The Google Earth Engine Mangrove Mapping Methodology (GEEMMM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Google Earth Engine Mangrove Mapping Methodology (GEEMMM) Pilot AOI
2.1.1. Regional Context
2.1.2. Myanmar—A Regional and Global Loss Hotspot
2.1.3. Myanmar—Inventory, Summary and Acquisition of Existing Datasets
2.1.4. Myanmar—Comparison of Existing Datasets and Baseline QAA
2.2. The Google Earth Engine Mangrove Mapping Methodology (GEEMMM)
2.2.1. Module 1—Defining the ROI and Compositing Imagery
2.2.2. Module 2—Spectral Separability, Classifications and Accuracy Assessment
2.2.3. Module 3—Dynamics and QAA
3. Results and Discussion
3.1. Myanmar—Comparison of Existing Datasets
3.2. Results of the Google Earth Engine Mangrove Mapping Methodology (GEEMMM)
3.2.1. Module 1—Defining AOI and Compositing Imagery
3.2.2. Module 2—Spectral Separability, Classifications and Accuracy Assessment
3.2.3. Module 3—Dynamics and QAA
3.2.4. Dissemination and Improvement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Contemporary HOT Index Band Correlation | ||||||||||||||
SR | NDVI | NDWI | MNDWI | CMRI | MMRI | SAVI | OSAVI | EVI | MRI | SMRI | LSWI | NDTI | EBBI | |
SR | 1 | 0.654 | −0.61 | −0.42 | 0.256 | −0.46 | 0.654 | 0.654 | 0.13 | 0.018 | −0.14 | 0.498 | 0.719 | −0.71 |
NDVI | 0.654 | 1 | −0.98 | −0.85 | 0.177 | −0.7 | 0.999 | 0.999 | 0.203 | −0.11 | −0.38 | 0.163 | 0.755 | −0.76 |
NDWI | −0.61 | −0.98 | 1 | 0.907 | 0.005 | 0.679 | −0.98 | −0.98 | −0.18 | 0.118 | 0.392 | −0.06 | −0.69 | 0.698 |
MNDWI | −0.42 | −0.85 | 0.907 | 1 | 0.222 | 0.475 | −0.85 | −0.85 | −0.14 | 0.222 | 0.342 | 0.328 | −0.43 | 0.448 |
CMRI | 0.256 | 0.177 | 0.005 | 0.222 | 1 | −0.18 | 0.177 | 0.177 | 0.14 | 0 | 8.709 * | 0.562 | 0.407 | −0.4 |
MMRI | −0.46 | −0.7 | 0.679 | 0.475 | −0.18 | 1 | −0.7 | −0.7 | −0.08 | −0.04 | 0.154 | −0.31 | −0.72 | 0.617 |
SAVI | 0.654 | 0.999 | −0.98 | −0.85 | 0.177 | −0.7 | 1 | 0.999 | 0.203 | −0.11 | −0.38 | 0.163 | 0.755 | −0.76 |
OSAVI | 0.654 | 0.999 | −0.98 | −0.85 | 0.177 | −0.7 | 0.999 | 1 | 0.203 | −0.11 | −0.38 | 0.163 | 0.755 | −0.76 |
EVI | 0.13 | 0.203 | −0.18 | −0.14 | 0.14 | −0.08 | 0.203 | 0.203 | 1 | −0.01 | −0.09 | 0.032 | 0.145 | −0.15 |
MRI | 0.018 | −0.11 | 0.118 | 0.222 | 0 | −0.04 | −0.11 | −0.11 | −0.01 | 1 | 0.033 | 0.227 | 0.067 | 0.085 |
SMRI | −0.14 | −0.38 | 0.392 | 0.342 | 8.709 * | 0.154 | −0.38 | −0.38 | −0.09 | 0.033 | 1 | 0.028 | −0.27 | 0.175 |
LSWI | 0.498 | 0.163 | −0.06 | 0.328 | 0.562 | −0.31 | 0.163 | 0.163 | 0.032 | 0.227 | 0.028 | 1 | 0.566 | −0.6 |
NDTI | 0.719 | 0.755 | −0.69 | −0.43 | 0.407 | −0.72 | 0.755 | 0.755 | 0.145 | 0.067 | −0.27 | 0.566 | 1 | −0.79 |
EBBI | −0.71 | −0.76 | 0.698 | 0.448 | −0.4 | 0.617 | −0.76 | −0.76 | −0.15 | 0.085 | 0.175 | −0.6 | −0.79 | 1 |
*—Denotes an error output from the GEE servers for the index correlations. | ||||||||||||||
Contemporary LOT Index Band Correlation | ||||||||||||||
SR | NDVI | NDWI | MNDWI | CMRI | MMRI | SAVI | OSAVI | EVI | MRI | SMRI | LSWI | NDTI | EBBI | |
SR | 1 | 0.718 | −0.67 | −0.44 | 0.286 | −0.47 | 0.718 | 0.718 | 0.158 | 0.054 | −0.14 | 0.509 | 0.717 | −0.76 |
NDVI | 0.718 | 1 | −0.97 | −0.79 | 0.234 | −0.78 | 0.999 | 0.999 | 0.223 | −0.1 | −0.25 | 0.267 | 0.75 | −0.79 |
NDWI | −0.67 | −0.97 | 1 | 0.871 | −0.02 | 0.774 | −0.97 | −0.97 | −0.23 | 0.119 | 0.236 | −0.14 | −0.67 | 0.714 |
MNDWI | −0.44 | −0.79 | 0.871 | 1 | 0.27 | 0.492 | −0.79 | −0.79 | −0.22 | 0.251 | 0.221 | 0.337 | −0.3 | 0.374 |
CMRI | 0.286 | 0.234 | −0.02 | 0.27 | 1 | −0.13 | 0.234 | 0.234 | −0.03 | 0.033 | −0.1 | 0.612 | 0.459 | −0.46 |
MMRI | −0.47 | −0.78 | 0.774 | 0.492 | −0.13 | 1 | −0.78 | −0.78 | −0.21 | −0.04 | 0.137 | −0.37 | −0.69 | 0.65 |
SAVI | 0.718 | 0.999 | −0.97 | −0.79 | 0.234 | −0.78 | 1 | 0.999 | 0.223 | −0.1 | −0.25 | 0.267 | 0.75 | −0.79 |
OSAVI | 0.718 | 0.999 | −0.97 | −0.79 | 0.234 | −0.78 | 0.999 | 1 | 0.223 | −0.1 | −0.25 | 0.267 | 0.75 | −0.79 |
EVI | 0.158 | 0.223 | −0.23 | −0.22 | −0.03 | −0.21 | 0.223 | 0.223 | 1 | −0.02 | −0.04 | 0.006 | 0.126 | −0.17 |
MRI | 0.054 | −0.1 | 0.119 | 0.251 | 0.033 | −0.04 | −0.1 | −0.1 | −0.02 | 1 | 0.033 | 0.253 | 0.081 | −0.02 |
SMRI | −0.14 | −0.25 | 0.236 | 0.221 | −0.1 | 0.137 | −0.25 | −0.25 | −0.04 | 0.033 | 1 | −0.01 | −0.14 | 0.134 |
LSWI | 0.509 | 0.267 | −0.14 | 0.337 | 0.612 | −0.37 | 0.267 | 0.267 | 0.006 | 0.253 | −0.01 | 1 | 0.716 | −0.67 |
NDTI | 0.717 | 0.75 | −0.67 | −0.3 | 0.459 | −0.69 | 0.75 | 0.75 | 0.126 | 0.081 | −0.14 | 0.716 | 1 | −0.89 |
EBBI | 0.76 | −0.79 | 0.714 | 0.374 | −0.46 | 0.65 | −0.79 | −0.79 | −0.17 | −0.02 | 0.134 | −0.67 | −0.89 | 1 |
Historic HOT Index Band Correlation | ||||||||||||||
SR | NDVI | NDWI | MNDWI | CMRI | MMRI | SAVI | OSAVI | EVI | MRI | SMRI | LSWI | NDTI | EBBI | |
SR | 1 | 0.844 | −0.78 | −0.56 | 0.603 | −0.74 | 0.844 | 0.844 | 0.406 | −0.17 | −0.26 | 0.123 | 0.373 | −0.83 |
