Multi-Temporal Satellite Interferometry for Fast-Motion Detection: An Application to Salt Solution Mining
Abstract
1. Introduction
2. Study Area
2.1. Geological Context
2.2. Mining Activity in the Area of Interest
2.3. Sinkhole Database
3. InSAR Processing
4. Results
4.1. Buriano-Casanova Mining Area
4.2. Poppiano-Volterra Mining Area
4.3. Comparison between the Spatial Distribution of Sinkholes and the Deformation Map
4.4. Sinkhole-Scale Analysis of the LOS Velocity Values
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bell, F.G.; Stacey, T.R.; Genske, D.D. Mining subsidence and its effect on the environment: Some differing examples. Environ. Geol. 2000, 40, 135–152. [Google Scholar] [CrossRef]
- Warren, J.K. Solution mining and salt cavern usage. In Evaporites; Warren, J.K., Ed.; Springer International Publishing: Cham, Switzerland, 2016; Volume 1, pp. 1303–1374. [Google Scholar]
- Neal, J.T. Prediction of subsidence resulting from creep closure of solutioned-mined caverns in salt domes. In Proceedings of the 4th International Symposium on Land Subsidence, Houston, TX, USA, 12–17 May 1991; Johnson, I.A., Ed.; LAHS Publications: Houston, TX, USA, 1991; pp. 225–234. Available online: http://hydrologie.org/redbooks/a200/iahs_200_0225.pdf (accessed on 28 April 2020).
- Martínez, J.D.; Johnson, K.S.; Neal, J.T. Sinkholes in evaporite rocks. Am. Sci. 1998, 86, 39–52. [Google Scholar] [CrossRef]
- Whyatt, J.; Varley, F. Catastrophic failures of underground evaporite mines. In Proceedings of the 27th International Conference on Ground Control in Mining, Morgantown, WV, USA, 29–31 July 2008; Peng, S.S., Mark, C., Finfinger, G.L., Tadolini, S.C., Khair, A.W., Heasley, K., Luo, Y., Eds.; West Virginia University: Morgantown, WV, USA, 2008; pp. 29–31. [Google Scholar]
- Gisotti, G. Case of induced subsidence for extraction of salt by hydrosolution. In Proceedings of the 4th International Symposium on Land Subsidence, Houston, TX, USA, 12–17 May 1991; Johnson, I.A., Ed.; LAHS Publications: Houston, TX, USA, 1991; pp. 225–234. Available online: http://hydrologie.org/redbooks/a200/iahs_200_0235.pdf (accessed on 28 April 2020).
- Guarascio, M. Microseismic monitoring of solution mining cavities. In Proceedings of the Twentieth International Symposium on the Application of Computers and Mathematics in the Mineral Industries, Johannesburg, South Africa, 19–23 October 1987; Lemmer, I.C., Schaum, H., Camisani-Calzolari, F.A.G.M., Eds.; South African Institute of Mining and Metallurgy: Johannesburg, South Africa, 1987; Volume 1, pp. 49–54. [Google Scholar]
- Garlicki, A. Solution mining of Miocene salts in Poland and its environmental impact. In Proceedings of the Seventh Symposium on Salt, Kyoto, Japan, 6–9 April 1992; Kakihana, H., Hoshi, T., Eds.; Elsevier Science Publisher BV: Amsterdam, The Netherlands, 1993; Volume 1, pp. 419–424. [Google Scholar]
- Perski, Z.; Hanssen, R.; Wojcik, A.; Wojciechowski, T. InSAR analyses of terrain deformation near the Wieliczka Salt Mine, Poland. Eng. Geol. 2009, 106, 58–67. [Google Scholar] [CrossRef]
- Mancini, F.; Stecchi, F.; Gabbianelli, G. GIS-based assessment of risk due to salt mining activities at Tuzla (Bosnia and Herzegovina). Eng. Geol. 2009, 109, 170–182. [Google Scholar] [CrossRef]
