Modeling Bidirectional Polarization Distribution Function of Land Surfaces Using Machine Learning Techniques
Abstract
:1. Introduction
2. Data and Methods
2.1. POLDER/PARASOL BRDF-BPDF Database
2.2. Machine Learning (ML)-Based BPDF Models
2.2.1. Selection of Input Variables
2.2.2. Generalized Regression Neural Networks (GRNN)
2.2.3. Support Vector Regression (SVR)
2.2.4. K-Nearest-Neighbor (KNN) Regression
2.2.5. Random Forest (RF) Regression
2.3. Semi-Empirical BPDF Models
2.4. Optimization and Selection of Model Parameters
2.5. Evaluation and Comparison
3. Results
4. Discussion
4.1. Advantages of the ML-Based BPDF Models
4.2. Further Improvements Using Different Configuration of Input Variables
4.3. Limitations of the ML-Based BPDF Models
4.4. Potential Applications of the ML-Based BPDF Models
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Algorithm | Software | Functions or Toolbox | Model Parameters | Boundaries of Parameters to be Optimized | Optimizing Method |
---|---|---|---|---|---|
GRNN | MATLAB (R2019b) | Modeling: function newgrnn Prediction: function sim | σ: basis radius of Gaussian function | [0, 0.2] step 0.01 | 10-fold cross validation |
SVR | MATLAB (R2019b) | V3.24 LIBSVM (Matlab interface) | ε: minimum training error of support vectors, =0.01 γ: parameter controlling basis radius of Gaussian function C: regularization parameter | γ: [10−5, 102] C: [10−2, 102] | 10-fold cross validation, optimization following MATLAB function fminsearchbnd |
KNN | MATLAB (R2019b) | Modeling: function KDTreeSearcher Search: knnsearch | t: power of the distance, =1 K: number of nearest points | [0, 200] step 10 | 10-fold cross validation |
RF | MATLAB (R2019b) | Modeling: function TreeBagger with ’PredictorSelection’ set to ’curvature’, and ’OOBPredictorImportance’ set to ’on’ Prediction: function predict | ntree: number of trees, =100 nodesize: minimum leafs nodes, =5 repeating 100 times | None | None |
Fp | SA | R670 | R865 | R490 | R565 | R765 | R1020 | |
---|---|---|---|---|---|---|---|---|
Fp | 1 | −0.943 (0.004) | −0.262 (0.239) | 0.375 (0.253) | −0.112 (0.115) | −0.282 (0.261) | −0.369 (0.252) | −0.170 (0.147) |
SA | 1 | 0.337 (0.254) | 0.473 (0.273) | 0.117 (0.095) | 0.346 (0.293) | 0.464 (0.273) | 0.220 (0.148) | |
R670 | 1 | 0.567 (0.339) | 0.367 (0.302) | 0.762 (0.271) | 0.584 (0.351) | 0.305 (0.199) | ||
R865 | 1 | 0.296 (0.311) | 0.609 (0.289) | 0.994 (0.003) | 0.481 (0.132) | |||
R490 | 1 | 0.469 (0.302) | 0.304 (0.316) | 0.163 (0.189) | ||||
R565 | 1 | 0.620 (0.292) | 0.311 (0.181) | |||||
R765 | 1 | 0.474 (0.129) | ||||||
R1020 | 1 |
C1 | C2 | C3 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IGBP Class ID | GRNN | SVR | KNN | GRNN | SVR | KNN | GRNN | SVR | KNN | |||
σ | γ | C | K | σ | γ | C | K | σ | γ | C | K | |
IGBP01 | 0.02 | 4.75 | 26.97 | 100 | 0.05 | 23.22 | 0.08 | 200 | 0.03 | 19.36 | 0.06 | 70 |
IGBP02 | 0.03 | 8.08 | 11.86 | 80 | 0.05 | 19.41 | 1.00 | 200 | 0.03 | 14.29 | 5.85 | 80 |
IGBP03 | 0.04 | 24.23 | 0.10 | 150 | 0.04 | 21.30 | 1.15 | 200 | 0.05 | 10.54 | 1.45 | 80 |
IGBP04 | 0.03 | 29.78 | 0.07 | 130 | 0.04 | 6.13 | 3.96 | 200 | 0.03 | 15.62 | 0.10 | 80 |
IGBP05 | 0.03 | 13.42 | 4.68 | 70 | 0.1 | 1.38 | 0.18 | 90 | 0.03 | 19.36 | 1.01 | 70 |
IGBP06 | 0.02 | 39.15 | 1.89 | 20 | 0.03 | 30.91 | 1.00 | 70 | 0.02 | 30.93 | 9.58 | 20 |
