Exploring the Fingerprints of Past Rain-on-Snow Events in a Central Andean Mountain Range Basin Using Satellite Imagery
Abstract
:1. Introduction
1.1. Dynamics of Rain-on-Snow Events
1.2. ROS Monitoring
1.3. Remote Sensing Applications for ROS
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.2.1. Moderate Resolution Imaging Spectrometer (MODIS) Data
- Pixel fractional snow cover: The NDSI algorithm identifies pixels with over 66% fractional snow cover [50]. A higher threshold was set using the MB3U algorithm (model MB for 3 test sites [68], that uses the NDSI values in a regression to obtain fractional snow cover (MB3U algorithm), excluding pixels with less than 75% snow cover, and avoiding pixels with low snow cover that might reduce reflectance for reasons other than grain size.
- Elimination of dark or cloudy pixels: Pixels with values below 10% in band 4 and 20% in band 6 are identified as dark or cloudy, and thus removed from the analysis [70].
- Decaying seasonal snow: Seasonal snow-cover discrimination excluded data during summer-spring, when snow has the highest state of decay and least amount of snow (leaving 337 usable scenes).
2.2.2. Hydrometeorological Data
2.3. Method
- Fresh snow follows a continuous metamorphism in the winter-summer span until the melting process begins.
- Snow metamorphism can be tracked by the observation of NIR reflectance of clear snow-covered pixels.
- The highest levels of metamorphism and lowest NIR reflectance should be observed closest to the snowmelt period, signaling the largest grain size and clumps.
- For the colder months, snow NIR reflectance should remain in relative high levels of reflectance in comparison to those of the snowmelt period due to the frequent addition of fresh snow and the small amount of time for metamorphism.
- Snow-Cover Area (SCA) as the count of pixels with more than 75% snow cover, and
- Near-infrared Reflectance Snow Reflectance (NIR-SR) from Band 5 reflectance pixels (1.0 to 1.3 μm) from the SCA.
3. Results
3.1. Likelihood of Rain-on-Snow Events
- X-axis: From left to right, the X-axis is the same for both figures and represents the time steps in an 8-day interval to match the satellite products.
- Bottom figure: the figure uses a heatmap to display NIR-SR in the Y-axis from the lowest reflectance (0) at the bottom and the highest at the top (1). The NIR-SR histogram for each scene is displayed vertically in the heatmap using the color gradient, from white to blue, where the blue means a high frequency of pixels in that reflectance level. The grey pixels are null values where no NIR-SR was found.
- Top figure: two variables are displayed, using two distinct types of graphs: (a) the red line displays SCA as the number of pixels classified as snow, and (b) the blue bars display accumulated precipitation over 2 mm (selecting amounts over 2 mm and above 1000 mamsl to discard low-impact rain).
3.2. Characteristics and Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Thériault, J.M.; Milbrandt, J.A.; Doyle, J.; Minder, J.R.; Thompson, G.; Sarkadi, N.; Geresdi, I. Impact of melting snow on the valley flow field and precipitation phase transition. Atmos. Res. 2015, 156, 111–124. [Google Scholar] [CrossRef] [Green Version]
- Freudiger, D.; Kohn, I.; Stahl, K.; Weiler, M. Large-scale analysis of changing frequencies of rain-on-snow events with flood-generation potential. Hydrol. Earth Syst. Sci. 2014, 18, 2695–2709. [Google Scholar] [CrossRef]
- McCabe, G.J.; Clark, M.P.; Hay, L.E. Rain-on-snow events in the western United States. Bull. Am. Meteorol. Soc. 2007, 88, 319–328. [Google Scholar] [CrossRef]