NDVI | 0.844 | 1 | −0.98 | −0.83 | 0.418 | −0.82 | 0.999 | 0.999 | 0.38 | −0.25 | −0.45 | −0.26 | 0.248 | −0.69 |
NDWI | −0.78 | −0.98 | 1 | 0.894 | −0.26 | 0.773 | −0.98 | −0.98 | −0.34 | 0.232 | 0.49 | 0.38 | −0.2 | 0.595 |
MNDWI | −0.56 | −0.83 | 0.894 | 1 | 0.027 | 0.618 | −0.83 | −0.83 | −0.26 | 0.239 | 0.435 | 0.718 | −0.06 | 0.244 |
CMRI | 0.603 | 0.418 | −0.26 | 0.027 | 1 | −0.54 | 0.418 | 0.418 | 0.341 | −0.21 | 0.03 | 0.56 | 0.341 | −0.77 |
MMRI | −0.74 | −0.82 | 0.773 | 0.618 | −0.54 | 1 | −0.82 | −0.82 | −0.45 | 0.184 | 0.279 | 0.031 | −0.33 | 0.719 |
SAVI | 0.844 | 0.999 | −0.98 | −0.83 | 0.418 | −0.82 | 1 | 0.999 | 0.38 | −0.25 | −0.45 | −0.26 | 0.248 | −0.69 |
OSAVI | 0.844 | 0.999 | −0.98 | −0.83 | 0.418 | −0.82 | 0.999 | 1 | 0.38 | −0.25 | −0.45 | −0.26 | 0.248 | −0.69 |
EVI | 0.406 | 0.38 | −0.34 | −0.26 | 0.341 | −0.45 | 0.38 | 0.38 | 1 | −0.09 | −0.02 | 0.064 | 0.151 | −0.38 |
MRI | −0.17 | −0.25 | 0.232 | 0.239 | −0.21 | 0.184 | −0.25 | −0.25 | −0.09 | 1 | −0.16 | 0.104 | −0.02 | 0.231 |
SMRI | −0.26 | −0.45 | 0.49 | 0.435 | 0.03 | 0.279 | −0.45 | −0.45 | −0.02 | −0.16 | 1 | 0.267 | 0.089 | 0.16 |
LSWI | 0.123 | −0.26 | 0.38 | 0.718 | 0.56 | 0.031 | −0.26 | −0.26 | 0.064 | 0.104 | 0.267 | 1 | 0.23 | −0.45 |
NDTI | 0.373 | 0.248 | −0.2 | −0.06 | 0.341 | −0.33 | 0.248 | 0.248 | 0.151 | −0.02 | 0.089 | 0.23 | 1 | −0.38 |
EBBI | −0.83 | −0.69 | 0.595 | 0.244 | −0.77 | 0.719 | −0.69 | −0.69 | −0.38 | 0.231 | 0.16 | −0.45 | −0.38 | 1 |
Historic LOT Index Band Correlation | ||||||||||||||
SR | NDVI | NDWI | MNDWI | CMRI | MMRI | SAVI | OSAVI | EVI | MRI | SMRI | LSWI | NDTI | EBBI | |
SR | 1 | 0.852 | −0.77 | −0.42 | 0.529 | −0.77 | 0.852 | 0.852 | 0.135 | 0.158 | −0.3 | 0.412 | 0.714 | −0.82 |
NDVI | 0.852 | 1 | −0.97 | −0.74 | 0.325 | −0.86 | 0.999 | 0.999 | 0.183 | 0.037 | −0.39 | 0.084 | 0.705 | −0.69 |
NDWI | −0.77 | −0.97 | 1 | 0.842 | −0.11 | 0.824 | −0.97 | −0.97 | −0.18 | 0.056 | 0.398 | 0.072 | −0.63 | 0.574 |
MNDWI | −0.42 | −0.74 | 0.842 | 1 | 0.28 | 0.539 | −0.74 | −0.74 | −0.14 | 0.27 | 0.24 | 0.586 | −0.28 | 0.086 |
CMRI | 0.529 | 0.325 | −0.11 | 0.28 | 1 | −0.38 | 0.325 | 0.325 | 0.041 | 0.429 | −0.08 | 0.724 | 0.485 | −0.71 |
MMRI | −0.77 | −0.86 | 0.824 | 0.539 | −0.38 | 1 | −0.86 | −0.86 | −0.14 | −0.15 | 0.341 | −0.25 | −0.67 | 0.728 |
SAVI | 0.852 | 0.999 | −0.97 | −0.74 | 0.325 | −0.86 | 1 | 0.999 | 0.183 | 0.037 | −0.39 | 0.084 | 0.705 | −0.69 |
OSAVI | 0.852 | 0.999 | −0.97 | −0.74 | 0.325 | −0.86 | 0.999 | 1 | 0.183 | 0.037 | −0.39 | 0.084 | 0.705 | −0.69 |
EVI | 0.135 | 0.183 | −0.18 | −0.14 | 0.041 | −0.14 | 0.183 | 0.183 | 1 | 0.004 | −0.01 | 0.008 | 0 | −0.11 |
MRI | 0.158 | 0.037 | 0.056 | 0.27 | 0.429 | −0.15 | 0.037 | 0.037 | 0.004 | 1 | −0.16 | 0.414 | 0.167 | −0.32 |
SMRI | −0.3 | −0.39 | 0.398 | 0.24 | −0.08 | 0.341 | −0.39 | −0.39 | −0.01 | −0.16 | 1 | −0.11 | −0.25 | 0.322 |
LSWI | 0.412 | 0.084 | 0.072 | 0.586 | 0.724 | −0.25 | 0.084 | 0.084 | 0.008 | 0.414 | −0.11 | 1 | 0.405 | −0.71 |
NDTI | 0.714 | 0.705 | −0.63 | −0.28 | 0.485 | −0.67 | 0.705 | 0.705 | 0 | 0.167 | −0.25 | 0.405 | 1 | −0.72 |
EBBI | −0.82 | −0.69 | 0.574 | 0.086 | −0.71 | 0.728 | −0.69 | −0.69 | −0.11 | −0.32 | 0.322 | −0.71 | −0.72 | 1 |
References
- Saenger, P. Mangrove Ecology, Silviculture and Conservation; Springer Science & Business Media: Berlin, Germany, 2002; Volume 3, ISBN 9789048160501. [Google Scholar]
- Food and Agriculture Organization of the United Nations; Forestry Department (Rome). Global Forest Resources Assessment 2000: Main Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2001. [Google Scholar]
- Xia, Q.; Qin, C.Z.; Li, H.; Huang, C.; Su, F.Z.; Jia, M.M. Evaluation of submerged mangrove recognition index using multi-tidal remote sensing data. Ecol. Indic. 2020, 113. [Google Scholar] [CrossRef]
- Lugo, A.E. Mangrove Ecosystems: Successional or Steady State? Biotropica 1980, 12, 65–72. [Google Scholar] [CrossRef]
- Spalding, M.; Kainuma, M.; Collins, L. World Atlas of Mangroves; Earthscan: New York, NY, USA, 2010; ISBN 978-1-84407-657-4. [Google Scholar]
- Duke, N.; Nagelkerken, I.; Agardy, T.; Wells, S.; van Lavieren, H. The Importance of Mangroves to People: A Call to Action; van Bochove, J.-W., Sullivan, E., Nakamura, T., Eds.; United Nations Environment Programme World Conservation Monitoring Centre: Cambridge, UK, 2014; ISBN 9789280733976. [Google Scholar]
- Scales, I.R.; Friess, D.A.; Glass, L.; Ravaoarinorotsihoarana, L. Rural livelihoods and mangrove degradation in south-west Madagascar: Lime production as an emerging threat. Oryx 2018, 52, 641–645. [Google Scholar] [CrossRef] [Green Version]
- Blue Ventures Conservation. Value Chain Analysis: The wild capture mud crab fishery of Madagascar’s Menabe region. Available online: https://blueventures.org/publication/value-chain-analysis-the-wild-capture-mud-crab-fishery-of-madagascars-menabe-region/ (accessed on 1 October 2020).
