Application of Lithological Mapping Based on Advanced Hyperspectral Imager (AHSI) Imagery Onboard Gaofen-5 (GF-5) Satellite
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Data Sources
3.1.1. GF-5 AHSI Imagery
3.1.2. SASI Imagery
3.1.3. Sentinel-2A Imagery
3.1.4. Geological Map
3.2. Data Pre-Processing
3.2.1. Pre-Processing of GF-5 AHSI Imagery
3.2.2. Pre-Processing of SASI Imagery
3.2.3. Pre-Processing of Sentinel-2A Imagery
3.3. Methods and Experimental Design
3.3.1. Methods
- (1)
- A multi-scale 3D deep convolutional neural network (M3D-DCNN) [38] was proposed for HSI classification, which could jointly learn both 2D multi-scale spatial features [56] and 1D spectral features from HSI data in an end-to-end approach. A five-layer M3D-DCNN was finally applied for HSI classification. The smaller kernel size, deeper layers, and fewer parameters enable M3D-DCNN to mitigate the over-fitting problem in small HSI datasets. The source code can be found at https://github.com/eecn/Hyperspectral-Classification.
- (2)
- The hybrid spectral CNN (HybridSN) [40] is a spectral–spatial 3D-CNN followed by spatial 2D-CNN. The 3D-CNN [57] facilitates the joint spectral–spatial feature representation from a stack of spectral bands, and the 2D-CNN on top of the 3D-CNN further learns more abstract-level spatial representation. The 3D- and 2D-CNN layers are assembled so that they can use both the spectral and spatial feature maps to their full extent to achieve the maximum possible accuracy. HybridSN is more computationally efficient than the 3D-CNN model [58]. The source code can be found at https://github.com/gokriznastic/HybridSN.
- (3)
- The spectral–spatial unified network (SSUN) [34] combines spectral and spatial feature extraction as well as classifier training in a unified network, which means both feature extraction and classifier training share a uniform objective function and all the parameters in the network can be optimized simultaneously. In other words, the learned features become more discriminative since the loss function of the network considers both spectral and spatial information. In the implementation of the SSUN, spatial information is learned by a multiscale convolutional neural network (MSCNN), and the extraction of spectral feature is by means of a band grouping-based long short-term memory (LSTM) algorithm [59]. In this experiment, the grouping strategy 2 was adopted, which focuses on the global features on the spectral dimension [60]. The source code can be found at https://github.com/YonghaoXu/SSUN.
- (4)
- As a typical representative of machine-learning-based methods, the SVM algorithm was selected for comparative analysis with deep-learning-based techniques to verify the advantages of deep-learning-based methods. SVM [25,61] has often been found to provide higher classification accuracy than other widely used machine-learning-based techniques, such as the maximum likelihood and neural net classifiers. SVM does not require an estimation of the statistical distributions of classes but defines the classification model by exploiting the concept of margin maximization with an optimal separation hyperplane. SVM has excellent performance in hyperspectral remote sensing classification due to the description of the complexity, which can be characterized by the number of support vectors rather than the dimensions of the transformation space [62]. In this study, lithological mapping by SVM was implemented in ENVI5.3 software (Harris Geospatial Solutions, Inc., Broomfield, CO, USA), and radial basis function (RBF) was chosen as the kernel function [63].
3.3.2. Experimental Design
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pal, M.; Rasmussen, T.; Porwal, A. Optimized lithological mapping from multispectral and hyperspectral remote sensing images using fused multi-classifiers. Remote Sens. 2020, 12, 177. [Google Scholar] [CrossRef] [Green Version]
- Bioucas-Dias, J.M.; Plaza, A.; Dobigeon, N.; Parente, M.; Du, Q.; Gader, P.; Chanussot, J. Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 354–379. [Google Scholar] [CrossRef] [Green Version]
- Kruse, F.A.; Boardman, J.W.; Huntington, J.F. Comparison of airborne hyperspectral data and EO-1 Hyperion for mineral mapping. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1388–1400. [Google Scholar] [CrossRef] [Green Version]
- Bing-xiang, T.; Li, Z.; Chen, E.; Pang, Y. Preprocessing of EO-1 Hyperion Hyperspectral Data. Remote Sens. Inf. 2005, 6, 36–41. [Google Scholar]
- Earth Observing One EO-1—Hyperion. Available online: https://www.usgs.gov/centers/eros/science/usgs-eros-archive-earth-observing-one-eo-1-hyperion?qt-science_center_objects=0#qt-science_center_objects (accessed on 18 November 2020).