- Ishii, Y.; Hirashima, H.; Yamaguchi, S.; Macdonald, H. Snow hydrological impacts due to rain-on-snow events. Low Temp. Sci. 2019, 77, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Lliboutry, L. Glaciers of the dry Andes. In Satellite Image Atlas of Glaciers of the World: South America; United States Government Printing Office: Washington, DC, USA, 1998; pp. I1–I206. [Google Scholar]
- Marks, D.; Winstral, A.; Reba, M.; Pomeroy, J.; Kumar, M. An evaluation of methods for determining during-storm precipitation phase and the rain/snow transition elevation at the surface in a mountain basin. Adv. Water Resour. 2013, 55, 98–110. [Google Scholar] [CrossRef]
- Gellens, D.; Roulin, E. Streamflow response of Belgian catchments to IPCC climate change scenarios. J. Hydrol. 1998, 210, 242–258. [Google Scholar] [CrossRef]
- Mazurkiewicz, A.B.; Callery, D.G.; McDonnell, J.J. Assessing the controls of the snow energy balance and water available for runoff in a rain-on-snow environment. J. Hydrol. 2008, 354, 1–14. [Google Scholar] [CrossRef]
- Déry, S.J.; Salomonson, V.V.; Stieglitz, M.; Hall, D.K.; Appel, I. An approach to using snow areal depletion curves inferred from MODIS and its application to land surface modelling in Alaska. Hydrol. Process. 2005, 19, 2755–2774. [Google Scholar] [CrossRef]
- Pomeroy, J.; Brun, E. Physical properties of snow. In Snow Ecology: An Interdisciplinary Examination of Snow-Covered Ecosystems; Jones, H.G., Pomeroy, J.W., Walker, D.A., Hoham, R.W., Eds.; Cambridge University Press: Cambridge, UK, 2001; pp. 45–126. [Google Scholar]
- Qu, S.M.; Liu, H.; Cui, Y.P.; Shi, P.; Bao, W.M.; Yu, Z.B. Test of newly developed conceptual hydrological model for simulation of rain-on-snow events in forested watershed. Water Sci. Eng. 2013, 6, 31–43. [Google Scholar] [CrossRef]
- Kattelmann, R. Flooding from Rain-on-Snow Events in the Sierra Nevada; IAHS-AISH Publication: Anaheim, CA, USA, 1997; pp. 59–65. [Google Scholar]
- Surfleet, C.G.; Tullos, D. Variability in effect of climate change on rain-on-snow peak flow events in a temperate climate. J. Hydrol. 2013, 479, 24–34. [Google Scholar] [CrossRef] [Green Version]
- Conway, H.; Raymond, C.F. Snow stability during rain. J. Glaciol. 1993, 39, 635–642. [Google Scholar] [CrossRef] [Green Version]
- Singh, P.; Spitzbart, G.; Hübl, H.; Weinmeister, H.W. Hydrological response of snowpack under rain-on-snow events: A field study. J. Hydrol. 1997, 202, 1–20. [Google Scholar] [CrossRef]
- Surfleet, C.G.; Tullos, D. Uncertainty in hydrologic modelling for estimating hydrologic response due to climate change (Santiam River, Oregon). Hydrol. Process. 2013, 27, 3560–3576. [Google Scholar] [CrossRef] [Green Version]
- Colbeck, S.C. Grain clusters in wet snow. J. Colloid Interface Sci. 1979, 72, 371–384. [Google Scholar] [CrossRef]
- Morán-Tejeda, E.; López-Moreno, J.; Stoffel, M.; Beniston, M. Rain-on-snow events in Switzerland: Recent observations and projections for the 21st century. Clim. Res. 2016, 71, 111–125. [Google Scholar] [CrossRef]
- Brunengo, M.J. A method of modeling the frequency characteristics of daily snow amount, for stochastic simulation of rain-on-snowmelt events. In Proceedings of the 58th Annual Western Snow Conference, Sacramento, CA, USA, 17–19 April 1990; pp. 110–121. [Google Scholar]
- Harr, R.D. Some characteristics and consequences of snowmelt during rainfall in western Oregon. J. Hydrol. 1981, 53, 277–304. [Google Scholar] [CrossRef]
- Harr, R.D. Effects of clearcutting on rain-on-snow runoff in western oregon: A new look at old studies. Water Resour. Res. 1986, 22, 1095–1100. [Google Scholar] [CrossRef]