- Mancini, F.; Stecchi, F.; Zanni, M.; Gabbianelli, G. Monitoring ground subsidence induced by salt mining in the city of Tuzla (Bosnia and Herzegovina). Environ. Geol. 2009, 58, 381–389. [Google Scholar] [CrossRef]
- Stecchi, F.; Antonellini, M.; Gabbianelli, G. Curvature analysis as a tool for subsidence-related risk zones identification in the city of Tuzla (BiH). Geomorphology 2009, 107, 316–325. [Google Scholar] [CrossRef]
- Buffet, A. The collapse of Compagnie des Salins SG4 and SG5 drillings. In Proceedings of the Solution Mining Research Institute Fall Meeting, Rome, Italy, 4–7 October 1998; pp. 79–105. [Google Scholar]
- Raucoules, D.; Maisons, C.; Carnec, C.; Le Mouelic, S.; King, C.; Hosford, S. Monitoring of slow ground deformation by ERS radar interferometry on the Vauvert salt mine (France): Comparison with ground-based measurement. Remote Sens. Environ. 2003, 88, 468–478. [Google Scholar] [CrossRef]
- Zamfirescu, F.; Mocuta, M.; Constantinecu, T.; Medves, E.; Danchiv, A. The main causes of a geomechanical accident of brine caverns at field II of Ocnele Mari-Romania. Mater. Geoenviron. 2003, 50, 431–434. [Google Scholar]
- Balteanu, D.; Enciu, P.; Deak, G. A large scale collapse in the Ocnele Mari salt mine field, Getic Subcarpathians, Romania. Studia Geomorphol. Carpatho Balc. 2006, 40, 119–126. [Google Scholar]
- Poenaru, V.D.; Badea, A.; Savin, E.; Teleaga, D.; Poncos, V. Land degradation monitoring in the Ocnele Mari salt mining area using satellite imagery. In Earth Resources and Environmental Remote Sensing/GIS Applications II; Michel, U., Civco, D.L., Eds.; International Society for Optics and Photonics: Bellingham, WA, USA, 2011; Volume 8181, p. 81810. [Google Scholar]
- Galloway, D.; Jones, D.R.; Ingebritsen, S.E. Land Subsidence in the United States; US Geological Survey: Denver, CO, USA, 1999; pp. 1–177.
- Johnson, K.S. Subsidence hazards due to evaporite dissolution in the United States. Environ. Geol. 2005, 48, 395–409. [Google Scholar] [CrossRef]
- Amelung, F.; Galloway, D.L.; Bell, J.W.; Zebker, H.A.; Laczniak, R.J. Sensing the ups and downs of Las Vegas: InSAR reveals structural control of land subsidence and aquifer-system deformation. Geology 1999, 27, 483–486. [Google Scholar] [CrossRef]
- Chaussard, E.; Wdowinski, S.; Cabral-Cano, E.; Amelung, F. Land subsidence in central Mexico detected by ALOS InSAR time-series. Remote Sens. Environ. 2014, 140, 94–106. [Google Scholar] [CrossRef]
- Qu, F.; Zhang, Q.; Lu, Z.; Zhao, C.; Yang, C.; Zhang, J. Land subsidence and ground fissures in Xi’an, China 2005–2012 revealed by multi-band InSAR time-series analysis. Remote Sens. Environ. 2014, 155, 366–376. [Google Scholar] [CrossRef]
- Palamara, D.R.; Nicholson, M.; Flentje, P.; Baafi, E.; Brassington, G.M. An evaluation of airborne laser scan data for coalmine subsidence mapping. Int. J. Remote Sens. 2007, 28, 3181–3203. [Google Scholar] [CrossRef]
- Zhou, D.; Wu, K.; Chen, R.; Li, L. GPS/terrestrial 3D laser scanner combined monitoring technology for coal mining subsidence: A case study of a coal mining area in Hebei, China. Nat. Hazards 2014, 70, 1197–1208. [Google Scholar] [CrossRef]
- Ge, Y.; Tang, H.; Gong, X.; Zhao, B.; Lu, Y.; Chen, Y.; Lin, Z.; Chen, H.; Qiu, Y. Deformation monitoring of earth fissure hazards using terrestrial laser scanning. Sensors 2019, 19, 1463. [Google Scholar] [CrossRef]