IGBP07 | 0.02 | 43.82 | 1.00 | 30 | 0.02 | 62.38 | 0.60 | 150 | 0.02 | 67.68 | 4.55 | 20 |
IGBP08 | 0.05 | 20.30 | 0.92 | 80 | 0.06 | 20.80 | 6.71 | 190 | 0.05 | 19.46 | 0.95 | 50 |
IGBP09 | 0.02 | 51.82 | 6.76 | 130 | 0.03 | 24.91 | 0.72 | 190 | 0.02 | 32.08 | 20.67 | 90 |
IGBP10 | 0.02 | 1.83 | 9.41 | 110 | 0.02 | 19.35 | 11.46 | 110 | 0.02 | 7.40 | 3.57 | 50 |
IGBP11 | 0.03 | 14.65 | 17.31 | 170 | 0.06 | 14.80 | 3.56 | 200 | 0.03 | 33.18 | 2.75 | 100 |
IGBP12 | 0.02 | 31.18 | 0.09 | 40 | 0.04 | 10.10 | 4.56 | 170 | 0.03 | 27.70 | 9.34 | 40 |
IGBP13 | 0.05 | 32.13 | 0.07 | 110 | 0.08 | 0.04 | 6.28 | 60 | 0.03 | 19.47 | 4.80 | 60 |
IGBP14 | 0.03 | 17.78 | 1.97 | 200 | 0.05 | 18.97 | 0.06 | 200 | 0.04 | 25.38 | 3.55 | 100 |
IGBP15 | 0.01 | 28.69 | 5.05 | 200 | 0.01 | 29.76 | 13.21 | 200 | 0.01 | 22.60 | 8.63 | 90 |
IGBP16 | 0.02 | 50.50 | 0.30 | 30 | 0.04 | 17.05 | 3.27 | 150 | 0.02 | 23.51 | 2.93 | 10 |
References
- Vanderbilt, V.C.; Grant, L.; Daughtry, C.S.T. Polarization of Light Scattered by Vegetation. P IEEE 1985, 73, 1012–1024. [Google Scholar] [CrossRef]
- Curran, P. The Relationship between Polarized Visible-Light and Vegetation Amount. Remote Sens. Environ. 1981, 11, 87–92. [Google Scholar] [CrossRef]
- Bradley, C.L.; Diner, D.J.; Xu, F.; Kupinski, M.; Chipman, R.A. Spectral Invariance Hypothesis Study of Polarized Reflectance With the Ground-Based Multiangle SpectroPolarimetric Imager. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8191–8207. [Google Scholar] [CrossRef]
- Peltoniemi, J.I.; Jarvinen, J.; Zubko, N.; Gritsevich, M. Spectropolarimetric characterization of pure and polluted land surfaces. Int. J. Remote Sens 2020, 41, 4865–4878. [Google Scholar] [CrossRef]
- Suomalainen, J.; Hakala, T.; Puttonen, E.; Peltoniemi, J. Polarised bidirectional reflectance factor measurements from vegetated land surfaces. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 1044–1056. [Google Scholar] [CrossRef]
- Deuze, J.L.; Breon, F.M.; Devaux, C.; Goloub, P.; Herman, M.; Lafrance, B.; Maignan, F.; Marchand, A.; Nadal, F.; Perry, G.; et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements. J. Geophys Res. Atmos 2001, 106, 4913–4926. [Google Scholar] [CrossRef] [Green Version]
- Xie, D.H.; Cheng, T.H.; Zhang, W.; Yu, J.; Li, X.J.; Gong, H.L. Aerosol type over east Asian retrieval using total and polarized remote Sensing. J. Quant. Spectrosc. Radiat. Transf. 2013, 129, 15–30. [Google Scholar] [CrossRef]
- Wang, H.; Yang, L.K.; Zhao, M.R.; Du, W.B.; Liu, P.; Sun, X.B. The Normalized Difference Vegetation Index and Angular Variation of Surface Spectral Polarized Reflectance Relationships: Improvements on Aerosol Remote Sensing Over Land. Earth Space Sci 2019, 6, 982–989. [Google Scholar] [CrossRef] [Green Version]
- Nadal, F.; Breon, F.M. Parameterization of surface polarized reflectance derived from POLDER spaceborne measurements. IEEE Trans. Geosci. Remote Sens. 1999, 37, 1709–1718. [Google Scholar] [CrossRef]
- Maignan, F.; Breon, F.M.; Fedele, E.; Bouvier, M. Polarized reflectances of natural surfaces: Spaceborne measurements and analytical modeling. Remote Sens. Environ. 2009, 113, 2642–2650. [Google Scholar] [CrossRef]
- Yang, B.; Zhao, H.M.; Chen, W. Modeling polarized reflectance of snow and ice surface using POLDER measurements. J. Quant. Spectrosc. Radiat. Transf. 2019, 236, 106578–106585. [Google Scholar] [CrossRef]