- Kumar, H.; Rajawat, A.S. Aqueous alteration mapping in Rishabdev ultramafic complex using imaging spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 2020, 88, 102084. [Google Scholar] [CrossRef]
- Tripathi, M.K.; Govil, H. Evaluation of AVIRIS-NG hyperspectral images for mineral identification and mapping. Heliyon 2019, 5, e02931. [Google Scholar] [CrossRef]
- Bedini, E. Mineral mapping in the Kap Simpson complex, central East Greenland, using HyMap and ASTER remote sensing data. Adv. Space Res. 2011, 47, 60–73. [Google Scholar] [CrossRef]
- Graham, G.E.; Kokaly, R.F.; Kelley, K.D.; Hoefen, T.M.; Johnson, M.R.; Hubbard, B.E. Application of Imaging Spectroscopy for Mineral Exploration in Alaska: A Study over Porphyry Cu Deposits in the Eastern Alaska Range. Econ. Geol. 2018, 113, 489–510. [Google Scholar] [CrossRef]
- Jing, C.; Bokun, Y.; Runsheng, W.; Feng, T.; Yingjun, Z.; Dechang, L.; Suming, Y.; Wei, S. Regional-scale mineral mapping using ASTER VNIR/SWIR data and validation of reflectance and mineral map products using airborne hyperspectral CASI/SASI data. Int. J. Appl. Earth Obs. Geoinf. 2014, 33, 127–141. [Google Scholar] [CrossRef]
- Manzo, C.; Valentini, E.; Taramelli, A.; Filipponi, F.; Disperati, L. Spectral characterization of coastal sediments using Field Spectral Libraries, Airborne Hyperspectral Images and Topographic LiDAR Data (FHyL). Int. J. Appl. Earth Obs. Geoinf. 2015, 36, 54–68. [Google Scholar] [CrossRef]
- Forzieri, G.; Moser, G.; Catani, F. Assessment of hyperspectral MIVIS sensor capability for heterogeneous landscape classification. Isprs J. Photogramm. Remote Sens. 2012, 74, 175–184. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, D.; Hu, X.; Liu, S.; Cao, K.; Chai, M.; Liao, Q.; Zuo, Z.; Hao, Z.; Duan, W.; et al. Development of Visible and Short-wave Infrared Hyperspectral Imager onboard GaoFen-5 Satellite. J. Remote Sens. (Chin.) 2020, 24, 333–344. [Google Scholar]
- GaoFen 5. Available online: https://nssdc.gsfc.nasa.gov/nmc/spacecraft/display.action?id=2018-043A (accessed on 18 November 2020).
- van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; van der Meijde, M.; Carranza, E.J.M.; de Smeth, J.B.; Woldai, T. Multi- and hyperspectral geologic remote sensing: A review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Zhang, X.; Li, P. Lithological mapping from hyperspectral data by improved use of spectral angle mapper. Int. J. Appl. Earth Obs. Geoinf. 2014, 31, 95–109. [Google Scholar] [CrossRef]
- Hecker, C.; van der Meijde, M.; van der Werff, H.; van der Meer, F.D. Assessing the Influence of Reference Spectra on Synthetic SAM Classification Results. IEEE Trans. Geosci. Remote Sens. 2008, 46, 4162–4172. [Google Scholar] [CrossRef]
- vanderMeer, F.; Bakker, W. Cross correlogram spectral matching: Application to surface mineralogical mapping by using AVIRIS data from Cuprite, Nevada. Remote Sens. Environ. 1997, 61, 371–382. [Google Scholar] [CrossRef]
- Chang, C.I. An information-theoretic approach to spectral variability, similarity, and discrimination for hyperspectral image analysis. IEEE Trans. Inf. Theory 2000, 46, 1927–1932. [Google Scholar] [CrossRef] [Green Version]
- Xu, N.; Hu, Y.X.; Lei, B.; Hong, Y.T.; Dang, F.X. Mineral Information Extraction for Hyperspectral Image Based on Modified Spectral Feature Fitting Algorithm. Spectrosc. Spectr. Anal. 2011, 31, 1639–1643. [Google Scholar] [CrossRef]
