Evapotranspiration in the Tono Reservoir Catchment in Upper East Region of Ghana Estimated by a Novel TSEB Approach from ASTER Imagery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site of Study, Data, and Instrumentation
2.2. EC Data Processing
2.3. Footprint and Representativeness of EC Data
2.4. Soil Classification of the Study Area
2.5. Data from Remote Sensing
2.6. Methods
2.7. Supervised LULC Classification of the Satellite Images Using the Random Forest Classifier
3. Results and Discussion
3.1. Flux Footprint, Footprint Climatology, and Spatial Representativeness of Flux Data
3.2. Surface Radiometric Temperature
3.3. Catchment Evaporation and Potential Evapotranspiration
3.4. Land Cover Classification
3.5. Spatial Variation of Surface Energy Fluxes
3.6. Partitioning of the Net Radiation (Rn) to LE, H and G Across the Different Land Use Types
3.7. Daily ET
3.8. Spatial Distribution of Daily ET
3.9. ET Variations per Land Use Type
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Acronyms
1S | One-source |
2S | Dual-source |
ABT | At-sensor brightness temperature |
BBA | Broad-band albedo |
DNR | Daily net radiation |
EC | Eddy covariance |
EF | Evaporative fraction |
ET | Evapotranspiration |
ET24 | Daily evapotranspiration |
FAPAR | Fraction of Absorbed Photosynthetically Active Radiation |
fg | Fraction of green canopy |
FIPAR | Fraction of Intercepted Photosynthetically Active Radiation |
fM | Plant moisture constraints |
G | Soil heat flux |
H | Sensible heat flux |
Hc | Canopy sensible heat flux |
Hs | Soil sensible heat flux |
LAI | Leaf area index |
LE | Latent heat flux |
LEc | Canopy latent heat flux |
LEs | Soil latent heat flux |
LSE | Land surface emissivity |
NDVI | Normalized difference vegetation index |
Rn | Net radiation |
Rnc | Canopy net radiation |
Rns | Soil net radiation |
Tc | Canopy temperature |
TOAR | Top of atmosphere reflectance |
Tovp | Time of satellite overpass |
Trad | Land surface radiometric temperature |
Trise | Time of sunrise |
Ts | Soil temperature |
TSEB | Two-source energy balance |
Tset | Time of sunset |
WASCAL | West African Science Service Center on Climate Change and Adapted Land Use |
References
- Ahmadi, B.; Ahmadalipour, A.; Tootle, G.; Hamid, M. Remote Sensing of Water Use Efficiency and Terrestrial Drought Recovery across the Contiguous United States. Remote Sens. 2019, 11, 731. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Wang, J.; Liu, S.; Rentch, J.S.; Sun, P.; Lu, C. Global gross primary productivity and water use efficiency changes under drought stress. Environ. Res. Lett. 2017, 12, 014016. [Google Scholar] [CrossRef] [Green Version]
- Hasenmueller, E.A.; Criss, R.E. Water Balance Estimates of Evapotranspiration Rates in Areas with Varying Land Use. In Evapotranspiration—An Overview; Alexandris, S.G., Ed.; IntechOpen: London, UK, 2013; p. 22. [Google Scholar] [CrossRef] [Green Version]
- Katul, G.; Novick, K. Evapotranspiration. In Encyclopedia of Inland Waters; Likens, G.E., Ed.; Academic Press: Oxford, UK, 2009; pp. 661–667. [Google Scholar] [CrossRef]
- Merlin, O.; Chirouze, J.; Olioso, A.; Jarlan, L.; Chehbouni, G.; Boulet, G. An image-based four-source surface energy balance model to estimate crop evapotranspiration from solar reflectance/thermal emission data (SEB-4S). Agric. For. Meteorol. 2014, 184, 188–203. [Google Scholar] [CrossRef] [Green Version]
- Nouri, H.; Beecham, S.; Kazemi, F.; Hassanli, A.M.; Anderson, S. Remote sensing techniques for predicting evapotranspiration from mixed vegetated surfaces. Hydrol. Earth Syst. Sci. Discuss. 2013, 10, 3897–3925. [Google Scholar] [CrossRef]
