Worldwide Evaluation of Ozone Radiative Forcing in the UV-B Range between 1979 and 2014
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Ozone Radiative Forcing in Three Different Periods
3.2. Long-Term Trends of Ozone Radiative Forcing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Solomon, S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 1999, 37, 275–316. [Google Scholar] [CrossRef]
- Pienitz, R.; Vincent, W.F. Effect of climate change relative to ozone depletion on UV exposure in subarctic lakes. Nature 2000, 404, 484–487. [Google Scholar] [CrossRef] [PubMed]
- McFarlane, N. Connections between stratospheric ozone and climate: Radiative forcing, climate variability, and change. Atmos. Ocean 2008, 46, 139–158. [Google Scholar] [CrossRef] [Green Version]
- Ramaswamy, V.; Boucher, O.; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, T.; Shi, G.Y.; Solomon, S. Radiative forcing of climate change. In Climate Change 2001: The Scientific Basis, Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC); Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Da, X., Maskell, K., MJohnson, C.A., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2001. [Google Scholar]
- Antón, M.; Mateos, D. Shortwave radiative forcing due to long-term changes of total ozone column over the Iberian Peninsula. Atmos. Environ. 2013, 81, 532–537. [Google Scholar] [CrossRef]
- Shindell, D.T.; Schmidt, G.A.; Miller, R.L.; Rind, D. Northern Hemisphere winter climate response to greenhouse gas, ozone, solar, and volcanic forcing. J. Geophys. Res. Atmos. 2001, 106, 7193–7210. [Google Scholar] [CrossRef] [Green Version]
- Bekki, S.K.; Law, K.; Pyle, J. Effect of ozone depletion on atmospheric methane and carbon monoxide concentrations. Nature 1994, 371, 595–597. [Google Scholar] [CrossRef]
- Tourpali, K.; Schuurmans, C.J.E.; van Dorland, R.; Steil, B.; Brühl, C. Stratospheric and tropospheric response to enhanced solar UV radiation: A model study. Geophys. Res. Lett. 2003, 30, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Kiehl, J.T.; Schneider, T.L.; Portmann, R.W.; Solomon, S. Climate forcing due to tropospheric and stratospheric ozone. J. Geophys. Res. Atmos. 1999, 104, 31239–31254. [Google Scholar] [CrossRef]
- Gauss, M.; Myhre, G.; Isaksen, I.S.A.; Grewe, V.; Pitari, G.; Wild, O.; Collins, W.J.; Dentener, F.J.; Ellingsen, K.; Gohar, L.K.; et al. Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere. Atmos. Chem. Phys. 2006, 6, 575–599. [Google Scholar] [CrossRef] [Green Version]
- Forster, P.; Ramaswamy, V.; Artaxo, P.M.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in atmospheric constituents and in radiative forcing. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Cionni, I.; Eyring, V.; Lamarque, J.F.; Randel, W.J.; Stevenson, D.S.; Wu, F.; Bodeker, G.E.; Shepherd, T.G.; Shindell, D.T.; Waugh, D.W. Ozone database in support of CMIP5 simulations: Results and corresponding radiative forcing. Atmos. Chem. Phys. 2011, 11, 11267–11292. [Google Scholar] [CrossRef] [Green Version]
- Dragini, R. On the quality of the era-interim ozone reanalyses: Comparisons with satellite data. Q. J. R. Meteorol. Soc. 2011, 137, 1312–1326. [Google Scholar] [CrossRef]
- Mayer, B.; Kylling, A. The libRadtran software package for radiative transfer calculations—Description and examples of use. Atmos. Chem. Phys. 2005, 5, 1855–1877. [Google Scholar] [CrossRef] [Green Version]
- Mateos, D.; Pace, G.; Meloni, D.; Bilbao, J.; di Sarra, A.; de Miguel, A.; Casasanta, G.; Min, Q. Observed influence of liquid cloud microphysical properties on ultraviolet surface radiation. J. Geophys. Res. Atmos. 2014, 119, 2429–2440. [Google Scholar] [CrossRef]
- Gueymard, C.A. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Sol. Energy 2004, 76, 423–453. [Google Scholar] [CrossRef]
- Weatherhead, E.C.; Andersen, S.B. The search for signs of recovery of the ozone layer. Nature 2006, 441, 39–45. [Google Scholar] [CrossRef]