- Jones, J.A.; Perkins, R.M. Extreme flood sensitivity to snow and forest harvest, western Cascades, Oregon, United States. Water Resour. Res. 2010, 46, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Sandersen, F.; Bakkehøi, S.; Hestnes, E.; Lied, K. The influence of meteorological factors on the initiation of debris flows, rockfalls, rockslides and rockmass stability. Nor. Geotech. Inst. Oslo. Rep. 1997, 201, 97–114. [Google Scholar]
- Corripio, J.; López-Moreno, J. Analysis and Predictability of the Hydrological Response of Mountain Catchments to Heavy Rain on Snow Events: A Case Study in the Spanish Pyrenees. Hydrology 2017, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- Eckhardt, K.; Ulbrich, U. Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J. Hydrol. 2003, 284, 244–252. [Google Scholar] [CrossRef]
- Harder, P.; Pomeroy, J. Estimating precipitation phase using a psychrometric energy balance method. Hydrol. Process. 2013, 27, 1901–1914. [Google Scholar] [CrossRef]
- Yang, D.; Kane, D.L.; Hinzman, L.D.; Zhang, X.; Zhang, T.; Ye, H. Siberian Lena River hydrologic regime and recent change. J. Geophys. Res. Atmos. 2002, 107. [Google Scholar] [CrossRef]
- Sui, J.; Koehler, G. Rain-on-snow induced flood events in southern Germany. J. Hydrol. 2001, 252, 205–220. [Google Scholar] [CrossRef]
- Cohen, J.; Ye, H.; Jones, J. Trends and variability in rain-on-snow events. Geophys. Res. Lett. 2015, 42, 7115–7122. [Google Scholar] [CrossRef] [Green Version]
- Pall, P.; Tallaksen, L.M.; Stordal, F. A climatology of rain-on-snow events for Norway. J. Clim. 2019, 32, 6995–7016. [Google Scholar] [CrossRef]
- Ye, H.; Cohen, J. A shorter snowfall season associated with higher air temperatures over northern Eurasia. Environ. Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- Ye, H.; Yang, D.; Robinson, D. Winter rain-on-snow and its association with air temperature in northern Eurasia. Hydrol. Proc. 2008, 22, 2728–2736. [Google Scholar] [CrossRef] [Green Version]
- Bieniek, P.A.; Bhatt, U.S.; Walsh, J.E.; Lader, R.; Griffith, B.; Roach, J.K.; Thoman, R.L. Assessment of Alaska rain-on-snow events using dynamical downscaling. J. Appl. Meteorol. Climatol. 2018, 57, 1847–1863. [Google Scholar] [CrossRef]
- Il Jeong, D.; Sushama, L. Rain-on-snow events over North America based on two Canadian regional climate models. Clim. Dyn. 2018, 50, 303–316. [Google Scholar] [CrossRef] [Green Version]
- Musselman, K.N.; Lehner, F.; Ikeda, K.; Clark, M.P.; Prein, A.F.; Liu, C.; Barlage, M.; Rasmussen, R. Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Clim. Chang. 2018, 8, 808–812. [Google Scholar] [CrossRef]
- Ohba, M.; Kawase, H. Rain-on-Snow events in Japan as projected by a large ensemble of regional climate simulations. Clim. Dyn. 2020, 55, 2785–2800. [Google Scholar] [CrossRef]
- Pan, C.G.; Kirchner, P.B.; Kimball, J.S.; Kim, Y.; Du, J. Rain-on-snow events in Alaska, their frequency and distribution from satellite observations. Environ. Res. Lett. 2018, 13. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, J.F.; Casassa, G.; Quintana, J. Changes of the 0 °C isotherm and the equilibrium line altitude in central Chile during the last quarter of the 20th century. Hydrol. Sci. J. 2005, 50, 933–948. [Google Scholar] [CrossRef]
- Casassa, G.; Rivera, A.; Escobar, F.; Acuña, C.; Carrasco, J.; Quintana, J. Snow line rise in central Chile in recent decades and its correlation with climate. Geophys. Res. Abs. 2003, 5, 14395. [Google Scholar] [CrossRef]
- Nayak, A.; Marks, D.; Chandler, D.G.; Seyfried, M. Long-term snow, climate, and streamflow trends at the reynolds creek experimental watershed, Owyhee Mountains, Idaho, United States. Water Resour. Res. 2010, 46. [Google Scholar] [CrossRef]