- Aye, W.N.; Wen, Y.; Marin, K.; Thapa, S.; Tun, A.W. Contribution of mangrove forest to the livelihood of local communities in Ayeyarwaddy Region, Myanmar. Forests 2019, 10, 414. [Google Scholar] [CrossRef] [Green Version]
- Nagelkerken, I.; Blaber, S.J.M.; Bouillon, S.; Green, P.; Haywood, M.; Kirton, L.G.; Meynecke, J.O.; Pawlik, J.; Penrose, H.M.; Sasekumar, A.; et al. The habitat function of mangroves for terrestrial and marine fauna: A review. Aquat. Bot. 2008, 89, 155–185. [Google Scholar] [CrossRef] [Green Version]
- Gopal, B.; Chauhan, M. Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat. Sci. 2006, 68, 338–354. [Google Scholar] [CrossRef]
- Gardner, C.J. Use of Mangroves by Lemurs. Int. J. Primatol. 2016, 37, 317–332. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M. Carbon cycling and storage in mangrove forests. Annu. Rev. Mar. Sci. 2014, 6, 195–219. [Google Scholar] [CrossRef]
- Donato, D.C.; Kauffman, J.B.; Murdiyarso, D.; Kurnianto, S.; Stidham, M.; Kanninen, M. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 2011, 4, 293–297. [Google Scholar] [CrossRef]
- Sanderman, J.; Hengl, T.; Fiske, G.; Solvik, K.; Adame, M.F.; Benson, L.; Bukoski, J.J.; Carnell, P.; Cifuentes-Jara, M.; Donato, D.; et al. A global map of mangrove forest soil carbon at 30 m spatial resolution. Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef]
- Rakotomahazo, C.; Ravaoarinorotsihoarana, L.A.; Randrianandrasaziky, D.; Glass, L.; Gough, C.; Boleslas Todinanahary, G.G.; Gardner, C.J. Participatory planning of a community-based payments for ecosystem services initiative in Madagascar’s mangroves. Ocean Coast. Manag. 2019, 175, 43–52. [Google Scholar] [CrossRef]
- Ahmed, N.; Glaser, M. Coastal aquaculture, mangrove deforestation and blue carbon emissions: Is REDD+ a solution? Mar. Policy 2016, 66, 58–66. [Google Scholar] [CrossRef]
- Valiela, I.; Bowen, J.L.; York, J.K. Mangrove forests: One of the world’s threatened major tropical environments. BioScience 2001, 51, 807–815. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, S.; Jones, T.G. Identifying mangrove deforestation hotspots in South Asia, Southeast Asia and Asia-Pacific. Remote Sens. 2019, 11, 728. [Google Scholar] [CrossRef] [Green Version]
- Richards, D.R.; Thompson, B.S.; Wijedasa, L. Quantifying net loss of global mangrove carbon stocks from 20 years of land cover change. Nat. Commun. 2020, 11, 4260. [Google Scholar] [CrossRef]
- Global Mangrove Watch Mangrove Atlas. Available online: https://www.globalmangrovewatch.org/ (accessed on 8 September 2020).
- Friess, D.A.; Rogers, K.; Lovelock, C.E.; Krauss, K.W.; Hamilton, S.E.; Lee, S.Y.; Lucas, R.; Primavera, J.; Rajkaran, A.; Shi, S. The State of the World’s Mangrove Forests: Past, Present, and Future. Ann. Rev. Environ. Resour. 2019, 44, 89–115. [Google Scholar] [CrossRef] [Green Version]
- Kuenzer, C.; Bluemel, A.; Gebhardt, S.; Quoc, T.V.; Dech, S. Remote sensing of mangrove ecosystems: A review. Remote Sens. 2011, 3, 878–928. [Google Scholar] [CrossRef] [Green Version]
- UN Millennium Project. Investing in Development: A Practical Plan to Achieve the Millennium Development Goals. Overview; United Nations Development Programme: Washington, DC, USA, 2005; ISBN 1844072177. [Google Scholar]
- Ramsar Convention Secretariat. The Fourth RAMSAR Strategic Plan 2016–2024. Available online: https://www.ramsar.org/the-ramsar-strategic-plan-2016–24 (accessed on 1 October 2020).
- Wang, L.; Jia, M.; Yin, D.; Tian, J. A review of remote sensing for mangrove forests: 1956–2018. Remote Sens. Environ. 2019, 231. [Google Scholar] [CrossRef]
- Rogers, K.; Lymburner, L.; Salum, R.; Brooke, B.P.; Woodroffe, C.D. Mapping of mangrove extent and zonation using high and low tide composites of Landsat data. Hydrobiologia 2017, 803, 49–68. [Google Scholar] [CrossRef]
- Zhang, X.; Treitz, P.M.; Chen, D.; Quan, C.; Shi, L.; Li, X. Mapping mangrove forests using multi-tidal remotely-sensed data and a decision-tree-based procedure. Int. J. Appl. Earth Obs. Geoinf. 2017, 62, 201–214. [Google Scholar] [CrossRef]
- Xia, Q.; Qin, C.Z.; Li, H.; Huang, C.; Su, F.Z. Mapping mangrove forests based on multi-tidal high-resolution satellite imagery. Remote Sens. 2018, 10, 1343. [Google Scholar] [CrossRef] [Green Version]
- Sagar, S.; Roberts, D.; Bala, B.; Lymburner, L. Extracting the intertidal extent and topography of the Australian coastline from a 28 year time series of Landsat observations. Remote Sens. Environ. 2017, 195, 153–169. [Google Scholar] [CrossRef]
- Bishop-Taylor, R.; Sagar, S.; Lymburner, L.; Beaman, R.J. Between the tides: Modelling the elevation of Australia’s exposed intertidal zone at continental scale. Estuar. Coast. Shelf Sci. 2019, 223, 115–128. [Google Scholar] [CrossRef]
- Murray, N.J.; Phinn, S.R.; DeWitt, M.; Ferrari, R.; Johnston, R.; Lyons, M.B.; Clinton, N.; Thau, D.; Fuller, R.A. The global distribution and trajectory of tidal flats. Nature 2019, 565, 222–225. [Google Scholar] [CrossRef]
- Martin, P.J.; Smith, S.R.; Posey, P.G.; Dawson, G.M.; Riedlinger, S.H. Use of the Oregon State University Tidal Inversion Software (OTIS) to Generate Improved Tidal Prediction in the East-Asian Seas; Stennis Space Center: Hancock, MS, USA, 2009. [Google Scholar]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Landsat 8 Collection 1 (C1) Land Surface Reflectance Code (LaSRC) Product Guide; LSDS-1368; U.S. Geological Survey, Dempartment of the Interior: Sioux Falls, SD, USA, 2020.