- Martin, W.E.; Hesse, E.; Hough, J.H.; Sparks, W.B.; Cockell, C.S.; Ulanowski, Z.; Germer, T.A.; Kaye, P.H. Polarized optical scattering signatures from biological materials. J. Quant. Spectrosc. Radiat. 2010, 111, 2444–2459. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.Q.; Wu, D.; Lv, Y.F.; Lu, S. Optical Properties of Reflected Light From Leaves: A Case Study From One Species. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4388–4406. [Google Scholar] [CrossRef]
- Nilson, T.; Kuusk, A. A Reflectance Model for the Homogeneous Plant Canopy and Its Inversion. Remote Sens. Environ. 1989, 27, 157–167. [Google Scholar] [CrossRef]
- Rondeaux, G.; Herman, M. Polarization of Light Reflected by Crop Canopies. Remote Sens Environ. 1991, 38, 63–75. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Huang, Y.H.; Bao, Y.L.; Wu, D. Polarized Remote Sensing: A Note on the Stokes Parameters Measurements From Natural and Man-Made Targets Using a Spectrometer. IEEE T Geosci. Remote 2017, 55, 4008–4021. [Google Scholar] [CrossRef]
- Yang, B.; Knyazikhin, Y.; Lin, Y.; Yan, K.; Chen, C.; Park, T.; Choi, S.H.; Mottus, M.; Rautiainen, M.; Myneni, R.B.; et al. Analyses of Impact of Needle Surface Properties on Estimation of Needle Absorption Spectrum: Case Study with Coniferous Needle and Shoot Samples. Remote Sens. 2016, 8, 563. [Google Scholar] [CrossRef] [Green Version]
- Grant, L.; Daughtry, C.S.T.; Vanderbilt, V.C. Polarized and Specular Reflectance Variation with Leaf Surface-Features. Physiol. Plant. 1993, 88, 1–9. [Google Scholar] [CrossRef]
- Breon, F.M.; Tanre, D.; Lecomte, P.; Herman, M. Polarized Reflectance of Bare Soils and Vegetation—Measurements and Models. IEEE Trans. Geosci. Remote Sens. 1995, 33, 487–499. [Google Scholar] [CrossRef]
- Litvinov, P.; Hasekamp, O.; Cairns, B.; Mishchenko, M. Reflection models for soil and vegetation surfaces from multiple-viewing angle photopolarimetric measurements. J. Quant. Spectrosc. Radiat. 2010, 111, 529–539. [Google Scholar] [CrossRef]
- Xie, D.H.; Cheng, T.H.; Wu, Y.; Fu, H.; Zhong, R.F.; Yu, J. Polarized reflectances of urban areas: Analysis and models. Remote Sens. Environ. 2017, 193, 29–37. [Google Scholar] [CrossRef]
- Peltoniemi, J.I.; Gritsevich, M.; Hakala, T.; Dagsson-Waldhauserova, P.; Arnalds, O.; Anttila, K.; Hannula, H.R.; Kivekas, N.; Lihavainen, H.; Meinander, O.; et al. Soot on Snow experiment: Bidirectional reflectance factor measurements of contaminated snow. Cryosphere 2015, 9, 2323–2337. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Zhao, H.M.; Chen, W. Semi-empirical models for polarized reflectance of land surfaces: Intercomparison using space-borne POLDER measurements. J. Quant. Spectrosc. Radiat. Transf. 2017, 202, 13–20. [Google Scholar] [CrossRef]
- Vanderbilt, V.C.; Grant, L. Plant Canopy Specular Reflectance Model. IEEE Trans. Geosci. Remote Sens. 1985, 23, 722–730. [Google Scholar] [CrossRef]
- Kallel, A. Leaf polarized polarized BRDF simulation based on Monte Carlo 3-D vector RT modeling. J. Quant. Spectrosc Radiat. 2018, 221, 202–224. [Google Scholar] [CrossRef]
- Kallel, A. Two-scale Monte Carlo ray tracing for canopy-leaf vector radiative transfer coupling. J. Quant. Spectrosc Radiat. 2020, 243, 106815. [Google Scholar] [CrossRef]