- Valdés-Pineda, R.; Pizarro, R.; García-Chevesich, P.; Valdés, J.B.; Olivares, C.; Vera, M.; Balocchi, F.; Pérez, F.; Vallejos, C.; Fuentes, R.; et al. Water governance in Chile: Availability, management and climate change. J. Hydrol. 2014, 519, 2538–2567. [Google Scholar] [CrossRef]
- Rivera, A.; Acuna, C.; Casassa, G.; Bown, F. Use of remotely sensed and field data to estimate the contribution of Chilean glaciers to eustatic sea-level rise. Ann. Glaciol. 2002, 34, 367–372. [Google Scholar] [CrossRef] [Green Version]
- Bradley, R.S.; Keimig, F.T.; Diaz, H.F. Projected temperature changes along the American cordillera and the planned GCOS network. Geophys. Res. Lett. 2004, 31, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Pomeroy, J.W.; Ellis, C.R.; MacDonald, M.K.; Debeer, C.M.; Brown, T. Multi-variable evaluation of hydrological model predictions for a headwater basin in the Canadian Rocky Mountains. Hydrol. Earth Syst. Sci. 2013, 17, 1635–1659. [Google Scholar] [CrossRef] [Green Version]
- Feiccabrino, J.; Gustafsson, D.; Graff, W.; Lundberg, A.; Sandström, N. Meteorological Knowledge Useful for the Improvement of Snow Rain Separation in Surface Based Models. Hydrology 2015, 2, 266–288. [Google Scholar] [CrossRef] [Green Version]
- Lundquist, J.D.; Neiman, P.J.; Martner, B.; White, A.B.; Gottas, D.J.; Ralph, F.M. Rain versus snow in the Sierra Nevada, California: Comparing doppler profiling radar and surface observations of melting level. J. Hydrometeorol. 2008, 9, 194–211. [Google Scholar] [CrossRef] [Green Version]
- Minder, J.R.; Durran, D.R.; Roe, G.H. Mesoscale controls on the mountainside snow line. J. Atmos. Sci. 2011, 68, 2107–2127. [Google Scholar] [CrossRef]
- Üçkardeş, F.; Aslan, E.; Üçükönder, H.K. Review A fast approach to select the appropriate test statistics. Acad. J. Agric. 2013, 2, 55–61. [Google Scholar]
- Pimentel, R.; Aguilar, C.; Herrero, J.; Pérez-Palazón, M.J.; Polo, M.J. Comparison between Snow Albedo Obtained from Landsat TM, ETM+ Imagery and the SPOT VEGETATION Albedo Product in a Mediterranean Mountainous Site. Hydrology 2016, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Dozier, J.; Painter, T.H. Multispectral and Hyperspectral Remote Sensing of Alpine Snow Properties. Annu. Rev. Earth Planet. Sci. 2004, 32, 465–494. [Google Scholar] [CrossRef] [Green Version]
- Grenfell, T.C.; Putkonen, J. A method for the detection of the severe rain-on-snow event on Banks Island, October 2003, using passive microwave remote sensing. Water Resour. Res. 2008, 44, 1–9. [Google Scholar] [CrossRef]
- Semmens, K.A.; Ramage, J.; Bartsch, A.; Liston, G.E. Early snowmelt events: Detection, distribution, and significance in a major sub-arctic watershed. Environ. Res. Lett. 2013, 8. [Google Scholar] [CrossRef]
- Thakur, P.K.; Garg, P.K.; Aggarwal, S.P.; Garg, R.D.; Mani, S. Snow Cover Area Mapping Using Synthetic Aperture Radar in Manali Watershed of Beas River in the Northwest Himalayas. J. Indian Soc. Remote Sens. 2013, 41, 933–945. [Google Scholar] [CrossRef]
- Ulaby, F.; Long, D. Microwave Radar and Radiometric Remote Sensing. Microw. Radar Radiom. Remote Sens. 2014. [Google Scholar] [CrossRef]
- Dolant, C.; Langlois, A.; Montpetit, B.; Brucker, L.; Roy, A.; Royer, A. Development of a rain-on-snow detection algorithm using passive microwave radiometry. Hydrol. Process. 2016, 30, 3184–3196. [Google Scholar] [CrossRef]
- Langlois, A.; Brucker, L.; Roy, A.; Montpetit, B.; Dolant, C.; Royer, A. Meteorological inventory of rain-on-snow events in the Canadian Arctic Archipelago and satellite detection assessment using passive microwave data. Phys. Geogr. 2017, 39, 428–444. [Google Scholar] [CrossRef]
- Nolin, A.; Dozier, J. A hyperspectral method for remotely sensing radiative impact of impurities in. Remote Sens. Environ. 2000, 216, 207–216. [Google Scholar] [CrossRef]