- Wulder, M.A.; Coops, N.C.; Roy, D.P.; White, J.C.; Hermosilla, T. Land cover 2.0. Int. J. Remote Sens. 2018, 39, 4254–4284. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Vos, K.; Splinter, K.D.; Harley, M.D.; Simmons, J.A.; Turner, I.L. CoastSat: A Google Earth Engine-enabled Python toolkit to extract shorelines from publicly available satellite imagery. Environ. Model. Softw. 2019, 122, 104528. [Google Scholar] [CrossRef]
- Chen, B.; Xiao, X.; Li, X.; Pan, L.; Doughty, R.; Ma, J.; Dong, J.; Qin, Y.; Zhao, B.; Wu, Z.; et al. A mangrove forest map of China in 2015: Analysis of time series Landsat 7/8 and Sentinel-1A imagery in Google Earth Engine cloud computing platform. ISPRS J. Photogramm. Remote Sens. 2017, 131, 104–120. [Google Scholar] [CrossRef]
- Pimple, U.; Simonetti, D.; Sitthi, A.; Pungkul, S.; Leadprathom, K.; Skupek, H.; Som-ard, J.; Gond, V.; Towprayoon, S. Google Earth Engine Based Three Decadal Landsat Imagery Analysis for Mapping of Mangrove Forests and Its Surroundings in the Trat Province of Thailand. J. Comput. Commun. 2018, 6, 247–264. [Google Scholar] [CrossRef] [Green Version]
- Tieng, T.; Sharma, S.; Mackenzie, R.A.; Venkattappa, M.; Sasaki, N.K.; Collin, A. Mapping mangrove forest cover using Landsat-8 imagery, Sentinel-2, Very High Resolution Images and Google Earth Engine algorithm for entire Cambodia. In Proceedings of the IOP Conference Series: Earth and Environmental Science, 4th International Forum on Sustainable Future in Asia/4th NIES International Forum, Pan Pacific Hanoi, Vietnam, 23–24 January 2019; IOP Publishing: Bristol, UK, 2019; Volume 266. [Google Scholar]
- Mondal, P.; Trzaska, S.; de Sherbinin, A. Landsat-derived estimates of mangrove extents in the Sierra Leone coastal landscape complex during 1990–2016. Sensors 2018, 18, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diniz, C.; Cortinhas, L.; Nerino, G.; Rodrigues, J.; Sadeck, L.; Adami, M.; Souza-Filho, P.W.M. Brazilian mangrove status: Three decades of satellite data analysis. Remote Sens. 2019, 11, 808. [Google Scholar] [CrossRef] [Green Version]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Ellison, A.M.; Farnsworthf, E.J.; Merkt, R.E. Origins of Mangrove Ecosystems and the Mangrove Biodiversity Anomaly. Glob. Ecol. Biogeogr. 1999, 8, 95–115. [Google Scholar]
- Food and Agricultural Organization (FAO). Loss of Mangroves Alarming. Available online: http://www.fao.org/newsroom/en/news/2008/1000776/index.html (accessed on 30 August 2020).
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef] [Green Version]
- Farnsworth, E.J.; Ellison, A.M. The global conservation status of mangroves. AMBIO 1997, 26, 328–334. [Google Scholar] [CrossRef]
- Primavera, J.H. Development and conservation of Philippine mangroves: Institutional issues. Ecol. Econ. 2000, 35, 91–106. [Google Scholar] [CrossRef]
- Dahdouh-Guebas, F. The use of remote sensing and GIS in the sustainable management of tropical coastal ecosystems. Environ. Dev. Sustain. 2002, 4, 93–112. [Google Scholar] [CrossRef] [Green Version]
- Primavera, J.H. Mangroves, Fishponds, and the Quest for Sustainability. Science 2005, 310, 57–59. [Google Scholar] [CrossRef] [Green Version]
- Primavera, J.H. Overcoming the impacts of aquaculture on the coastal zone. Ocean Coast. Manag. 2006, 49, 531–545. [Google Scholar] [CrossRef]
- Gilman, E.L.; Ellison, J.; Duke, N.C.; Field, C. Threats to mangroves from climate change and adaptation options: A review. Aquat. Bot. 2008, 89, 237–250. [Google Scholar] [CrossRef]
- Walters, B.B.; Rönnbäck, P.; Kovacs, J.M.; Crona, B.; Hussain, S.A.; Badola, R.; Primavera, J.H.; Barbier, E.; Dahdouh-Guebas, F. Ethnobiology, socio-economics and management of mangrove forests: A review. Aquat. Bot. 2008, 89, 220–236. [Google Scholar] [CrossRef] [Green Version]
- Webb, E.L.; Jachowski, N.R.A.; Phelps, J.; Friess, D.A.; Than, M.M.; Ziegler, A.D. Deforestation in the Ayeyarwady Delta and the conservation implications of an internationally-engaged Myanmar. Glob. Environ. Chang. 2014, 24, 321–333. [Google Scholar] [CrossRef]
- Estoque, R.C.; Myint, S.W.; Wang, C.; Ishtiaque, A.; Aung, T.T.; Emerton, L.; Ooba, M.; Hijioka, Y.; Mon, M.S.; Wang, Z.; et al. Assessing environmental impacts and change in Myanmar’s mangrove ecosystem service value due to deforestation (2000–2014). Glob. Chang. Biol. 2018, 24, 5391–5410. [Google Scholar] [CrossRef]
- De Alban, J.D.T.; Jamaludin, J.; Wong De Wen, D.; Than, M.M.; Webb, E.L. Improved estimates of mangrove cover and change reveal catastrophic deforestation in Myanmar. Environ. Res. Lett. 2020, 15, 034034. [Google Scholar] [CrossRef]
- Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Alongi, D.M. The Impact of Climate Change on Mangrove Forests. Curr. Clim. Chang. Rep. 2015, 1, 30–39. [Google Scholar] [CrossRef]
- Sitoe, A.A.; Mandlate, L.J.C.; Guedes, B.S. Biomass and carbon stocks of Sofala Bay mangrove forests. Forests 2014, 5, 1967–1981. [Google Scholar] [CrossRef]
- Field, C.D. Impact of expected climate change on mangroves. Hydrobiologia 1995, 295, 75–81. [Google Scholar] [CrossRef]
- Krauss, K.W.; Lovelock, C.E.; McKee, K.L.; López-Hoffman, L.; Ewe, S.M.L.; Sousa, W.P. Environmental drivers in mangrove establishment and early development: A review. Aquat. Bot. 2008, 89, 105–127. [Google Scholar] [CrossRef]
- Chan, H.T.; Baba, S. Manual on Guidlines for Rehabilitation of Coastal Forests Damaged by Natural Hazards in the Asia-Pacific Region; International Society for Mangrove Ecosystems and International Tropical Timber Organization: Okinawa, Japan, 2009; ISBN 9784906584130. [Google Scholar]