- Solomon, S.; Portmann, R.W.; Sasaki, T.; Hofmann, D.J.; Thompson, D.W.J. Four decades of ozonesonde measurements over Antarctica. J. Geophys. Res. Atmos. 2005, 110, D21311. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, T.G.; Plummer, D.A.; Scinocca, J.F.; Hegglin, M.I.; Fioletov, V.E.; Reader, M.C.; Remsberg, E.; von Clarmann, T.; Wang, H.J. Reconciliation of halogen-induced ozone loss with the total-column ozone record. Nat. Geosci. 2014, 7, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.; Coldewey-Egbers, M.; Fioletov, V.E.; Frith, S.M.; Wild, J.D.; Burrows, J.P.; Long, C.S.; Loyola, D. Total ozone trends from 1979 to 2016 derived from five merged observational datasets – the emergence into ozone recovery. Atmos. Chem. Phys. 2018, 18, 2097–2117. [Google Scholar] [CrossRef] [Green Version]
- Bodeker, G.E.; Garny, H.; Smale, D.; Dameris, M.; Deckert, R. The 1985 Southern Hemisphere mid-latitude total column ozone anomaly. Atmos. Chem. Phys. 2007, 7, 5625–5637. [Google Scholar] [CrossRef] [Green Version]
- Bodeker, G.E.; Connor, B.J.; Liley, J.B.; Matthews, W.A. The global mass of ozone: 1978–1998. Geophys. Res. Lett. 2001, 28, 2819–2822. [Google Scholar] [CrossRef]
- Sinnhuber, B.M.; Weber, M.; Amankwah, A.; Burrows, J.P. Total Ozone during the Unusual Antarctic Winter of 2002. Geophys. Res. Lett. 2003, 30, 1580–1584. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Chipperfield, M.P.; Davies, S.; Sen, B.; Toon, G.; Blavier, J.F.; Webster, C.R.; Volk, C.M.; Ulanosvky, A.; Ravegnani, F.; et al. Three-dimensional model study of the Arctic ozone loss in 2002/2003 and comparison with 1999/2000 and 2003/2004. Atmos. Chem. Phys. 2005, 5, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.; Chipperfield, M.P.; Davies, S.; von der Gathen, P.; Kyrö, E.; Volk, C.M.; Ulanovsky, A.; Belyaev, G. Large chemical ozone loss in 2004/2005 Arctic winter/spring. Geophys. Res. Lett. 2007, 34, L09803. [Google Scholar] [CrossRef]
- Hofmann, D.J.; Solomon, S. Ozone destruction through heterogeneous chemistry following the eruption of El Chichón. J. Geophys. Res. 1989, 94, 5029–5041. [Google Scholar] [CrossRef]
- Randel, W.J.; Wu, F.; Russell, J.M., III; Waters, J.W.; Froidevaux, L. Ozone and temperature changes in the stratosphere following the eruption of Mount Pinatubo. J. Geophys. Res. 1995, 100, 16753–16764. [Google Scholar] [CrossRef]
- Solomon, S.; Portmann, R.W.; Garcia, R.R.; Thomason, L.W.; Poole, L.R.; McCormick, M.P. The role of aerosol variations in anthropogenic ozone depletion at northern midlatitudes. J. Geophys. Res. Atmos. 1996, 101, 6713–6727. [Google Scholar] [CrossRef]
- Chehade, W.; Weber, M.; Burrows, J.P. Total ozone trends and variability during 1979–2012 from merged data sets of various satellites. Atmos. Chem. Phys. 2014, 14, 7059–7074. [Google Scholar] [CrossRef] [Green Version]
- Román, R.; Bilbao, J.; de Miguel, A. Uncertainty of different atmospheric ozone retrievals and its effect on temporal trends and radiative transfer simulations in the Iberian Peninsula. J. Geophys. Res. Atmos. 2014, 119, 4690–4708. [Google Scholar] [CrossRef]
- Tang, Q.; Hess, P.G.; Brown-Steiner, B.; Kinnison, D.E. Tropospheric ozone decrease due to the MountPinatubo eruption: Reduced stratospheric influx. Geophys. Res. Lett. 2013, 40, 5553–5558. [Google Scholar] [CrossRef]
- Fioletov, V.E.; Bodeker, G.E.; Miller, A.J.; McPeters, R.D.; Stolarski, R. Global and zonal total ozone variations estimated from ground-based and satellite measurements: 1964–2000. J. Geophys. Res. 2002, 107, 4647. [Google Scholar] [CrossRef] [Green Version]
- Schnadt Poberaj, C.; Staehelin, J.; Brunner, D. Missing stratospheric ozone decrease at Southern Hemisphere middle latitudes after Mt. Pinatubo: A dynamical perspective. J. Atmos. Sci. 2011, 68, 1922–1945. [Google Scholar] [CrossRef]
- Aquila, V.; Oman, L.D.; Stolarski, R.; Douglass, A.R.; Newman, P.A. The Response of Ozone and Nitrogen Dioxide to the Eruption of Mt. Pinatubo at Southern and Northern Midlatitudes. J. Atmos. Sci. 2013, 70, 894–900. [Google Scholar] [CrossRef]