- Laukamp, C.; Cudahy, T.; Thomas, M.; Jones, M.; Cleverley, J.S.; Oliver, N.H.S. Hydrothermal mineral alteration patterns in the Mount Isa Inlier revealed by airborne hyperspectral data. Aust. J. Earth Sci. 2011, 58, 917–936. [Google Scholar] [CrossRef]
- Cudahy, T.; Jones, M.; Thomas, M.; Laukamp, C.; Caccetta, M.; Hewson, R.; Rodger, A.; Verrall, M. Next Generation Mineral Mapping: Queensland Airborne HyMap and Satellite ASTER Surveys 2006–2008. In CSIRO Exploration and Mining Report, P2007/364; CSIRO: Canberra, Australia, 2008. [Google Scholar] [CrossRef]
- Jain, R.; Sharma, R.U. Airborne hyperspectral data for mineral mapping in Southeastern Rajasthan, India. Int. J. Appl. Earth Obs. Geoinf. 2019, 81, 137–145. [Google Scholar] [CrossRef]
- Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinsson, J.R. Spectral and Spatial Classification of Hyperspectral Data Using SVMs and Morphological Profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3804–3814. [Google Scholar] [CrossRef] [Green Version]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef] [Green Version]
- Ham, J.; Chen, Y.C.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Dragut, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Lu, T.; Li, S.T.; Fang, L.Y.; Jia, X.P.; Benediktsson, J.A. From subpixel to superpixel: A novel fusion framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4398–4411. [Google Scholar] [CrossRef]
- Han, T.; Goodenough, D.G. Investigation of nonlinearity in hyperspectral imagery using surrogate data methods. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2840–2847. [Google Scholar] [CrossRef]
- Chen, Y.S.; Lin, Z.H.; Zhao, X.; Wang, G.; Gu, Y.F. Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Chen, Y.S.; Zhao, X.; Jia, X.P. Spectral-spatial classification of hyperspectral data based on deep belief network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Chen, Y.S.; Jiang, H.L.; Li, C.Y.; Jia, X.P.; Ghamisi, P. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6232–6251. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.Q.; Jia, D.; Xu, C.Y. Convolutional neural networks for hyperspectral image classification. Neurocomputing 2017, 219, 88–98. [Google Scholar] [CrossRef]
- Xu, Y.H.; Zhang, L.P.; Du, B.; Zhang, F. Spectral-spatial unified networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5893–5909. [Google Scholar] [CrossRef]
- Chen, J.X.; Pisonero, J.; Chen, S.; Wang, X.; Fan, Q.W.; Duan, Y.X. Convolutional neural network as a novel classification approach for laser-induced breakdown spectroscopy applications in lithological recognition. Spectroc. Acta Part B At. Spectr. 2020, 166, 7. [Google Scholar] [CrossRef]
- Anjos, C.E.M.D.; Avila, M.R.V.; Vasconcelos, A.G.P.; Neta, A.M.P.; Surmas, R. Deep learning for lithological classification of carbonate rock micro-CT images. arXiv 2020, arXiv:2007.15693. [Google Scholar]
- Brandmeier, M.; Chen, Y. Lithological classification using multi-sensor data and convolutional neural networks. Isprs. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W16, 55–59. [Google Scholar] [CrossRef] [Green Version]
- He, M.Y.; Li, B.; Chen, H.H. Multi-Scale 3d Deep Convolutional Neural Network for Hyperspectral Image Classification. In Proceedings of the 2017 24th Ieee International Conference on Image Processing, Beijing, China, 17–20 September 2017; IEEE: New York, NY, USA, 2017; pp. 3904–3908. [Google Scholar] [CrossRef]