- Kallel, A.; Gastellu-Etchegorry, J.P. Canopy polarized BRDF simulation based on non-stationary Monte Carlo 3-D vector RT modeling. J. Quant. Spectrosc Radiat. 2017, 189, 149–167. [Google Scholar] [CrossRef]
- Diner, D.J.; Xu, F.; Martonchik, J.V.; Rheingans, B.E.; Geier, S.; Jovanovic, V.M.; Davis, A.; Chipman, R.A.; McClain, S.C. Exploration of a Polarized Surface Bidirectional Reflectance Model Using the Ground-Based Multiangle SpectroPolarimetric Imager. Atmosphere 2012, 3, 591–619. [Google Scholar] [CrossRef] [Green Version]
- Waquet, F.; Leon, J.F.; Cairns, B.; Goloub, P.; Deuze, J.L.; Auriol, F. Analysis of the spectral and angular response of the vegetated surface polarization for the purpose of aerosol remote sensing over land. Appl. Opt. 2009, 48, 1228–1236. [Google Scholar] [CrossRef]
- Ichii, K.; Ueyama, M.; Kondo, M.; Saigusa, N.; Kim, J.; Alberto, M.C.; Ardo, J.; Euskirchen, E.S.; Kang, M.; Hirano, T.; et al. New data-driven estimation of terrestrial CO2 fluxes in Asia using a standardized database of eddy covariance measurements, remote sensing data, and support vector regression. J. Geophys Res. Biogeosci. 2017, 122, 767–795. [Google Scholar] [CrossRef]
- Forkuor, G.; Hounkpatin, O.K.L.; Welp, G.; Thiel, M. High Resolution Mapping of Soil Properties Using Remote Sensing Variables in South-Western Burkina Faso: A Comparison of Machine Learning and Multiple Linear Regression Models. PLoS ONE 2017, 12, e0170478. [Google Scholar] [CrossRef] [PubMed]
- Kotta, J.; Kutser, T.; Teeveer, K.; Vahtmae, E.; Parnoja, M. Predicting Species Cover of Marine Macrophyte and Invertebrate Species Combining Hyperspectral Remote Sensing, Machine Learning and Regression Techniques. PLoS ONE 2013, 8, e63946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, Y.K.; Chen, X.; Xiong, W.T.; He, L.; Lv, F.; Fan, W.J.; Luo, Z.L.; Hong, Y. A Soil Moisture Spatial and Temporal Resolution Improving Algorithm Based on Multi-Source Remote Sensing Data and GRNN Model. Remote Sens. 2020, 12, 455. [Google Scholar] [CrossRef] [Green Version]
- He, Y.H.; Yang, B.; Lin, H.; Zhang, J.Q. Modeling Polarized Reflectance of Natural Land Surfaces Using Generalized Regression Neural Networks. Remote Sens. 2020, 12, 248. [Google Scholar] [CrossRef] [Green Version]
- Gilichinsky, M.; Heiskanen, J.; Barth, A.; Wallerman, J.; Egberth, M.; Nilsson, M. Histogram matching for the calibration of kNN stem volume estimates. Int. J. Remote Sens. 2012, 33, 7117–7131. [Google Scholar] [CrossRef]
- Shah, S.H.; Angel, Y.; Houborg, R.; Ali, S.; McCabe, M.F. A Random Forest Machine Learning Approach for the Retrieval of Leaf Chlorophyll Content in Wheat. Remote Sens. 2019, 11, 920. [Google Scholar] [CrossRef] [Green Version]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Zerrouki, N.; Harrou, F.; Sun, Y.; Hocini, L. A Machine Learning-Based Approach for Land Cover Change Detection Using Remote Sensing and Radiometric Measurements. IEEE Sens. J. 2019, 19, 5843–5850. [Google Scholar] [CrossRef] [Green Version]
- Liang, L.; Di, L.P.; Zhang, L.P.; Deng, M.X.; Qin, Z.H.; Zhao, S.H.; Lin, H. Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens. Environ. 2015, 165, 123–134. [Google Scholar] [CrossRef]
- Loozen, Y.; Rebel, K.T.; de Jong, S.M.; Lu, M.; Ollinger, S.V.; Wassen, M.J.; Karssenberg, D. Mapping canopy nitrogen in European forests using remote sensing and environmental variables with the random forests method. Remote Sens. Environ. 2020, 247. [Google Scholar] [CrossRef]