- Jing-Xiang, G.; Hong, H. Advanced GNSS technology of mining deformation monitoring. Procedia Earth Planet Sci. 2009, 1, 1081–1088. [Google Scholar] [CrossRef]
- Ustun, A.; Tusat, E.; Yalvac, S. Preliminary results of land subsidence monitoring project in Konya Closed Basin between 2006–2009 by means of GNSS observations. Nat. Hazards Earth Syst. Sci. 2010, 10, 1151. [Google Scholar] [CrossRef]
- Argyrakis, P.; Ganas, A.; Valkaniotis, S.; Tsioumas, V.; Sagias, N.; Psiloglou, B. Anthropogenically induced subsidence in Thessaly, central Greece: New evidence from GNSS data. Nat. Hazards 2020, 102, 1–22. [Google Scholar] [CrossRef]
- Przyłucka, M.; Herrera, G.; Graniczny, M.; Colombo, D.; Béjar-Pizarro, M. Combination of conventional and advanced DInSAR to monitor very fast mining subsidence with TerraSAR-X Data: Bytom City (Poland). Remote Sens. 2015, 7, 5300–5328. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Z.; Zhu, J.; Yi, H.; Hu, J.; Feng, G. Deriving dynamic subsidence of coal mining areas using InSAR and logistic model. Remote Sens. 2017, 9, 125. [Google Scholar] [CrossRef]
- Du, Z.; Ge, L.; Ng, A.H.M.; Li, X. Investigation on mining subsidence over Appin–West Cliff Colliery using time-series SAR interferometry. Int. J. Remote Sens. 2018, 39, 1528–1547. [Google Scholar] [CrossRef]
- Malinowska, A.A.; Witkowski, W.T.; Hejmanowski, R.; Chang, L.; Van Leijen, F.J.; Hanssen, R.F. Sinkhole occurrence monitoring over shallow abandoned coal mines with satellite-based persistent scatterer interferometry. Eng. Geol. 2019, 262, 105336. [Google Scholar] [CrossRef]
- López-Vinielles, J.; Ezquerro, P.; Fernández-Merodo, J.A.; Béjar-Pizarro, M.; Monserrat, O.; Barra, A.; Blanco, P.; García-Robles, J.; Filatov, A.; García-Davalillo, J.C.; et al. Remote analysis of an open-pit slope failure: Las Cruces case study, Spain. Landslides 2020, 1–16. [Google Scholar] [CrossRef]
- Pawluszek-Filipiak, K.; Borkowski, A. Monitoring mining-induced subsidence by integrating differential radar interferometry and persistent scatterer techniques. Eur. J. Remote Sens. 2020, 1–13. [Google Scholar] [CrossRef]
- Kim, J.W.; Lu, Z.; Degrandpre, K. Ongoing deformation of sinkholes in Wink, Texas, observed by time-series Sentinel-1a SAR interferometry (preliminary results). Remote Sens. 2016, 8, 313. [Google Scholar] [CrossRef]
- Baer, G.; Magen, Y.; Nof, R.N.; Raz, E.; Lyakhovsky, V.; Shalev, E. InSAR measurements and viscoelastic modeling of sinkhole precursory subsidence: Implications for sinkhole formation, early warning, and sediment properties. J. Geophys. Res. Earth Surf. 2018, 123, 678–693. [Google Scholar] [CrossRef]
- Galve, J.P.; Castañeda, C.; Gutiérrez, F. Railway deformation detected by DInSAR over active sinkholes in the Ebro Valley evaporite karst, Spain. Nat. Hazards Earth Syst. Sci. 2015, 15, 2439–2448. [Google Scholar] [CrossRef]
- Theron, A.; Engelbrecht, J. The role of Earth observation, with a focus on SAR interferometry, for sinkhole hazard assessment. Remote Sens. 2018, 10, 1506. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent scatterer interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef]
- Samieie-Esfahany, S.; Hanssen, R.; Van Thienen-Visser, K.; Muntendam-Bos, A. On the effect of horizontal deformation on InSAR subsidence estimates. In Proceedings of the Fringe 2009 Workshop, Frascati, Italy, 30 November–4 December 2009; Lacoste-Francis, H., Ed.; ESA Communications ESTEC: Noordwijk, The Netherlands, 2009; Volume 30. [Google Scholar]