- Zhao, W.Z.; Du, S.H. Spectral-Spatial Feature Extraction for Hyperspectral Image Classification: A Dimension Reduction and Deep Learning Approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 4544–4554. [Google Scholar] [CrossRef]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D-2-D CNN Feature Hierarchy for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Jiyuan, Y.; Guoqiang, W.; Xiangmin, L.; Bo, J.; Qiaojuan, Y. The redefinition of huaniushan group in beishan area: Geochemical evidence from volcanic rocks. Xinjiang Geol. 2015, 33, 537–543. [Google Scholar]
- Che, Y.; Zhao, Y. CASI/SASI Airborne Hyperspectral Remote Sensing Anomaly Extraction of Metallogenic Prediction Research in Gansu Beishan South Beach area. In Proceedings of the Conference on Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications V, Beijing, China, 18 November 2014; SPIE: Bellingham, WA, USA, 2014; Volume 9263. [Google Scholar] [CrossRef]
- Liu, Y.N.; Sun, D.X.; Hu, X.N.; Ye, X.; Li, Y.D.; Liu, S.F.; Cao, K.Q.; Chai, M.Y.; Zhou, W.Y.N.; Zhang, J.; et al. The Advanced Hyperspectral Imager Aboard China’s GaoFen-5 satellite. IEEE Geosci. Remote Sens. Mag. 2019, 7, 23–32. [Google Scholar] [CrossRef]
- Corner, B.R.; Narayanan, R.M.; Reichenbach, S.E. Noise estimation in remote sensing imagery using data masking. Int. J. Remote Sens. 2003, 24, 689–702. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, D.; Cao, K.; Liu, S.; Chai, M.; Liang, J.; Yuan, J. Evaluation of GaoFen-5/AHSI on-orbit instrument radiometric performance. J. Remote Sens. (Chin.) 2019, 16, 7–22. [Google Scholar]
- Spoto, F.; Sy, O.; Laberinti, P.; Martimort, P.; Fernandez, V.; Colin, O.; Hoersch, B.; Meygret, A. Overview of Sentinel-2. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 1707–1710. [Google Scholar]
- Sentinel 2. Available online: https://blogs.fu-berlin.de/reseda/sentinel-2/ (accessed on 18 November 2020).
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- ESA Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 18 November 2020).
- Wang, J.J.; Zhang, Y.; Bussink, C. Unsupervised multiple endmember spectral mixture analysis-based detection of opium poppy fields from an EO-1 hyperion image in Helmand, Afghanistan. Sci. Total Env. 2014, 476, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Cooley, T.; Anderson, G.P.; Felde, G.W.; Hoke, M.L.; Ratkowski, A.J.; Chetwynd, J.H.; Gardner, J.A.; Adler-Golden, S.M.; Matthew, M.W.; Berk, A.; et al. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In Proceedings of the Igarss 2002: IEEE International Geoscience and Remote Sensing Symposium and 24th Canadian Symposium on Remote Sensing, Vols I-Vi, Proceedings: Remote Sensing: Integrating Our View of the Planet, Toronto, ON, Canada, 24–28 June 2002; IEEE: New York, NY, USA, 2002; pp. 1414–1418. [Google Scholar]
- Green, A.A.; Berman, M.; Switzer, P.; Craig, M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 1988, 26, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Zizala, D.; Zadorova, T.; Kapicka, J. Assessment of soil degradation by erosion based on analysis of soil properties using aerial hyperspectral images and ancillary data, Czech Republic. Remote Sens. 2017, 9, 28. [Google Scholar] [CrossRef] [Green Version]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Muller-Wilm, U.; Gascon, F. Sen2Cor for Sentinel-2. In Image and Signal Processing for Remote Sensing Xxiii; Bruzzone, L., Bovolo, F., Eds.; Spie-Int Soc Optical Engineering: Bellingham, WA, USA, 2017; Volume 10427. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Ji, S.W.; Xu, W.; Yang, M.; Yu, K. 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.K.; Chatterjee, S.; Bhattacharyya, S.; Chaudhuri, B.B.; Platos, J. Lightweight spectral-spatial squeeze-and-excitation residual bag-of-features learning for hyperspectral classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 5277–5290. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Xu, Y.H.; Du, B.; Zhang, L.P.; Zhang, F. A Band Grouping Based LSTM Algorithm for Hyperspectral Image Classification. In Computer Vision, Pt Ii; Yang, J., Hu, Q., Cheng, M.M., Wang, L., Liu, Q., Bai, X., Meng, D., Eds.; Springer-Verlag Singapore Pte Ltd.: Singapore, 2017; Volume 772, pp. 421–432. [Google Scholar]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. Isprs. J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Ye, B.; Tian, S.F.; Ge, J.; Sun, Y.Q. Assessment of WorldView-3 Data for Lithological Mapping. Remote Sens. 2017, 9, 1132. [Google Scholar] [CrossRef]
- Kuo, B.C.; Ho, H.H.; Li, C.H.; Hung, C.C.; Taur, J.S. A kernel-based feature selection method for svm with rbf kernel for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 317–326. [Google Scholar] [CrossRef]
- Yu, L.; Porwal, A.; Holden, E.J.; Dentith, M.C. Towards automatic lithological classification from remote sensing data using support vector machines. Comput. Geosci. 2012, 45, 229–239. [Google Scholar] [CrossRef]
Orbit Parameters | Parameter Settings |
---|---|
Orbital type | Sun synchronous orbit |
Nominal orbital altitude | 708.45 km |
Dip angle | 98.218 |
Orbital flat period | 98.805 min |
Eccentricity ratio | <0.0001 |
Flight cylinder number every day | 14.57 |
Orbital intercept | 24.731 |
Local time of descending node | 13:30 |
Sensors | Advanced Hyperspectral Imager (AHSI) |
Visual and Infrared Multispectral Sensor (VIMS) | |
Greenhouse Gases Monitoring Instrument (GMI) | |
Atmospheric Infrared Ultraspectral (AIUS) | |
Environment Monitoring Instrument (EMI) | |
Directional Polarization Camera (DPC) |
Parameters | Advanced Hyperspectral Imager (AHSI) | Hyperion Sensor |
---|---|---|
Wavelength Range | 0.4–2.5 μm | 0.4–2.5 μm |
Spatial Resolution | 30 m | 30 m |
Swath Width | 60 km | 7.5 km |
Spectral Resolution | VNIR: 5 nm; SWIR: 10 nm | 10 nm |
Number of Bands | VNIR: 150; SWIR: 180 | VNIR: 70; SWIR: 172 |
SWIR Signal-to-Noise Ratio (SNR) | ~500 | ~50 |
Parameter | SASI-600 | Parameter | SASI-600 |
---|---|---|---|
Spectral Range (nm) | 950–2450 | SNR (Peak Value) | >1100 |
Number of Continuous Spectral Channels | 100 | Absolute Radiometric Accuracy (%) | <2 |
Total Field of View (degrees) | 40 | Spectral Resolution (nm) | 15 |
Instantaneous Field of View (degrees) | 0.070 | Spatial Resolution (m) | 2.25 |
Parameter | Value | Parameter | Value |
---|---|---|---|
Scene Center Location | Lat: 41.19; Lon: 95.58 | Water Retrieval | Yes |
Sensor Altitude (km) | 705 | Water Absorption (nm) | 1135 |
Ground Elevation (km) | 1.821 | Aerosol Model | Rural |
Pixel Size (m) | 30 | Aerosol Retrieval | 2-Band (K-T) |
Flight Date | 2019/10/10 | Initial Visibility (km) | 40.00 |
Flight Time GMT | 06:32:21 | Spectral Polishing | Yes |
Atmospheric Model | Sub-Arctic Summer | Width (Number of Bands) | 9 |
Dataset Name | Source of the Dataset |
---|---|
AHSI_10 m | Gram–Schmidt Pan Sharpening of pre-processed S2A Band3 and GF-5 AHSI imagery, with a spatial resolution of 10 m |
AHSI_30 m | Pre-processed GF-5 AHSI imagery, with a spatial resolution of 30 m |