- Frei, A.; Lee, S.Y. A comparison of optical-band based snow extent products during spring over North America. Remote Sens. Environ. 2010, 114, 1940–1948. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO). Review on remote sensing of the snow cover and on methods of mapping snow. In Proceedings of the Fourteenth Session of the WMO Commission for Hydrology (CHy-14), Geneva, Switzerland, 6–14 November 2012; p. 26. [Google Scholar]
- Niwano, M.; Aoki, T.; Kuchiki, K.; Hosaka, M.; Kodama, Y. Snow Metamorphism and Albedo Process (SMAP) model for climate studies: Model validation using meteorological and snow impurity data measured at Sapporo, Japan. J. Geophys. Res. Earth Surf. 2012, 117. [Google Scholar] [CrossRef]
- O’Brien, H.W.; Munis, R.H. Red and Near-Infrared Spectral Reflectance of Snow; Research report (Cold Regions Research and Engineering Laboratory (U.S.)): Hanover, NH, USA, 1975; Volume 332. [Google Scholar]
- Marks, D.; Winstral, A. Comparison of snow deposition, the snow cover energy balance, and snowmelt at two sites in a semiarid mountain basin. J. Hydrometeorol. 2001, 2, 213–227. [Google Scholar] [CrossRef]
- Garreaud, R.D. The Andes climate and weather. Adv. Geosci. 2009, 22, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Montecinos, A.; Aceituno, P. Seasonality of the ENSO-related rainfall variability in central Chile and associated circulation anomalies. J. Clim. 2003, 16, 281–296. [Google Scholar] [CrossRef] [Green Version]
- Pellicciotti, F.; Helbing, J.; Rivera, A.; Favier, V.; Corripio, J.; Araos, J.; Carenzo, M. A study of the energy balance and melt regime on Juncal Norte Glacier, semi-arid Andes of central Chile, using melt models of different complexity. Hydrol. Process. 2010, 2274, 2267–2274. [Google Scholar] [CrossRef]
- Clark, M.P.; Hendrikx, J.; Slater, A.G.; Kavetski, D.; Anderson, B.; Cullen, N.J.; Kerr, T.; Örn Hreinsson, E.; Woods, R.A. Representing spatial variability of snow water equivalent in hydrologic and land-surface models: A review. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Marks, D.; Dozier, J. Climate and energy exchange at the snow surface in the Alpine Region of the Sierra Nevada: 2. Snow cover energy balance. Water Resour. Res. 1992, 28, 3043–3054. [Google Scholar] [CrossRef]
- Salomonson, V.V.; Appel, I. Estimating fractional snow cover from MODIS using the normalized difference snow index. Remote Sens. Environ. 2004, 89, 351–360. [Google Scholar] [CrossRef]
- Masiokas, M.H.; Villalba, R.; Luckman, B.H.; Quesne, C.; Le, J.C. Aravena snowpack variations in the central andes of Argentina and Chile, 1951–2005: Large-Scale atmospheric influences and implications for water resources in the region. J. Clim. 2006, 19, 6334–6352. [Google Scholar] [CrossRef]
- Vermote, E. MOD09A1 MODIS/Surface Reflectance 8-Day L3 Global 500 m SIN Grid; NASA, Land Processes Distributed Active Archive Center (LP DAAC): Sioux Falls, SD, USA, 2015. [CrossRef]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V. Development of methods for mapping global snow cover using moderate resolution imaging spectroradiometer data. Remote Sens. Environ. 1995, 54, 127–140. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A. Normalized-Difference Snow Index (NDSI). Crysopberic Sci. 2010, 70–71. [Google Scholar] [CrossRef] [Green Version]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; Barton, J.S.; Casey, K.L.; Chien, N.E.; DiGirolamo, A.G.; Klein, H.; Powell, W.; Tait, A.B. Algorithm Theoretical Basis Document (ATBD) for the MODIS Snow and Sea Icemapping Algorithms; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2001.