- Gee, D.; Sowter, A.; Grebby, S.; De Lange, G.; Athab, A.; Marsh, S. National geohazards mapping in Europe: Interferometric analysis of The Netherlands. Eng. Geol. 2019, 256, 1–22. [Google Scholar] [CrossRef]
- Liu, X.; Xing, X.; Wen, D.; Chen, L.; Yuan, Z.; Liu, B.; Tan, J. Mining-induced time-series deformation investigation based on SBAS-InSAR technique: A case study of drilling water solution rock salt mine. Sensors 2019, 19, 5511. [Google Scholar] [CrossRef] [PubMed]
- Mura, J.C.; Paradella, W.R.; Gama, F.F.; Silva, G.G.; Galo, M.; Camargo, P.O.; Silva, A.Q.; Silva, A. Monitoring of non-linear ground movement in an open pit iron mine based on an integration of advanced DInSAR techniques using TerraSAR-X data. Remote Sens. 2016, 8, 409. [Google Scholar] [CrossRef]
- Wang, S.; Lu, X.; Chen, Z.; Zhang, G.; Ma, T.; Jia, P.; Li, B. Evaluating the feasibility of illegal open-pit mining identification using insar coherence. Remote Sens. 2020, 12, 367. [Google Scholar] [CrossRef]
- Bianchini, S.; Del Soldato, M.; Solari, L.; Nolesini, T.; Pratesi, F.; Moretti, S. Badland susceptibility assessment in Volterra municipality (Tuscany, Italy) by means of GIS and statistical analysis. Environ. Earth Sci. 2016, 75, 1–14. [Google Scholar] [CrossRef]
- Tuscany Region WMS Service. Available online: http://www502.regione.toscana.it/geoscopio/servizi/wms/OFC.htm (accessed on 8 September 2020).
- Patacca, E.; Sartori, R.; Scandone, P. Tyrrhenian basin and Apenninic arcs: Kinematic relations since late Tortonian times. Mem. Soc. Geol. It. 1990, 45, 425–451. [Google Scholar]
- Testa, G.; Lugli, S. Gypsum–anhydrite transformations in Messinian evaporites of central Tuscany (Italy). Sediment Geol. 2000, 130, 249–268. [Google Scholar] [CrossRef]
- Speranza, G.; Vona, A.; Vinciguerra, S.; Romano, C. Relating natural heterogeneities and rheological properties of rocksalt: New insights from microstructural observations and petrophyisical parameters on Messinian halites from the Italian Peninsula. Tectonophysics 2016, 666, 103–120. [Google Scholar] [CrossRef]
- Nicolich, R.; Primiero, A.; Zgur, F.; Di Marzo, N. 3D seismic imaging and numerical modelling of subsidence in solution mining of rocksalt. In Proceedings of the 64th EAGE Conference & Exhibition, Florence, Italy, 27–30 May 2002; European Association of Geoscientists & Engineers: Houton, The Netherlands, 2002. [Google Scholar]
- Burgalassi, D.; Cheli, B.; Luzzati, T.; Del Soldato, V.; Freschi, E. Analisi delle ricadute ambientali della Solvay sul territorio della Val di Cecina. In La Solvay e in Val di Cecina: Ricadute Socio-Economiche e Ambientali di Una Grande Industria Chimica sul Suo Territorio; Cheli, B., Luzzati, T., Eds.; Edizioni Plus srl: Pisa, Italy, 2010; pp. 145–217. (In Italian) [Google Scholar]
- Speranza, G.; Cosentino, D.; Tecce, F.; Faccenna, C. Paleoclimate reconstruction during the Messinian evaporative drawdown of the Mediterranean Basin: Insights from microthermometry on halite fluid inclusions. Geochem. Geophys. Geosyst. 2013, 14, 5054–5077. [Google Scholar] [CrossRef]
- Italian Geological Map (1:50000 Nominal Scale). Available online: https://www.isprambiente.gov.it/Media/carg/note_illustrative/295_Pomarance.pdf (accessed on 1 September 2020).