- Verstraeten, W.; Veroustraete, F.; Feyen, J. Assessment of Evapotranspiration and Soil Moisture Content Across Different Scales of Observation. Sensors 2008, 8, 70–117. [Google Scholar] [CrossRef] [Green Version]
- Bastiaanssen, W.G.M. SEBAL-based sensible and latent heat fluxes in the irrigated Gediz Basin, Turkey. J. Hydrol. 2000, 229, 87–100. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M. Use of remote sensing for evapotranspiration monitoring over land surfaces. Hydrol. Sci. J. 1996, 41, 495–516. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Wang, K.; Wang, P.; Li, Z.; Cribb, M.; Sparrow, M. A Simple Method to Estimate Actual Evapotranspiration from A Combination of Net Radiation, Vegetation Index, and Temperature. J. Geophys. Res. 2007, 112, D15107. [Google Scholar] [CrossRef]
- Bahir, M.; Boulet, G.; Olioso, A.; Rivalland, V.; Gallego-Elvira, B.; Mira, M.; Rodriguez, J.-C.; Jarlan, L.; Merlin, O. Evaluation and Aggregation Properties of Thermal Infra-Red-Based Evapotranspiration Algorithms from 100 m to the km Scale over a Semi-Arid Irrigated Agricultural Area. Remote Sens. 2017, 9, 1178. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Kustas, W.P. Using Very High Resolution Thermal Infrared Imagery for More Accurate Determination of the Impact of Land Cover Differences on Evapotranspiration in an Irrigated Agricultural Area. Remote Sens. 2019, 11, 613. [Google Scholar] [CrossRef] [Green Version]
- Ma, W.; Hafeez, M.; Ishikawa, H.; Ma, Y. Evaluation of SEBS for estimation of actual evapotranspiration using ASTER satellite data for irrigation areas of Australia. Theor. Appl. Climatol. 2013, 112, 609–616. [Google Scholar] [CrossRef]
- Zhuang, Q.; Wu, B. Estimating Evapotranspiration from an Improved Two-Source Energy Balance Model Using ASTER Satellite Imagery. Water 2015, 7, 6673–6688. [Google Scholar] [CrossRef] [Green Version]
- Bawazir, A.S.; Samani, Z.; Bleiweiss, M.; Skaggs, R.; Schmugge, T. Using ASTER satellite data to calculate riparian evapotranspiration in the Middle Rio Grande, New Mexico. Int. J. Remote Sens. 2009, 30, 5593–5603. [Google Scholar] [CrossRef]
- Zhang, Y.-K.; Schilling, K. Effects of Land Cover on Water Table, Soil Moisture, Evapotranspiration, and Groundwater Recharge: A Field Observation and Analysis. J. Hydrol. 2006, 319, 328–338. [Google Scholar] [CrossRef]
- Dunn, S.M.; Mackay, R. Spatial variation in evapotranspiration and the influence of land use on catchment hydrology. J. Hydrol. 1995, 171, 49–73. [Google Scholar] [CrossRef]
- Gerten, D.; Schaphoff, S.; Haberlandt, U.; Lucht, W.; Sitch, S. Terrestrial vegetation and water balance—Hydrological evaluation of a dynamic global vegetation model. J. Hydrol. 2004, 286, 249–270. [Google Scholar] [CrossRef]
- Senay, G.B.; Bohms, S.; Singh, R.K.; Gowda, P.H.; Velpuri, N.M.; Alemu, H.; Verdin, J.P. Operational Evapotranspiration Mapping Using Remote Sensing and Weather Datasets: A New Parameterization for the SSEB Approach. JAWRA J. Am. Water Resour. Assoc. 2013, 49, 577–591. [Google Scholar] [CrossRef] [Green Version]
- Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, A.M. A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields. Sensors 2007, 7, 979–1000. [Google Scholar] [CrossRef] [Green Version]
- Allen, R.G.; Tasumi, M.; Trezza, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)-Model. J. Irrig. Drain. Eng. 2007, 133, 380–394. [Google Scholar] [CrossRef]
- Su, Z. The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrol. Earth Syst. Sci. 2002, 6, 85–100. [Google Scholar] [CrossRef]