- Suzuki, T.; Zijlema, M.; Burger, B.; Meijer, M.C.; Narayan, S. Wave dissipation by vegetation with layer schematization in SWAN. Coast. Eng. 2012, 59, 64–71. [Google Scholar] [CrossRef]
- Di Nitto, D.; Neukermans, G.; Koedam, N.; Defever, H.; Pattyn, F.; Kairo, J.G.; Dahdouh-Guebas, F. Mangroves facing climate change: Landward migration potential in response to projected scenarios of sea level rise. Biogeosciences 2014, 11, 857–871. [Google Scholar] [CrossRef] [Green Version]
- Giesen, W.; Wulffraat, S.; Zieren, M.; Scholten, L. Mangrove guidebook for Southeast Asia; Food and Agriculture Organization of the United Nations, Regional Office for Asia and the Pacific: Bangkok, Thailand, 2006. [Google Scholar]
- Thomas, N.; Bunting, P.; Lucas, R.; Hardy, A.; Rosenqvist, A.; Fatoyinbo, T. Mapping mangrove extent and change: A globally applicable approach. Remote Sens. 2018, 10, 1466. [Google Scholar] [CrossRef] [Green Version]
- Romañach, S.S.; DeAngelis, D.L.; Koh, H.L.; Li, Y.; Teh, S.Y.; Raja Barizan, R.S.; Zhai, L. Conservation and restoration of mangroves: Global status, perspectives, and prognosis. Ocean Coast. Manag. 2018, 154, 72–82. [Google Scholar] [CrossRef]
- Giri, C.; Zhu, Z.; Tieszen, L.L.; Singh, A.; Gillette, S.; Kelmelis, J.A. Mangrove Forest Distributions and Dynamics (1975-2005) of the Tsunami-Affected Region of Asia. J. Biogeogr. 2008, 35, 519–528. [Google Scholar] [CrossRef]
- Giri, C.; Long, J.; Abbas, S.; Murali, R.M.; Qamer, F.M.; Pengra, B.; Thau, D. Distribution and dynamics of mangrove forests of South Asia. J. Environ. Manag. 2015, 148, 101–111. [Google Scholar] [CrossRef]
- Bhattarai, B. Assessment of mangrove forests in the Pacific region using Landsat imagery. J. Appl. Remote Sens. 2011, 5, 053509. [Google Scholar] [CrossRef]
- Saah, D.; Tenneson, K.; Poortinga, A.; Nguyen, Q.; Chishtie, F.; Aung, K.S.; Markert, K.N.; Clinton, N.; Anderson, E.R.; Cutter, P.; et al. Primitives as building blocks for constructing land cover maps. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101979. [Google Scholar] [CrossRef]
- Bunting, P.; Rosenqvist, A.; Lucas, R.M.; Rebelo, L.M.; Hilarides, L.; Thomas, N.; Hardy, A.; Itoh, T.; Shimada, M.; Finlayson, C.M. The global mangrove watch—A new 2010 global baseline of mangrove extent. Remote Sens. 2018, 10, 1669. [Google Scholar] [CrossRef] [Green Version]
- Clark Labs. Coastal Habitat Mapping: Mangrove and Pond Aquaculture Conversion. Available online: https://clarklabs.org/aquaculture/ (accessed on 30 August 2020).
- Stibig, H.-J.; Belward, A.S.; Roy, P.S.; Rosalina-Wasrin, U.; Agrawal, S.; Joshi, P.K.; Hildanus; Beuchle, R.; Fritz, S.; Mubareka, S.; et al. A Land-Cover Map for South and Southeast Asia Derived from SPOT-VEGETATION Data. J. Biogeogr. 2007, 34, 625–637. [Google Scholar] [CrossRef]
- Blasco, F.; Aizpuru, M.; Gers, C. Depletion of the mangroves of Continental Asia. Wetl. Ecol. Manag. 2001, 9, 245–256. [Google Scholar] [CrossRef]
- Hamilton, S.E.; Casey, D. Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Glob. Ecol. Biogeogr. 2016, 25, 729–738. [Google Scholar] [CrossRef]
- Google Earth Pro; Google LLC: Mountain View, CA, USA, 2020.
- Global LSIB Polygons Detailed 2017. Available online: https://catalog.data.gov/dataset/global-lsib-polygons-detailed-2017dec29 (accessed on 22 September 2020).
- Tadono, T.; Ishida, H.; Oda, F.; Naito, S.; Minakawa, K.; Iwamoto, H. Precise Global DEM Generation by ALOS PRISM. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, II-4, 71–76. [Google Scholar] [CrossRef] [Green Version]
- GADM Maps and Data. Available online: https://www.gadm.org/ (accessed on 22 September 2020).
- Li, P.; Feng, Z.; Jiang, L.; Liao, C.; Zhang, J. A review of swidden agriculture in Southeast Asia. Remote Sens. 2014, 6, 1654–1683. [Google Scholar] [CrossRef] [Green Version]
- Streets, D.G.; Yarber, K.F.; Woo, J.-H.; Carmichael, G.R. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef] [Green Version]
- Davis, J.H. The Forests of Burma; New York Botanical Garden: New York, NY, USA, 1964. [Google Scholar]
- U.S. Geological Survey. Landsat 8 (L8) Data Users Handbook; LSDS-1574; U.S. Geological Survey, Department of the Interior: Sioux Falls, SD, USA, 2019.
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Hogarth, P.J. Mangrove Ecosystems. In Encyclopedia of Biodiversity, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 10–22. ISBN 9780123847195. [Google Scholar]
- Eastman, J.R.; Crema, S.C.; Sangermano, F.; Cunningham, S.; Xiao, X.; Zhou, Z.; Hu, P.; Johnson, C.; Arakwiye, B.; Crone, N. A Baseline Mapping of Aquaculture and Coastal Habitats in Thailand, Cambodia and Vietnam; Aquaculture and Coastal Habitats Report No. 1; Clark Labs: Worcester, MA, USA, 2015. [Google Scholar]
- Htway, O.; Matsumoto, J. Climatological onset dates of summer monsoon over Myanmar. Int. J. Climatol. 2011, 31, 382–393. [Google Scholar] [CrossRef]
- Jones, T.G.; Glass, L.; Gandhi, S.; Ravaoarinorotsihoarana, L.; Carro, A.; Benson, L.; Ratsimba, H.R.; Giri, C.; Randriamanatena, D.; Cripps, G. Madagascar’s mangroves: Quantifying nation-wide and ecosystem specific dynamics, and detailed contemporary mapping of distinct ecosystems. Remote Sens. 2016, 8, 106. [Google Scholar] [CrossRef] [Green Version]
- Younes Cárdenas, N.; Joyce, K.E.; Maier, S.W. Monitoring mangrove forests: Are we taking full advantage of technology? Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Tian, Q. A mangrove recognition index for remote sensing of mangrove forest from space. Curr. Sci. 2013, 105, 1149–1154. [Google Scholar]
- U.S. Geological Survey. Landsat 4-7 Collection 1 (C1) Surface Reflectance (LEDAPS) Product Guide; LSDS-1370; U.S. Geological Survey, Department of the Interior: Sioux Falls, SD, USA, 2020.