- Breon, F.M.; Maignan, F. A BRDF-BPDF database for the analysis of Earth target reflectances. Earth Syst. Sci. Data 2017, 9, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Ding, A.X.; Jiao, Z.T.; Dong, Y.D.; Zhang, X.N.; Peltoniemi, J.I.; Mei, L.L.; Guo, J.; Yin, S.Y.; Cui, L.; Chang, Y.X.; et al. Evaluation of the Snow Albedo Retrieved from the Snow Kernel Improved the Ross-Roujean BRDF Model. Remote Sens. 2019, 11, 1611. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.P.; Li, Z.B.; Zhang, H.K.K. Adjustment of Sentinel-2 Multi-Spectral Instrument (MSI) Red-Edge Band Reflectance to Nadir BRDF Adjusted Reflectance (NBAR) and Quantification of Red-Edge Band BRDF Effects. Remote Sens. 2017, 9, 1325. [Google Scholar]
- Specht, D.F. A General Regression Neural Network. IEEE T Neural Networ 1991, 2, 568–576. [Google Scholar] [CrossRef] [Green Version]
- Smola, A.J.; Scholkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.W.; Huang, W.M.; Yao, G.W. Wind Speed Estimation From X-Band Marine Radar Images Using Support Vector Regression Method. IEEE Geosci Remote S 2018, 15, 1312–1316. [Google Scholar] [CrossRef]
- Axelsson, C.; Skidmore, A.K.; Schlerf, M.; Fauzi, A.; Verhoef, W. Hyperspectral analysis of mangrove foliar chemistry using PLSR and support vector regression. Int. J. Remote Sens. 2013, 34, 1724–1743. [Google Scholar] [CrossRef]
- Feret, J.B.; le Maire, G.; Jay, S.; Berveiller, D.; Bendoula, R.; Hmimina, G.; Cheraiet, A.; Oliveira, J.C.; Ponzoni, F.J.; Solanki, T.; et al. Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning. Remote Sens. Environ. 2019, 231, 110959. [Google Scholar] [CrossRef]
- Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [Google Scholar] [CrossRef]
- Franco-Lopez, H.; Ek, A.R.; Bauer, M.E. Estimation and mapping of forest stand density, volume, and cover type using the k-nearest neighbors method. Remote Sens. Environ. 2001, 77, 251–274. [Google Scholar] [CrossRef]
- Katila, M.; Tomppo, E. Selecting estimation parameters for the Finnish multisource National Forest Inventory. Remote Sens. Environ. 2001, 76, 16–32. [Google Scholar] [CrossRef]
- Sun, H.; Wang, Q.; Wang, G.X.; Lin, H.; Luo, P.; Li, J.P.; Zeng, S.Q.; Xu, X.Y.; Ren, L.X. Optimizing kNN for Mapping Vegetation Cover of Arid and Semi-Arid Areas Using Landsat Images. Remote Sens. 2018, 10, 1248. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Liu, S.Y.; Yang, B.; Zhang, Z.H.; Xiang, Y.; Wu, T.X.; Zhao, Y.S.; Zhang, F.Z. Influence of polarized reflection on airborne remote sensing of canopy foliar nitrogen content. Int. J. Remote Sens. 2020, 41, 4879–4900. [Google Scholar] [CrossRef]
- Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanre, D.; Deuze, J.L.; Ducos, F.; Sinyuk, A.; Lopatin, A. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations. Atmos. Meas. Tech. 2011, 4, 975–1018. [Google Scholar] [CrossRef] [Green Version]
- Litvinov, P.; Hasekamp, O.; Cairns, B. Models for surface reflection of radiance and polarized radiance: Comparison with airborne multi-angle photopolarimetric measurements and implications for modeling top-of-atmosphere measurements. Remote Sens. Environ. 2011, 115, 781–792. [Google Scholar] [CrossRef]