- Vermote, J.C.; Ray, J.P. MODIS Surface Reflectance User’ s Guide Collection 6; MODIS Land Surface Reflectance; Science Computing Facility, Land processes Distributed Active Archive Center (LP DAAC): Sioux Falls, SD, USA, 2015. [Google Scholar]
- Vermote, E.F.; Vermeulen, A. Atmospheric Correction Algorithm: Spectral Reflectances (MOD0 ) NASA Contract NAS5-96062; MODIS Algorithm Technical Background Document; University of Maryland: Greenbelt, MD, USA, 1999; Version 4; p. 107. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Barton, J.S. MODIS Snow and Sea Ice-Mapping Algorithms; MODIS Algorithm Technical Background Document; University of Maryland: Greenbelt, MD, USA, 2001; p. 45. [Google Scholar]
- Cea López, C.; Cristóbal Rosselló, J.; Pons Fernández, X. Determinación de la Superficie Nival del Pirineo Catalán Mediante Imágenes Landsat y Modis. Presented at XII Congreso Nacional de Tecnologías de la Información Geográfica, Granada, Spain, September 2007; pp. 1–10. [Google Scholar]
- Kulkarni, A.V.; Singh, S.K.; Mathur, P.; Mishra, V.D. Algorithm to monitor snow cover using AWiFS data of RESOURCESAT-1 for the Himalayan region. Int. J. Remote Sens. 2006, 27, 2449–2457. [Google Scholar] [CrossRef]
- Xiao, X.; Moore, B.; Qin, X.; Shen, Z.; Boles, S. Large-scale observations of alpine snow and ice cover in Asia: Using multi-temporal VEGETATION sensor data. Int. J. Remote Sens. 2002, 23, 2213–2228. [Google Scholar] [CrossRef] [Green Version]
- Bowley, C.J.; Barnes, J.C.; Rango, A. Applications Systems Verification and Transfer. Volume 3 Project Operational Applications of Satellite Snow Cover Observations in California; NASA Technical Paper 1829; NASA: Greenbelt, MD, USA, 1981.
- Tachikawa, T.; Hato, M.; Kaku, M.; Iwasaki, A. Characteristics of ASTER GDEM Version 2. In Proceedings of the 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, Canada, 24–29 July 2011; pp. 3657–3660. [Google Scholar] [CrossRef]
- Boisier, J.P.; Alvarez-Garretón, C.; Cepeda, J.; Osses, A.; Vásquez, N.; Rondanelli, R. CR2MET: A high-resolution precipitation and temperature dataset for hydroclimatic research in Chile. Geophys. Res. Abstr. 2018, 20, 2018–19739. [Google Scholar]
- Centro de Ciencias del Clima y la Resiliencia (CR2) CR2 Climate Explorer. Available online: http://explorador.cr2.cl/ (accessed on 20 February 2018).
- IDE Chile Infraestructura de Datos Geoespaciales de Chile. Available online: http://www.ide.cl (accessed on 15 January 2018).
- 2015. Available online: http://qgis.osgeo.org (accessed on 15 December 2020).
- Neteler, M.; Bowman, M.H.; Landa, M.; Metz, M. GRASS GIS: A multi-purpose open source GIS. Environ. Model. Softw. 2012, 31, 124–130. [Google Scholar] [CrossRef] [Green Version]
- Depuy, B.V.; Berger, V.W.; Zhou, Y. Wilcoxon-Mann-Whitney Test: Overview. Wiley StatsRef Stat. Ref. Online 2014, 1–5. [Google Scholar] [CrossRef]
- Thériault, J.M.; Stewart, R.E. A parameterization of the microphysical processes forming many types of winter precipitation. J. Atmos. Sci. 2010, 67, 1492–1508. [Google Scholar] [CrossRef] [Green Version]
- Jin, Z.; Simpson, J.J. Bidirectional anisotropic reflectance of snow and sea ice in AVHRR Channel 1 and 2 spectral regions—Part I: Theoretical analysis. IEEE Trans. Geosci. Remote Sens. 1999, 37, 543–554. [Google Scholar] [CrossRef]