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Tarpley, J.D.; Schneider, S.R.; Money, R.L. Global Vegetation Indices from the NOAA-7 Meteorological Satellite. J. Appl. Meteorol. Climatol. 1984, 23, 491–494. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Envrion. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Gupta, K.; Mukhopadhyay, A.; Giri, S.; Chanda, A.; Datta Majumdar, S.; Samanta, S.; Mitra, D.; Samal, R.N.; Pattnaik, A.K.; Hazra, S. An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX 2018, 5, 1129–1139. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Huete, A.R.; Didan, K.; van Leeuwen, W. Modis Vegetation Index (MOD 13) Algorithm Theoretical Basis Document; University of Arizona: Tucson, AZ, USA, 1999; Version 3. [Google Scholar]
- Chandrasekar, K.; Sesha Sai, M.V.R.; Roy, P.S.; Dwevedi, R.S. Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS vegetation index product. Int. J. Remote Sens. 2010, 31, 3987–4005. [Google Scholar] [CrossRef]
- Van Deventer, A.P.; Ward, A.D.; Gowda, P.M.; Lyon, J.G. Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogramm. Eng. Remote Sens. 1997, 63, 87–93. [Google Scholar]
- As-syakur, A.R.; Adnyana, I.W.S.; Arthana, I.W.; Nuarsa, I.W. Enhanced built-UP and bareness index (EBBI) for mapping built-UP and bare land in an urban area. Remote Sens. 2012, 4, 2957–2970. [Google Scholar] [CrossRef] [Green Version]
- Weber, S.J.; Keddell, L.; Kemal, M. Myanmar Ecological Forecasting: Utilizing NASA Earth Observations to Monitor, Map, and Analyze Mangrove Forests in Myanmar for Enhanced Conservation. Available online: https://ntrs.nasa.gov/citations/20140006912 (accessed on 1 October 2020).
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Goodwin, L.D.; Leech, N.L. Understanding correlation: Factors that affect the size of r. J. Exp. Educ. 2006, 74, 249–266. [Google Scholar] [CrossRef]
- Xie, Y.; Sha, Z.; Yu, M. Remote sensing imagery in vegetation mapping: A review. J. Plant Ecol. 2008, 1, 9–23. [Google Scholar] [CrossRef]
- Giri, C.P. Remote Sensing of Land Use and Land Cover: Principles and Applications; CRC Press: Boca Raton, FL, USA, 2016; ISBN 9781420070750. [Google Scholar]
- Li, W.; El-Askary, H.; Qurban, M.A.; Li, J.; ManiKandan, K.P.; Piechota, T. Using multi-indices approach to quantify mangrove changes over the Western Arabian Gulf along Saudi Arabia coast. Ecol. Indic. 2019, 102, 734–745. [Google Scholar] [CrossRef]
- Jones, T.G.; Ratsimba, H.R.; Ravaoarinorotsihoarana, L.; Glass, L.; Benson, L.; Teoh, M.; Carro, A.; Cripps, G.; Giri, C.; Gandhi, S.; et al. The dynamics, ecological variability and estimated carbon stocks of mangroves in Mahajamba Bay, Madagascar. J. Mar. Sci. Eng. 2015, 3, 793–820. [Google Scholar] [CrossRef] [Green Version]
- Chen, N. Mapping mangrove in Dongzhaigang, China using Sentinel-2 imagery. J. Appl. Remote Sens. 2020, 14, 1. [Google Scholar] [CrossRef]
- Stehman, S.V.; Foody, G.M. Accuracy Assessment. In The SAGE Handbook of Remote Sensing; Warner, T.A., Nellis, M.D., Foody, G.M., Eds.; SAGE Publications Ltd.: London, UK, 2009; pp. 297–314. ISBN 9780857021052. [Google Scholar]
- Heumann, B.W. Satellite remote sensing of mangrove forests: Recent advances and future opportunities. Prog. Phys. Geogr. 2011, 35, 87–108. [Google Scholar] [CrossRef]
- Rosenfield, G.H. Analysis of thematic map classification error matrices. Photogramm. Eng. Remote Sens. 1986, 52, 681–686. [Google Scholar]
- Lonneville, B.; Schepers, L.; Fernández Bejarano, S.; Vanhoorne, B.; Tyberghein, L. Marine Regions. Available online: https://www.marineregions.org/ (accessed on 22 September 2020).
- Jones, T.G.; Ratsimba, H.R.; Carro, A.; Ravaoarinorotsihoarana, L.; Glass, L.; Teoh, M.; Benson, L.; Cripps, G.; Giri, C.; Zafindrasilivonona, B.; et al. The Mangroves of Ambanja and Ambaro Bays, Northwest Madagascar: Historical Dynamics, Current Status and Deforestation Mitigation Strategy. In Estuaries of the World; Diop, S., Scheren, P., Ferdinand Machiwa, J., Eds.; Springer: Cham, Switzerland, 2016; pp. 67–85. [Google Scholar]
- Jones, T.G.; Ratsimba, H.R.; Ravaoarinorotsihoarana, L.; Cripps, G.; Bey, A. Ecological Variability and Carbon Stock Estimates of Mangrove Ecosystems in Northwestern Madagascar. Forests 2014, 5, 177–205. [Google Scholar] [CrossRef] [Green Version]
Author(s) | Year(s) | Spatial Extent/Resolution | Availability | Imagery Source(s) | Methods | Discrete/Continuous |
---|---|---|---|---|---|---|
Giri et al. [70] | 1975, 1990, 2000, 2005 | 6 tsunami-affected countries/30 m | Available from authors | Landsat | Hybrid supervised/unsupervised classification (ISODATA† clustering) | Discrete |
SERVIR-Mekong Regional Land-Cover Monitoring System—Saah et al. [73] | 1987–2018 (V3) | Greater Mekong region/30 m | Downloadable from SERVIR-Mekong website (at c. 120 m resolution; available from authors at 30 m) | Landsat, MODIS | Supervised classification (Support Vector Machine; Random Forest) | Discrete |
Global Mangrove Watch—Bunting et al. [74] | 1996, 2007–2010, 2015–2016 | Global/25 m | Downloadable from Ocean Data Viewer | Jers-1, ALOS, ALOS-2, Landsat | Supervised classification (Random Forest); histogram thresholding [57] | Discrete |
de Alban et al. [57] | 1996, 2007, 2016 | National/30 m | Available from authors | Landsat, JERS-1, ALOS, ALOS-2 | Supervised classification (Random Forest) | Discrete |
Stibig et al. [76] | 1998–2000 | S and SE Asia/1 km | Downloadable from JRC | SPOT-4 | Unsupervised maximum likelihood classification | Discrete |
Blasco et al. [77] | 1999 | Bangladesh and Myanmar/20 m | Not available | SPOT 1, 2, 3 | Visual interpretation and supervised classification | Discrete |