- Zhou, R.K.; Wu, D.S.; Zhou, R.Y.; Fang, L.M.; Zheng, X.Y.; Lou, X.W. Estimation of DBH at Forest Stand Level Based on Multi-Parameters and Generalized Regression Neural Network. Forests 2019, 10, 778. [Google Scholar] [CrossRef] [Green Version]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Liang, L.; Di, L.P.; Huang, T.; Wang, J.H.; Lin, L.; Wang, L.J.; Yang, M.H. Estimation of Leaf Nitrogen Content in Wheat Using New Hyperspectral Indices and a Random Forest Regression Algorithm. Remote Sens. 2018, 10, 1940. [Google Scholar] [CrossRef] [Green Version]
- Diner, D.J.; Xu, F.; Garay, M.J.; Martonchik, J.V.; Rheingans, B.E.; Geier, S.; Davis, A.; Hancock, B.R.; Jovanovic, V.M.; Bull, M.A.; et al. The Airborne Multiangle SpectroPolarimetric Imager (AirMSPI): A new tool for aerosol and cloud remote sensing. Atmos. Meas. Tech. 2013, 6, 2007–2025. [Google Scholar] [CrossRef] [Green Version]
- Chowdhary, J.; Cairns, B.; Mishchenko, M.; Travis, L. Retrieval of aerosol properties over the ocean using multispectral and multiangle photopolarimetric measurements from the Research Scanning Polarimeter. Geophys. Res. Lett. 2001, 28, 243–246. [Google Scholar] [CrossRef]
- Li, Z.Q.; Hou, W.Z.; Hong, J.; Zheng, F.X.; Luo, D.G.; Wang, J.; Gu, X.F.; Qiao, Y.L. Directional Polarimetric Camera (DPC): Monitoring aerosol spectral optical properties over land from satellite observation. J. Quant. Spectrosc. Radiat. Transf. 2018, 218, 21–37. [Google Scholar] [CrossRef]
- Fougnie, B.; Marbach, T.; Lacan, A.; Lang, R.; Schlussel, P.; Poli, G.; Munro, R.; Couto, A.B. The multi-viewing multi-channel multi-polarisation imager—Overview of the 3MI polarimetric mission for aerosol and cloud characterization. J. Quant. Spectrosc. Radiat. Transf. 2018, 219, 23–32. [Google Scholar] [CrossRef]
IGBP Class ID | IGBP Class | Observations | Targets | Prop. of Neg. |
---|---|---|---|---|
01 | Evergreen Needleleaf Forest | 40,800 | 564 | 6.72% |
02 | Evergreen Broadleaf Forest | 33,868 | 551 | 6.90% |
03 | Deciduous Needleleaf Forest | 35,986 | 536 | 7.50% |
04 | Deciduous Broadleaf Forest | 43,075 | 595 | 5.98% |
05 | Mixed Forest | 40,112 | 581 | 6.93% |
06 | Closed Shrubland | 38,431 | 341 | 7.21% |
07 | Open Shrubland | 87,052 | 599 | 6.99% |
08 | Woody Savannas | 42,984 | 556 | 6.32% |
09 | Savannas | 47,740 | 589 | 6.65% |
10 | Grassland | 70,778 | 599 | 6.37% |
11 | Permanent Wetlands | 33,180 | 553 | 8.52% |
12 | Croplands | 58,557 | 575 | 5.98% |
13 | Urban and Built-Up | 26,547 | 515 | 11.63% |
14 | Cropland/Natural Vegetation Mosaic | 40,284 | 572 | 5.56% |
15 | Snow and Ice | 207,028 | 554 | 8.94% |
16 | Desert | 102,265 | 597 | 5.96% |
All | 948,687 | 8877 | 7.24% |
Model | Formula | Free Para. | Description | Ref. |
---|---|---|---|---|
Nadal–Bréon | Based on POLDER/ADEOS measurements, developed for natural land surfaces. | [9] | ||
Waquet | Incorporated a shadowing function . Based on air-borne MICROPOL and developed for forest, cropped and urban surfaces. | [29] | ||
Maignan | Added NDVI to the model and considered the attenuation from leaf surface. Based on POLDER/PARASOL measurements and developed for 14 IGBP classes. | [10] | ||
Litvinov | Added a shadowing function and considered a Gaussian distribution of facets, . Based on air-borne RSP measurements and developed for vegetation and soil surfaces. | [57] | ||
Diner | Based on the ground-based GroundMSPI and developed for grass surface. | [28] | ||
Xie–Cheng | Based on POLDER/PARASOL measurements and developed for urban areas. | [21] |