- Jin, Z.; Simpson, J.J. Bidirectional anisotropie reflectance of snow and sea ice in AVHRR channel 1 and channel 2 spectral regions–Part ii: Correction applied to imagery of snow on sea ice. IEEE Trans. Geosci. Remote Sens. 2000, 38, 999–1015. [Google Scholar] [CrossRef]
- Jin, Z.; Simpson, J.J. Anisotropic reflectance of snow observed from space over the arctic and its effect on solar energy balance. Remote Sens. Environ. 2001, 75, 63–75. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, J.; Kinzelbach, W.; Stauffer, F. Simultaneous measurement of unfrozen water content and ice content in frozen soil using gamma ray attenuation and TDR. Water Resour. Res. 2014, 50, 9630–9655. [Google Scholar] [CrossRef]
- Cornwell, E.; Molotch, N.P.; McPhee, J. Spatio-temporal variability of snow water equivalent in the extra-tropical Andes Cordillera from distributed energy balance modeling and remotely sensed snow cover. Hydrol. Earth Syst. Sci. 2016, 20, 411–430. [Google Scholar] [CrossRef] [Green Version]
Moment | Statistic | Value |
---|---|---|
Mean | W D | 1647.5 * 0.5695 * |
Standard Deviation | W D | 2853.5 * 0.365 * |
Skew | W D | 8647.5 * 0.4682 * |
Kurtosis | W D | 8336.5 * 0.4297 * |
Variable Test | 2 Days Prior | 1 Day Prior | 1 Day Later | 2 Days Later |
---|---|---|---|---|
Maximum temperature | −14% | −17% | −16% | −13% |
0.1324 | 0.003143 | 0.06251 | 0.03397 | |
Minimum temperature | −42% | −31% | −26% | −46% |
0.02515 | 0.04885 | 0.03224 | 0.004365 |
Sub-Basin | Station Name | 1 Day Prior | 1 Day Later | 2 Days Later |
---|---|---|---|---|
Mapocho | Rio Mapocho en los Almendros | 0.19% | 6.9% | 3% |
0.9206 | 0.08302 | 0.1957 | ||
Mapocho | Estero Yerba Loca antes Junta San Francisco | 1.26% | 1.6% | 1.6% |
0.214 | 0.2015 | 0.3089 | ||
Mapocho | Estero Arrayan en La Montosa | −0.23% | 3.27% | 0.95% |
0.8631 | 0.4181 | 0.7648 | ||
Maipo | Rio Colorado antes Junta Rio Maipo | 2.6% | 3.7% | 5.78% |
0.4237 | 0.2094 | 0.03362 | ||
Maipo | Rio Colorado Antes Junta Rio Olivares | 0.67% | 0.2% | 2.4% |
0.6462 | 0.9103 | 0.4772 | ||
Maipo | Rio Maipo en El Manzano | −0.06% | 3.2% | 2.4% |
0.9673 | 0.1456 | 0.1569 | ||
Maipo | Rio Maipo en Las Hualtatas | 0.3% | 3.9% | 4.4% |
0.7639 | 0.0327 | 0.06183 | ||
Maipo | Rio Maipo en San Alfonso | −0.6% | 2.9% | 4.6% |
0.6589 | 0.05487 | 0.008764 | ||
Maipo | Rio Olivares antes Junta Rio Colorado | −1.5% | 1.5% | −0.37% |
0.543 | 0.562 | 0.9045 | ||
Maipo | Rio Volcan en Queltehues | 1.12% | 8.17% | 8.9% |
0.6968 | 0.03065 | 0.06366 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ocampo Melgar, D.; Meza, F.J. Exploring the Fingerprints of Past Rain-on-Snow Events in a Central Andean Mountain Range Basin Using Satellite Imagery. Remote Sens. 2020, 12, 4173. https://doi.org/10.3390/rs12244173
Ocampo Melgar D, Meza FJ. Exploring the Fingerprints of Past Rain-on-Snow Events in a Central Andean Mountain Range Basin Using Satellite Imagery. Remote Sensing. 2020; 12(24):4173. https://doi.org/10.3390/rs12244173
Chicago/Turabian StyleOcampo Melgar, D., and F.J. Meza. 2020. "Exploring the Fingerprints of Past Rain-on-Snow Events in a Central Andean Mountain Range Basin Using Satellite Imagery" Remote Sensing 12, no. 24: 4173. https://doi.org/10.3390/rs12244173
APA StyleOcampo Melgar, D., & Meza, F. J. (2020). Exploring the Fingerprints of Past Rain-on-Snow Events in a Central Andean Mountain Range Basin Using Satellite Imagery. Remote Sensing, 12(24), 4173. https://doi.org/10.3390/rs12244173