Clark Labs [75] | 1999, 2014, 2018 | Multi-national/30 m | Downloadable from Clark Labs website | Landsat | Mahalanobis classifier; hybrid supervised/ISOCLUST ‡ clustering | Discrete |
World Atlas of Mangroves (WAM)—Spalding et al. * [5] | 2000–2007 | Global/30 m | Downloadable from Ocean Data Viewer | Landsat | Not disclosed | Discrete |
Mangrove Forests of the World (MFW)—Giri et al. [44] | 2000 | Global/30 m | Downloadable from Ocean Data Viewer | Landsat | Hybrid supervised/unsupervised classification (ISODATA † clustering) | Discrete |
CGMFC-21—Hamilton and Casey [78] | 2000–2014 | Global/30 m | 2000–2012 data downloaded from CGMFC-21, 2013–2014 data available from authors | Landsat | Masked Global Forest Change (GFC) [47] maps using MFW [47]) to calculate dynamics | Continuous |
Richards and Friess [47] | 2000, 2012 | SE Asia/30 m | Not available | Landsat | Masked GFC maps using MFW [56] to calculate loss | Continuous |
Estoque et al. [56] | 2000, 2014 | National/30 m | Not available | Landsat | Unsupervised classification (ISODATA † clustering) | Discrete |
GEEMM User Inputs. | |||
---|---|---|---|
Module | Input | Type | Selected Variables |
Module 1 | Preliminary ROI | Dataset (vector) | GUI Generated |
Known Mangrove Extent | Dataset (raster) | Giri et al. [44] | |
Coast Line | Dataset (vector) | GADM—Myanmar [82] | |
Digital Surface Model | Dataset (raster) | JAXA-ALOS DSM (30 m) [81] | |
Contemporary Year(s) | Date range (YYYY) | 2014–2018 | |
Historic Year(s) | Date range (YYYY) | 2004–2008 | |
Month(s) | Date range (MM) | 06–12 | |
Cloud Cover Limit | Integer (%) | 30% | |
Cloud Cover Mask | Variable | Aggressive | |
Tidal Zone | Numeric (m) | 1500 m | |
Water Mask | Variable | Combined | |
Fringe Mangroves | Boolean | False (not included) | |
Topographic Mask | Variable | Uses Known Mangrove Extent [44] | |
Module 2 | Classification Reference Areas (CRAs) | Dataset (vector) | See Table 4 |
Class Names | Variable | See Table 4 | |
Class Numbers | Integer | Defined by Authors | |
Classification Algorithm | Random Forest | Random Forest [82] | |
Number of Trees | Integer | 200 | |
Output Classification Maps | Variable | Hist. and Cont. Combined | |
Module 3 | Classification Reference Areas (CRAs) | Dataset (vector) | See Table 4 |
Class Names | Variable | See Table 4 | |
Class Numbers | Integer | Defined by Authors | |
Classification View | Variable | See Figure 7 | |
Mangrove Class Number(s) | Integer | Defined by Authors |
Index | Abbreviation | Calculation | Citation |
---|---|---|---|
Simple Ratio | SR | NIR/Red | Jordan [95] |
Normalized Difference Vegetation Index | NDVI | (NIR − Red)/(NIR + Red) | Tarpley et al. [96] |
Normalized Difference Water Index | NDWI | (Green − NIR)/(Green + NIR) | Gao [97] |
Modified Normalized Difference Water Index | MNDWI | (Green − SWIR1)/(Green + SWIR1) | Xu [87] |
Combined Mangrove Recognition Index | CMRI * | NDVI − NDWI | Gupta et al. [98] |
Modular Mangrove Recognition Index | MMRI * | (|MNDWI| − |NDVI|)/(|MNDWI| + |NDVI|) | Diniz et al. [43] |
Soil-Adjusted Vegetation Index | SAVI | 1.5*(NIR − Red)/(NIR + Red + 0.5) | Huete [99] |
Optimized Soil-Adjusted Vegetation Index | OSAVI | (NIR − Red)/(NIR + Red + 0.16) | Rondeaux et al. [100] |
Enhanced Vegetation Index | EVI | 2.5*((NIR − red)/NIR + 6*Red − 7.5*Blue + 1)) | Huete et al. [101] |
Mangrove Recognition Index | MRI * | |GVI(l) − GVI(h)|*GVI(l)* (WI(l) + WI(h)) | Zhang and Tian [93] |
Submerged Mangrove Recognition Index | SMRI * | (NDVI(l) − NDVI(h))* ((NIR(l) − NIR(h))/(NIR(h)) | Xia et al. [29] |
Land Surface Water Index | LSWI | (NIR − SWIR1)/(NIR + SWIR1) | Chandrasekar et al. [102] |
Normalized Difference Tillage Index | NDTI | (MIR − SWIR2)/(MIR + SWIR2) | Van Deventer et al. [103] |
Enhanced Built-up and Bareness Index | EBBI | (SWIR1 − NIR)/(10*√(SWIR1 + LWIR)) | As-syakur et al. [104] |
Class | Class Description | Contemporary | Historic | ||||||
---|---|---|---|---|---|---|---|---|---|
AOI 1 | AOI 2 | AOI 3 | Total | AOI 1 | AOI 2 | AOI 3 | Total | ||
Non-Forest Vegetation | Grass and/or shrubs dominate; some exposed soil + scattered trees; canopy < 30% closed; active cropland, vegetation appears green | 10 | 8 | 7 | 25 | 3 | 7 | 0 | 10 |
Terrestrial Forest | Forested areas; canopy > 30% closed (includes plantations (e.g., palm)) | 10 | 8 | 7 | 25 | 1 | 9 | 0 | 10 |
Closed-Canopy Mangrove | Tall, mature stands; canopy > 60% closed | 12 | 16 | 9 | 37 | 9 | 1 | 0 | 10 |
Open-Canopy Mangrove | Short-medium stands; canopy 30–60% closed | 6 | 3 | 2 | 11 | 0 | 10 | 0 | 10 |
Exposed/Barren | Soil/sediment/sand dominates; includes senesced/unhealthy (i.e., inactive) crops, mudflats, recently deforested areas | 4 | 4 | 4 | 12 | 2 | 4 | 4 | 10 |
Residual Water | Water areas missed from masking | 4 | 3 | 3 | 10 | 3 | 4 | 4 | 11 |
120 | 61 |
Dataset/Author(s) | Year | Extent (ha) | Dynamics (ha, %) | Discrete/Continuous | Mapped Classes | Accuracy | Known Limitations |
---|---|---|---|---|---|---|---|
Giri et al. [70] | 1975 | 851,452 | −300,091 −35.2% | Discrete | 4 classes including Mangrove | Positional root mean square error of ± 1/2 pixel | Semantic differences in class definitions, positional, and classification errors. Mangrove patches smaller than 1 ha not mapped likely reducing distribution figures. |
2005 | 551,361 | ||||||
SERVIR-Mekong (Saah et al. [73]) | 1987 | 1,197,325 | −195,227 −16.3% | Discrete | 21 classes including Mangrove | OA 76% (2016 map) | Gap in 2012 data due to removal of ETM+ imagery following Landsat 7 Scan Line Corrector failure. 2012 primitives interpolated using Whittaker smoothing algorithm. Bias in reference data toward more recent past, due to availability of high-resolution imagery. |