- Nannoni, R.; Capperi, M. Miniere e Minerali della Val di Cecina; Gruppo Mineralogico Cecinese, Tipografie Grafiche Favillini: Livorno, Italy, 1989; p. 68. (In Italian) [Google Scholar]
- Johnson, K.S. Land subsidence above man-made salt-dissolution cavities. In Land Subsidence Case Studies and Current Research: Proceedings of the Dr. Joseph, F. Poland Symposium on Land Subsidence; Borcher, J.W., Ed.; Association of Engineering Geologists Special Publication: Belmont, CA, USA, 1998; Volume 8, pp. 385–392. [Google Scholar]
- Tuscany Region Environmental Agency (ARPAT). Quadro Conoscitivo Ambientale degli Insediamenti Solvay Nelle Province di Pisa e Livorno (2000–2005); Technical Report; Tuscany Region Environmental Agency (ARPAT): Firenze, Italy, 2006. (In Italian) [Google Scholar]
- Pinna, S. Rischi Ambientali e Difesa del Territorio; Franco Angeli Edizioni: Milan, Italy, 2002; p. 176. (In Italian) [Google Scholar]
- Tuscany Region Environmental Agency. The Environmental Impact of Salt Dissolution Mining in Saline di Volterra. Available online: http://www.arpat.toscana.it/notizie/arpatnews/2013/174-13/174-13-gli-impatti-ambientali-nelle-attivita-minerarie-connesse-alla-coltivazione-del-salgemma (accessed on 20 August 2020).
- Devanthéry, N.; Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Crippa, B. An approach to persistent scatterer interferometry. Remote Sens. 2014, 6, 6662–6679. [Google Scholar] [CrossRef]
- Rosen, P.A.; Hensley, S.; Joughin, I.R.; Li, F.K.; Madsen, S.N.; Rodriguez, E.; Goldstein, R.M. Synthetic aperture radar interferometry. Proc. IEEE 2000, 88, 333–382. [Google Scholar] [CrossRef]
- Shuttle Radar Topography Mission (SRTM) 1 Arc-Second Global, Product Description. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1-arc?qt-science_center_objects=0#qt-science_center_objects (accessed on 6 November 2020).