AHSI_SW_10 m | SWIR data of the AHSI_10 m dataset |
AHSI_SW_30 m | SWIR data of AHSI_30 m dataset |
SASI_2.25 m | Pre-processed SASI imagery, with a spatial resolution of 2.25 m |
SASI_10 m | Obtained by bilinear resampling of pre-processed SASI imagery, with a spatial resolution of 10 m |
Class Label | Class Name | Sample Area (km2) | Map Area (km2) | Percent |
---|---|---|---|---|
1 | Diluvial gravel and sand | 0.147 | 1.391 | 10.57% |
2 | Hornstone and sandstone | 0.152 | 2.203 | 6.90% |
3 | Basalt with slate | 0.535 | 4.406 | 12.14% |
4 | Hornstone and slate | 0.097 | 1.447 | 6.70% |
5 | Biotite felsic slate | 0.209 | 2.275 | 9.19% |
6 | Slate | 0.439 | 3.106 | 14.13% |
7 | Hornstone | 0.415 | 4.553 | 9.11% |
8 | Limestone | 0.129 | 0.941 | 13.71% |
9 | Marble with phyllite | 0.305 | 2.194 | 13.90% |
10 | Slate and phyllite | 0.349 | 4.070 | 8.57% |
11 | Indosinian granite | 0.450 | 4.815 | 9.35% |
12 | Indosinian biotite granite | 0.570 | 5.192 | 10.98% |
13 | Variscan diorite | 0.120 | 0.715 | 16.78% |
14 | Variscan granodiorite | 0.202 | 1.768 | 11.43% |
Sum | 4.119 | 39.076 | 10.54% |
Method | Parameter | AHSI_ 10 m | AHSI_ 30 m | AHSI_SW_ 10 m | AHSI_SW_ 30 m | SASI_ 10 m | SASI_ 2.25 m |
---|---|---|---|---|---|---|---|
M3D-DCNN | Window Size | 7 | 7 | 7 | 7 | 7 | 7 |
Hybrid SN | PCA | 30 | 30 | 30 | 30 | 15 | 15 |
Window Size | 19 | 15 | 19 | 15 | 19 | 25 | |
SSUN | PCA | 4 | 4 | 4 | 4 | 4 | 4 |
Window Size | 19 | 15 | 19 | 15 | 19 | 25 | |
SVM-RBF | Kernel size of post-classification | 7 | 5 | 7 | 5 | 7 | 7 |
Methods | Evaluation Measures | AHSI _10 m | AHSI _30 m | AHSI_SW _10 m | AHSI_SW _30 m | SASI _2.25 m | SASI _10 m |
---|---|---|---|---|---|---|---|
SVM | Kappa | 0.962 | 0.927 | 0.925 | 0.897 | 0.980 | 0.954 |
OA | 96.48% | 93.28% | 93.13% | 90.55% | 98.19% | 95.81% | |
M3D-DCNN | Kappa | 0.970 | 0.947 | 0.960 | 0.974 | 0.977 | 0.960 |
OA | 97.25% | 95.19% | 96.39% | 97.62% | 97.85% | 96.33% | |
HybridSN | Kappa | 0.956 | 0.947 | 0.963 | 0.948 | 0.972 | 0.923 |
OA | 95.96% | 95.15% | 96.63% | 95.27% | 97.48% | 93.00% | |
LSTM | Kappa | 0.967 | 0.947 | 0.966 | 0.936 | 0.996 | 0.959 |
OA | 96.96% | 95.15% | 96.91% | 94.14% | 99.60% | 96.78% | |
MSCNN | Kappa | 0.939 | 0.932 | 0.939 | 0.947 | 0.985 | 0.996 |
OA | 94.42% | 93.78% | 94.44% | 95.15% | 98.78% | 99.69% | |
SSUN | Kappa | 0.955 | 0.973 | 0.956 | 0.966 | 0.997 | 0.999 |
OA | 95.92% | 97.52% | 95.96% | 96.91% | 99.78% | 99.90% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, B.; Tian, S.; Cheng, Q.; Ge, Y. Application of Lithological Mapping Based on Advanced Hyperspectral Imager (AHSI) Imagery Onboard Gaofen-5 (GF-5) Satellite. Remote Sens. 2020, 12, 3990. https://doi.org/10.3390/rs12233990
Ye B, Tian S, Cheng Q, Ge Y. Application of Lithological Mapping Based on Advanced Hyperspectral Imager (AHSI) Imagery Onboard Gaofen-5 (GF-5) Satellite. Remote Sensing. 2020; 12(23):3990. https://doi.org/10.3390/rs12233990
Chicago/Turabian StyleYe, Bei, Shufang Tian, Qiuming Cheng, and Yunzhao Ge. 2020. "Application of Lithological Mapping Based on Advanced Hyperspectral Imager (AHSI) Imagery Onboard Gaofen-5 (GF-5) Satellite" Remote Sensing 12, no. 23: 3990. https://doi.org/10.3390/rs12233990
APA StyleYe, B., Tian, S., Cheng, Q., & Ge, Y. (2020). Application of Lithological Mapping Based on Advanced Hyperspectral Imager (AHSI) Imagery Onboard Gaofen-5 (GF-5) Satellite. Remote Sensing, 12(23), 3990. https://doi.org/10.3390/rs12233990