three-toed woodpecker (Picoides tridactylus). Remote Sens. 2018, 10, 1972. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, S.; Hoffmann, K. Accuracy assessment of normalized digital surface models from aerial images regarding tree height determination in Saxony, Germany. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2017, 85, 257–263. [Google Scholar] [CrossRef]
- Köhler, P.; Huth, A. The effects of tree species grouping in tropical rainforest modelling: Simulations with the individual-based model Formind. Ecol. Model. 1998, 109, 301–321. [Google Scholar] [CrossRef] [Green Version]
- Kogan, F.N. Application of vegetation index and brightness temperature for drought detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Data Pool Initiative for the Bohemian Forest Ecosystem. Available online: https://www.researchgate.net/project/Data-Pool-Initiative-for-the-Bohemian-Forest-Ecosystem (accessed on 17 July 2002).
- Tinkham, W.T.; Mahoney, P.R.; Hudak, A.T.; Domke, G.M.; Falkowski, M.J.; Woodall, C.W.; Smith, A.M.S. Applications of the United States Forest Inventory and Analysis dataset: A review and future directions. Can. J. For. Res. 2018, 48, 1251–1268. [Google Scholar] [CrossRef]
- Shang, C.; Coops, N.C.; Wulder, M.A.; White, J.C.; Hermosilla, T. Update and spatial extension of strategic forest inventories using time series remote sensing and modeling. Int. J. Appl. Earth Obs. Geoinf. 2020, 84. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Holzwarth, S.; Thonfeld, F.; Abdullahi, S.; Asam, S.; Da Ponte Canova, E.; Gessner, U.; Huth, J.; Kraus, T.; Leutner, B.; Kuenzer, C. Earth Observation Based Monitoring of Forests in Germany: A Review. Remote Sens. 2020, 12, 3570. https://doi.org/10.3390/rs12213570
Holzwarth S, Thonfeld F, Abdullahi S, Asam S, Da Ponte Canova E, Gessner U, Huth J, Kraus T, Leutner B, Kuenzer C. Earth Observation Based Monitoring of Forests in Germany: A Review. Remote Sensing. 2020; 12(21):3570. https://doi.org/10.3390/rs12213570
Chicago/Turabian StyleHolzwarth, Stefanie, Frank Thonfeld, Sahra Abdullahi, Sarah Asam, Emmanuel Da Ponte Canova, Ursula Gessner, Juliane Huth, Tanja Kraus, Benjamin Leutner, and Claudia Kuenzer. 2020. "Earth Observation Based Monitoring of Forests in Germany: A Review" Remote Sensing 12, no. 21: 3570. https://doi.org/10.3390/rs12213570
APA StyleHolzwarth, S., Thonfeld, F., Abdullahi, S., Asam, S., Da Ponte Canova, E., Gessner, U., Huth, J., Kraus, T., Leutner, B., & Kuenzer, C. (2020). Earth Observation Based Monitoring of Forests in Germany: A Review. Remote Sensing, 12(21), 3570. https://doi.org/10.3390/rs12213570