- Sentinels-POD-team. Sentinels POD Service File Format Specifications; Technical Report nº GMES-GSEGEOPGFS-10-0075; European Space Agency: Paris, France, 2013. [Google Scholar]
- Gomba, G.; Parizzi, A.; De Zan, F.; Eineder, M.; Bamler, R. Toward operational compensation of ionospheric effects in SAR interferograms: The split-spectrum method. IEEE Trans. Geosci. Remote 2015, 54, 1446–1461. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas, M.; Crippa, B. Spaceborne differential SAR interferometry: Data analysis tools for deformation measurement. Remote Sens. 2011, 3, 305–318. [Google Scholar] [CrossRef]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Raspini, F.; Bianchini, S.; Ciampalini, A.; Del Soldato, M.; Solari, L.; Novali, F.; Del Conte, S.; Rucci, A.; Ferretti, A.; Casagli, N. Continuous, semi-automatic monitoring of ground deformation using Sentinel-1 satellites. Sci Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Bianchini, S.; Solari, L.; Casagli, N. A gis-based procedure for landslide intensity evaluation and specific risk analysis supported by persistent scatterers interferometry (PSI). Remote Sens. 2017, 9, 1093. [Google Scholar] [CrossRef]
- Barra, A.; Solari, L.; Béjar-Pizarro, M.; Monserrat, O.; Bianchini, S.; Herrera, G.; Crosetto, M.; Sarro, R.; González-Alonso, E.; Mateos, R.M.; et al. A methodology to detect and update active deformation areas based on sentinel-1 SAR images. Remote Sens. 2017, 9, 1002. [Google Scholar] [CrossRef]
- Navarro, J.A.; Tomás, R.; Barra, A.; Pagán, J.I.; Reyes-Carmona, C.; Solari, L.; Vinnieles, J.L.; Falco, S.; Crosetto, M. ADAtools: Automatic detection and classification of active deformation areas from PSI displacement maps. ISPRS Int. J. Geo Inf. 2020, 9, 584. [Google Scholar] [CrossRef]
- Paine, J.G.; Buckley, S.M.; Collins, E.W.; Wilson, C.R. Assessing collapse risk in evaporite sinkhole-prone areas using microgravimetry and radar interferometry. J. Environ. Eng. Geophys. 2012, 17, 75–87. [Google Scholar] [CrossRef]
- Nof, R.N.; Baer, G.; Ziv, A.; Raz, E.; Atzori, S.; Salvi, S. Sinkhole precursors along the Dead Sea, Israel, revealed by SAR interferometry. Geology 2013, 41, 1019–1022. [Google Scholar] [CrossRef]
- Jones, C.E.; Blom, R.G. Bayou Corne, Louisiana, sinkhole: Precursory deformation measured by radar interferometry. Geology 2014, 42, 111–114. [Google Scholar] [CrossRef]
Year | Nominal Scale | Image Acquisition | Data Owner |
---|---|---|---|
1954 | 1:10’000 | Italian Aeronautical Group (GAI) | Italian Geographic Military Institute (IGM) |
1978 | 1:10’000 | Rossi Brescia Aerophotogrammetry | Tuscany Region |
1988 | 1:10’000 | CGR Parma | Tuscany Region |
1999 | 1:10’000 | CGR Parma | Agricultural Payments Agency (AGEA) |
2003 | 1:10’000 | CGR Parma | Agricultural Payments Agency (AGEA) |
2007 | 1:10’000 | BLOM-C.G.R. | BLOM-C.G.R. |
2010 | 1:10’000 | Rossi Brescia Aerophotogrammetry | Agricultural Payments Agency (AGEA) |
2013 | 1:10’000 | BLOM-C.G.R. | Agricultural Payments Agency (AGEA) |
2018 | 1:5’000 | BLOM-C.G.R. | Agricultural Payments Agency (AGEA) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solari, L.; Montalti, R.; Barra, A.; Monserrat, O.; Bianchini, S.; Crosetto, M. Multi-Temporal Satellite Interferometry for Fast-Motion Detection: An Application to Salt Solution Mining. Remote Sens. 2020, 12, 3919. https://doi.org/10.3390/rs12233919
Solari L, Montalti R, Barra A, Monserrat O, Bianchini S, Crosetto M. Multi-Temporal Satellite Interferometry for Fast-Motion Detection: An Application to Salt Solution Mining. Remote Sensing. 2020; 12(23):3919. https://doi.org/10.3390/rs12233919
Chicago/Turabian StyleSolari, Lorenzo, Roberto Montalti, Anna Barra, Oriol Monserrat, Silvia Bianchini, and Michele Crosetto. 2020. "Multi-Temporal Satellite Interferometry for Fast-Motion Detection: An Application to Salt Solution Mining" Remote Sensing 12, no. 23: 3919. https://doi.org/10.3390/rs12233919
APA StyleSolari, L., Montalti, R., Barra, A., Monserrat, O., Bianchini, S., & Crosetto, M. (2020). Multi-Temporal Satellite Interferometry for Fast-Motion Detection: An Application to Salt Solution Mining. Remote Sensing, 12(23), 3919. https://doi.org/10.3390/rs12233919