- Ward, P.L. The effects of volcano-induced ozone depletion on short-lived climate forcing in the Arctic. In Proceedings of the 2012 Fall Meeting, AGU, San Francisco, CA, USA, 3–7 December 2012. Abstract C53C-0852. [Google Scholar]
- Steinbrecht, W.; Köhler, U.; Claude, H.; Weber, M.; Burrows, J.P.; van der A, R.J. Very high ozone columns at northern mid-latitudes in 2010. Geophys. Res. Lett. 2011, 38, L06803. [Google Scholar] [CrossRef]
- Ossó, A.; Sola, Y.; Bech, J.; Lorente, J. Evidence for the influence of the North Atlantic Oscillation on the total ozone column at northern low latitudes and midlatitudes during winter and summer seasons. J. Geophys. Res. 2011, 116, D24122. [Google Scholar] [CrossRef] [Green Version]
- Mateos, D.; Antón, M.; Sáenz, G.; Bañón, M.; Vilaplana, J.M.; García, J.A. Evaluation of extreme ozone events over the Iberian Peninsula from Brewer spectrophotometers in the 2000s. Atmos. Res. 2016, 169, 248–254. [Google Scholar] [CrossRef]
- Arnone, E.; Castelli, E.; Papandrea, E.; Carlotti, M.; Dinelli, M.M. Extreme ozone depletion in the 2010–2011 Arctic winter stratosphere as observed by MIPAS/ENVISAT using a 2-D tomographic approach. Atmos. Chem. Phys. 2012, 12, 9149–9165. [Google Scholar] [CrossRef] [Green Version]
- Adams, C.; Strong, K.; Zhao, X.; Bassford, M.R.; Chipperfield, M.P.; Daffer, W.; Drummond, J.R.; Farahani, E.E.; Feng, W.; Fraser, A.; et al. Severe 2011 ozone depletion assessed with 11 years of ozone, NO2, and OClO measurements at 80°N. Geophys. Res. Lett. 2012, 39, L05806. [Google Scholar] [CrossRef] [Green Version]
- Krzyscin, J.W. Extreme ozone loss over the Northern Hemisphere high latitudes in the early 2011. Tellus B Chem. Phys. Meteorol. 2012, 64, 17347. [Google Scholar] [CrossRef]
- Cracknell, A.P.; Varotsos, C.A. The Antarctic 2006 ozone hole. Int. J. Remote Sens. 2007, 28, 1–2. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, C. The influence of autocorrelation on the ability to detect trend in hydrological series. Hydrol. Process. 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Newsome, B.; Evans, M. Impact of uncertainties in inorganic chemical rate constants on tropospheric composition and ozone radiative forcing. Atmos. Chem. Phys. 2017, 17, 14333–14352. [Google Scholar] [CrossRef] [Green Version]
- Myhre, G.; Aas, W.; Cherian, R.; Collins, W.; Faluvegi, G.; Flanner, M.; Forster, P.; Hodnebrog, Ø.; Klimont, Z.; Lund, M.T.; et al. Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990–2015. Atmos. Chem. Phys. 2017, 17, 2709–2720. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Madronich, S.; Wallington, T.; Calamari, D. Changes in tropospheric composition and air quality. J. Photochem. Photobiol. B Biol. 1998, 46, 83–95. [Google Scholar] [CrossRef]
Latitudinal Band | Trend (W m−2 per decade) | Relative Trend (% per decade) | p-Value | 95% Confidence Interval (W m−2 per decade) |
---|---|---|---|---|
60–45°S | 0.0070 | 27.4% | <0.001 | [0.0040, 0.0100] |
45–30°S | 0.0043 | 22.6% | 0.026 | [0.0007, 0.0070] |
30–45°N | 0.0027 | 15.6% | 0.110 | [0.0005, 0.0064] |
45–60°N | 0.0041 | 26.6% | 0.011 | [0.0009, 0.0070] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mateos, D.; Antón, M. Worldwide Evaluation of Ozone Radiative Forcing in the UV-B Range between 1979 and 2014. Remote Sens. 2020, 12, 436. https://doi.org/10.3390/rs12030436
Mateos D, Antón M. Worldwide Evaluation of Ozone Radiative Forcing in the UV-B Range between 1979 and 2014. Remote Sensing. 2020; 12(3):436. https://doi.org/10.3390/rs12030436
Chicago/Turabian StyleMateos, David, and Manuel Antón. 2020. "Worldwide Evaluation of Ozone Radiative Forcing in the UV-B Range between 1979 and 2014" Remote Sensing 12, no. 3: 436. https://doi.org/10.3390/rs12030436
APA StyleMateos, D., & Antón, M. (2020). Worldwide Evaluation of Ozone Radiative Forcing in the UV-B Range between 1979 and 2014. Remote Sensing, 12(3), 436. https://doi.org/10.3390/rs12030436