IGBP Class ID | GRNN | SVR | KNN | |
---|---|---|---|---|
σ | γ | C | K | |
IGBP01 | 0.03 | 6.35 | 17.95 | 50 |
IGBP02 | 0.03 | 10.00 | 4.88 | 80 |
IGBP03 | 0.04 | 15.96 | 2.41 | 70 |
IGBP04 | 0.03 | 27.11 | 0.06 | 80 |
IGBP05 | 0.03 | 18.73 | 1.53 | 60 |
IGBP06 | 0.02 | 11.04 | 2.82 | 40 |
IGBP07 | 0.02 | 43.82 | 1.00 | 30 |
IGBP08 | 0.05 | 10.62 | 1.23 | 60 |
IGBP09 | 0.02 | 37.25 | 0.06 | 60 |
IGBP10 | 0.02 | 8.04 | 3.09 | 40 |
IGBP11 | 0.03 | 20.70 | 0.22 | 60 |
IGBP12 | 0.03 | 24.73 | 0.09 | 80 |
IGBP13 | 0.02 | 19.45 | 0.97 | 30 |
IGBP14 | 0.04 | 17.78 | 0.06 | 70 |
IGBP15 | 0.01 | 9.32 | 2.33 | 90 |
IGBP16 | 0.02 | 12.13 | 2.58 | 30 |
IGBP Class ID | Semi-Empirical BPDF Models | ML-Based BPDF Models | Impro. of KNN | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Nadal–Bréon | Waquet | Maignan | Litvinov | Diner | Xie–Cheng | GRNN | SVR | KNN | RF | ||
01 | 0.349 | 0.365 | 0.317 | 0.360 | 0.439 | 0.317 | 0.302 | 0.296 | 0.296 | 0.294 | 6.81% |
02 | 0.211 | 0.234 | 0.216 | 0.216 | 0.318 | 0.211 | 0.192 | 0.193 | 0.192 | 0.196 | 9.16% |
03 | 0.376 | 0.438 | 0.319 | 0.374 | 0.522 | 0.327 | 0.306 | 0.297 | 0.303 | 0.310 | 7.15% |
04 | 0.236 | 0.284 | 0.221 | 0.242 | 0.357 | 0.223 | 0.200 | 0.199 | 0.198 | 0.201 | 11.14% |
05 | 0.264 | 0.289 | 0.258 | 0.270 | 0.354 | 0.261 | 0.243 | 0.245 | 0.243 | 0.245 | 6.69% |
06 | 0.140 | 0.180 | 0.148 | 0.143 | 0.319 | 0.131 | 0.108 | 0.110 | 0.108 | 0.109 | 18.08% |
07 | 0.177 | 0.215 | 0.167 | 0.183 | 0.382 | 0.156 | 0.129 | 0.129 | 0.128 | 0.129 | 18.23% |
08 | 0.214 | 0.246 | 0.217 | 0.219 | 0.321 | 0.210 | 0.201 | 0.197 | 0.196 | 0.200 | 6.72% |
09 | 0.230 | 0.269 | 0.210 | 0.234 | 0.356 | 0.208 | 0.185 | 0.191 | 0.187 | 0.188 | 10.13% |
10 | 0.232 | 0.278 | 0.208 | 0.241 | 0.420 | 0.204 | 0.175 | 0.176 | 0.173 | 0.174 | 14.95% |
11 | 0.370 | 0.393 | 0.314 | 0.374 | 0.464 | 0.317 | 0.293 | 0.287 | 0.291 | 0.295 | 8.11% |
12 | 0.234 | 0.282 | 0.229 | 0.244 | 0.442 | 0.227 | 0.215 | 0.217 | 0.215 | 0.218 | 5.06% |
13 | 0.323 | 0.336 | 0.349 | 0.336 | 0.494 | 0.318 | 0.320 | 0.308 | 0.307 | 0.308 | 3.57% |
14 | 0.245 | 0.295 | 0.229 | 0.256 | 0.438 | 0.225 | 0.216 | 0.208 | 0.212 | 0.219 | 5.91% |
15 | 0.456 | 0.559 | 0.461 | 0.504 | 0.749 | 0.467 | 0.422 | 0.420 | 0.419 | 0.427 | 10.16% |
16 | 0.169 | 0.203 | 0.180 | 0.178 | 0.369 | 0.168 | 0.148 | 0.149 | 0.148 | 0.152 | 11.98% |
Overall | 0.304 | 0.297 | 0.360 | 0.324 | 0.497 | 0.296 | 0.270 | 0.268 | 0.268 | 0.272 | 9.55% |
Abbreviation | Configuration of Input Variables |
---|---|
C0 | Fp+SA+R670+R865 |
C1 | Fp+SA+R670+R865+R565 |
C2 | Fp+SA+NDVI+ND565,670+SR865,670+SR565,670 |
C3 | Fp+SA+R670+R865+R490+R565+R765+R1050 |
IGBP ID | C1 | C2 | C3 | RMSE of RF | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GRNN | SVR | KNN | RF | GRNN | SVR | KNN | RF | GRNN | SVR | KNN | RF | ||
01 | 1.10 | 2.01 | 2.65 | 4.10 | 2.55 | 2.42 | 1.86 | 3.02 | 0.74 | 2.42 | 2.67 | 6.09 | 0.284 |
02 | 4.33 | 5.35 | 4.78 | 5.32 | 1.75 | 0.97 | 2.68 | 0.86 | 4.51 | 6.89 | 4.78 | 9.55 | 0.174 |
03 | 0.45 | 3.54 | 1.50 | 0.86 | −1.84 | −2.24 | −1.75 | −3.84 | 0.55 | 5.69 | 2.06 | 4.80 | 0.291 |
04 | 0.25 | 0.96 | 0.50 | 3.11 | −7.28 | −5.79 | −5.51 | −5.77 | 0.37 | 2.72 | 1.06 | 6.00 | 0.188 |
05 | 1.93 | 2.35 | 1.95 | 2.38 | −4.47 | −4.12 | −4.75 | −4.62 | 2.28 | 3.48 | 2.41 | 6.00 | 0.229 |