2018 | 1,002,098 | ||||||
GMW (Bunting et al. [74]) | 1996 | 537,428 | −43,208 −8.0% | Discrete | Mangrove presence vs no presence | OA 95.3% (2010 baseline map) | Fine-scale features commonly misclassified, e.g., aquaculture features, riverine environments, and coastal fringes. Minimum mapping unit of 1 ha suggested for end user mapping. |
2016 | 494,220 | ||||||
De Alban et al. [57] | 1996 | 1,323,300 | −694,600 −52.5% | Discrete | 10 classes including Mangrove | 1996: OA 85.6% Mangrove UA 92.3% Mangrove PA 93.1% 2016: OA 89.2% Mangrove UA 97.5% Mangrove PA 75.0% | No significant limitations disclosed. |
2016 | 628,700 | ||||||
Clark Labs [75] | 1999 | 703,945 | −76,465 −10.9% | Discrete | 7 classes including Mangrove | OA 96.9% Mangrove UA 98.11% Mangrove PA 93.04% | No significant limitations disclosed. |
2018 | 627,480 | 33 classes including Mangrove | 2014: OA 93.7% Mangrove UA 94% Mangrove PA 92% | ||||
Blasco et al. [77] | 1999 | 690,000 | n/a | Discrete | 8, including 6 mangrove classes | Not disclosed | Limitations with use of ‘quick look’ data due to modest technical performance. The authors state that classification accuracy could be improved by 10% if NDVI and empirical thresholds were included. |
MFW (Giri et al. [44]) | 2000 | 494,584 | n/a | Discrete | Mangrove presence vs no presence | Positional root mean square error of ±1/2 pixel | Small patches of mangrove (<0.09–0.27 ha) not well captured. |
CGMFC-21 (Hamilton and Casey [78]) | 2000 | 279,260 | −27,064 −9.7% | Continuous | Mangrove canopy cover | Positional root mean square error of ±1/2 pixel | Pixels containing just 0.01% forest canopy cover are included as mangrove falling well below commonly used minimum canopy cover definitions (e.g., [78,118,119]). |
2014 | 252,196 | ||||||
Richards and Friess [47] | 2000 | 502,466 | −27,770 −5.5% | Continuous | Mangrove deforestation | Positional root mean square error of ±1/2 pixel | Reported figures reflect rates of mangrove loss rather than net mangrove change, likely reducing areal figures. |
2012 | 474,696 | ||||||
Estoque et al. [56] | 2000 | 666,759 | −191,122 −28.7% | Discrete | Mangrove presence vs no presence | 2000: OA 91% 2014: OA 97% | No significant limitations disclosed. |
2014 | 475,637 | ||||||
WAM (Spalding et al. [5] *) | 2004 | 502,911 | n/a | Discrete | Not disclosed | Not disclosed | No significant limitations disclosed. |
GEEMMM (Yancho et al., 2020) | 2004–2008 | 995,411 | −352,752 −35.4% | Discrete | 6 classes including combined Mangrove. | 2004–2008: OA 97.01% 2014–2018: OA 96.08% | Refer to Results and Discussion; Conclusion. |
2014–2018 | 642,659 |
Rank | Dataset | AOI 1—Rakhine | AOI 2—Ayeyarwady | AOI 3—Tanintharyi | Overall Representation | Comments |
---|---|---|---|---|---|---|
1 | Clark Labs [75] | Well-represented | Well-represented | Well-represented | Well-represented | Mangrove very well-represented |
2 | De Alban et al. [57] | Under-represented | Under-represented | Well-represented | Under-represented | Mangrove slightly under-represented; some confusion between cropland and mangrove |
3 | MFW (Giri et al. [44]) | Well-represented | Under-represented | Under-represented | Under-represented | Mangrove under-represented |
4 | GMW (Bunting et al. [74]) | Under-represented | Under-represented | Well-represented | Under-represented | Mangrove under-represented |
5 | Giri et al. [70] | Under-represented | Under-represented | Under-represented | Under-represented | Mangrove under-represented, considerably in places |
6 | SERVIR-Mekong (Saah et al. [73]) | Under-represented | Under-represented | Under-represented | Under-represented | Mangrove under-represented, considerably in places |
Historic Classification Validation Error Matrix | |||||||
Terrestrial Forest | Mangrove | Exposed/Barren | Residual Water | Non-Forest Vegetation | Total | User’s Accuracy | |
Terrestrial Forest | 24 | 0 | 0 | 0 | 0 | 24 | 100.0 |
Mangrove | 0 | 54 | 0 | 0 | 0 | 54 | 100.0 |
Exposed/Barren | 0 | 0 | 25 | 0 | 0 | 25 | 100.0 |
Residual Water | 0 | 0 | 0 | 33 | 0 | 33 | 100.0 |
Non-Forest Vegetation | 0 | 4 | 1 | 0 | 26 | 31 | 83.9 |
Total | 24 | 58 | 26 | 33 | 26 | 167 | |
Producer’s Accuracy | 100.0 | 93.1 | 96.2 | 100.0 | 100.0 | ||
Overall Accuracy | 162/167 | 97.0 | |||||
Contemporary Classification Validation Error Matrix | |||||||
Terrestrial Forest | Mangrove | Exposed/Barren | Residual Water | Non-Forest Vegetation | Total | User’s Accuracy | |
Terrestrial Forest | 77 | 0 | 0 | 0 | 2 | 79 | 97.5 |
Mangrove | 1 | 122 | 0 | 0 | 0 | 123 | 99.2 |
Exposed/Barren | 0 | 0 | 33 | 0 | 0 | 33 | 100.0 |
Residual Water | 0 | 0 | 0 | 24 | 0 | 24 | 100.0 |
Non-Forest Vegetation | 2 | 0 | 0 | 0 | 71 | 73 | 97.3 |
Total | 80 | 122 | 33 | 24 | 73 | 327 | |
Producer’s Accuracy | 96.3 | 100.0 | 100.0 | 100.0 | 97.3 | ||
Overall Accuracy | 327/332 | 98.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yancho, J.M.M.; Jones, T.G.; Gandhi, S.R.; Ferster, C.; Lin, A.; Glass, L. The Google Earth Engine Mangrove Mapping Methodology (GEEMMM). Remote Sens. 2020, 12, 3758. https://doi.org/10.3390/rs12223758
Yancho JMM, Jones TG, Gandhi SR, Ferster C, Lin A, Glass L. The Google Earth Engine Mangrove Mapping Methodology (GEEMMM). Remote Sensing. 2020; 12(22):3758. https://doi.org/10.3390/rs12223758
Chicago/Turabian StyleYancho, J. Maxwell M., Trevor Gareth Jones, Samir R. Gandhi, Colin Ferster, Alice Lin, and Leah Glass. 2020. "The Google Earth Engine Mangrove Mapping Methodology (GEEMMM)" Remote Sensing 12, no. 22: 3758. https://doi.org/10.3390/rs12223758