06 | 9.92 | 9.33 | 10.77 | 11.27 | 0.64 | −0.61 | −0.03 | 0.34 | 10.99 | 11.62 | 11.87 | 16.97 | 0.090 |
07 | 6.40 | 7.49 | 8.07 | 7.91 | −0.31 | −0.61 | −1.11 | −0.43 | 7.45 | 13.01 | 9.35 | 14.90 | 0.110 |
08 | 2.15 | 5.56 | 5.10 | 5.39 | 0.48 | 1.52 | 1.86 | 0.44 | 2.39 | 8.80 | 5.72 | 10.10 | 0.181 |
09 | 0.01 | 0.88 | −1.22 | 4.16 | 0.52 | −0.31 | −0.20 | −0.24 | 0.45 | 3.61 | −0.49 | 8.96 | 0.169 |
10 | 0.01 | 0.91 | 0.77 | 4.89 | −4.41 | −5.57 | −4.16 | −3.49 | −6.28 | 2.10 | 1.91 | 9.92 | 0.158 |
11 | 0.01 | 4.38 | −0.52 | 0.91 | −2.44 | −2.80 | −2.94 | −3.50 | −0.13 | 4.32 | 0.01 | 3.00 | 0.284 |
12 | 4.17 | 4.75 | 4.19 | 4.49 | 2.10 | 1.68 | 2.73 | 1.84 | 3.84 | 7.54 | 4.36 | 8.70 | 0.197 |
13 | 0.26 | 2.22 | 3.68 | 4.46 | 2.29 | 2.81 | 0.83 | 3.40 | −0.96 | 3.48 | 3.68 | 5.40 | 0.303 |
14 | −1.85 | 4.47 | 2.45 | 3.40 | −0.60 | 2.18 | 0.93 | 0.27 | −0.12 | 5.92 | 2.79 | 6.65 | 0.202 |
15 | 0.04 | 1.49 | 0.47 | 1.28 | −2.64 | −1.85 | −1.16 | −2.53 | 0.53 | 3.68 | 1.53 | 6.29 | 0.395 |
16 | 3.48 | 1.58 | 3.85 | 0.68 | −1.79 | −2.26 | −2.00 | −7.62 | 8.00 | 8.60 | 8.62 | 6.62 | 0.138 |
Overall | 0.73 | 2.29 | 1.46 | 2.34 | −1.80 | −1.36 | −1.00 | −1.82 | 0.96 | 4.43 | 2.37 | 6.62 | 0.252 |
IGBP ID | Fp | SA | R670 | R865 | R490 | R565 | R765 | R1020 |
---|---|---|---|---|---|---|---|---|
01 | 1.321 | 1.604 | 1.342 | 0.786 | 1.201 | 1.122 | 1.102 | 0.917 |
02 | 1.090 | 1.241 | 1.304 | 1.460 | 2.360 | 1.423 | 1.531 | 1.213 |
03 | 1.407 | 1.234 | 0.946 | 0.533 | 0.816 | 0.671 | 0.624 | 0.767 |
04 | 0.780 | 0.825 | 1.350 | 0.524 | 2.789 | 1.143 | 0.568 | 0.311 |
05 | 1.319 | 1.438 | 1.659 | 1.064 | 2.258 | 1.451 | 1.343 | 0.476 |
06 | 1.674 | 1.373 | 1.394 | 0.787 | 2.939 | 1.409 | 0.914 | 1.581 |
07 | 1.362 | 1.642 | 5.082 | 1.571 | 1.818 | 1.420 | 2.524 | 2.566 |
08 | 1.357 | 1.181 | 2.051 | 0.622 | 1.628 | 1.514 | 1.233 | 1.049 |
09 | 1.654 | 1.359 | 2.668 | 0.885 | 3.119 | 1.955 | 1.715 | 1.868 |
10 | 1.305 | 1.607 | 2.107 | 0.305 | 0.939 | 1.279 | 0.229 | 0.268 |
11 | 1.630 | 1.468 | 1.099 | 0.724 | 0.649 | 0.605 | 0.631 | 0.816 |
12 | 1.580 | 1.535 | 2.675 | 1.395 | 2.949 | 1.772 | 1.799 | 2.349 |
13 | 1.072 | 0.990 | 0.597 | 0.290 | 0.457 | 0.444 | 0.339 | 0.264 |
14 | 1.501 | 1.457 | 1.388 | 0.812 | 1.365 | 1.309 | 1.052 | 0.569 |
15 | 1.655 | 1.350 | 1.955 | 2.129 | 2.888 | 1.840 | 1.986 | 2.509 |
16 | 1.490 | 1.791 | 2.763 | 2.634 | 1.463 | 2.679 | 2.544 | 3.018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Lin, Y.; Yan, L.; Yang, B. Modeling Bidirectional Polarization Distribution Function of Land Surfaces Using Machine Learning Techniques. Remote Sens. 2020, 12, 3891. https://doi.org/10.3390/rs12233891
Liu S, Lin Y, Yan L, Yang B. Modeling Bidirectional Polarization Distribution Function of Land Surfaces Using Machine Learning Techniques. Remote Sensing. 2020; 12(23):3891. https://doi.org/10.3390/rs12233891
Chicago/Turabian StyleLiu, Siyuan, Yi Lin, Lei Yan, and Bin Yang. 2020. "Modeling Bidirectional Polarization Distribution Function of Land Surfaces Using Machine Learning Techniques" Remote Sensing 12, no. 23: 3891. https://doi.org/10.3390/rs12233891
APA StyleLiu, S., Lin, Y., Yan, L., & Yang, B. (2020). Modeling Bidirectional Polarization Distribution Function of Land Surfaces Using Machine Learning Techniques. Remote Sensing, 12(23), 3891. https://doi.org/10.3390/rs12233891