- Roerink, G.J.; Su, Z.; Menenti, M. S-SEBI: A simple remote sensing algorithm to estimate the surface energy balance. Phys. Chem. Earth Part B Hydrol. Ocean. Atmos. 2000, 25, 147–157. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Paul, G.; Gowda, P.H.; Vara Prasad, P.V.; Howell, T.A.; Aiken, R.M.; Neale, C.M.U. Investigating the influence of roughness length for heat transport (zoh) on the performance of SEBAL in semi-arid irrigated and dryland agricultural systems. J. Hydrol. 2014, 509, 231–244. [Google Scholar] [CrossRef]
- Gokmen, M.; Vekerdy, Z.; Verhoef, A.; Verhoef, W.; Batelaan, O.; van der Tol, C. Integration of soil moisture in SEBS for improving evapotranspiration estimation under water stress conditions. Remote Sens. Environ. 2012, 121, 261–274. [Google Scholar] [CrossRef]
- Yang, Y.; Su, H.; Zhang, R.; Tian, J.; Li, L. An enhanced two-source evapotranspiration model for land (ETEML): Algorithm and evaluation. Remote Sens. Environ. 2015, 168, 54–65. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Prueger, J.H.; Diak, G.R. Surface flux estimation using radiometric temperature: A dual-temperature-difference method to minimize measurement errors. Water Resour. Res. 2000, 36, 2263–2274. [Google Scholar] [CrossRef] [Green Version]
- Mecikalski, J.R.; Diak, G.R.; Anderson, M.C.; Norman, J.M. Estimating Fluxes on Continental Scales Using Remotely Sensed Data in an Atmospheric–Land Exchange Model. J. Appl. Meteorol. 1999, 38, 1352–1369. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Diak, G.R.; Kustas, W.P.; Mecikalski, J.R. A two-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. Remote Sens. Environ. 1997, 60, 195–216. [Google Scholar] [CrossRef]
- Norman, J.M.; Kustas, W.P.; Humes, K.S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric. For. Meteorol. 1995, 77, 263–293. [Google Scholar] [CrossRef]
- Lhomme, J.P.; Chehbouni, A. Comments on dual-source vegetation–atmosphere transfer models. Agric. For. Meteorol. 1999, 94, 269–273. [Google Scholar] [CrossRef]
- Sánchez, J.M.; Kustas, W.P.; Caselles, V.; Anderson, M.C. Modelling surface energy fluxes over maize using a two-source patch model and radiometric soil and canopy temperature observations. Remote Sens. Environ. 2008, 112, 1130–1143. [Google Scholar] [CrossRef]
- Anderson, M.; Norman, J.; Kustas, W.; Houborg, R.; Starks, P.; Agam, N. A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sens. Environ. 2008, 112, 4227–4241. [Google Scholar] [CrossRef]
- Long, D.; Singh, V.P. A Two-source Trapezoid Model for Evapotranspiration (TTME) from satellite imagery. Remote Sens. Environ. 2012, 121, 370–388. [Google Scholar] [CrossRef]
- Morillas, L.; Villagarcía, L.; Domingo, F.; Nieto, H.; Uclés, O.; García, M. Environmental factors affecting the accuracy of surface fluxes from a two-source model in Mediterranean drylands: Upscaling instantaneous to daytime estimates. Agric. For. Meteorol. 2014, 189–190, 140–158. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M. A two-source approach for estimating turbulent fluxes using multiple angle thermal infrared observations. Water Resour. Res. 1997, 33, 1495–1508. [Google Scholar] [CrossRef]
- Gonzalez-Dugo, M.P. A comparison of operational remote sensing-based models for estimating crop evapotranspiration. Agric. For. Meteorol. 2009, 149, 1843–1853. [Google Scholar] [CrossRef]
- Li, F.; Kustas, W.P.; Prueger, J.H.; Neale, C.M.U.; Jackson, T.J. Utility of Remote Sensing–Based Two-Source Energy Balance Model under Low- and High-Vegetation Cover Conditions. J. Hydrometeorol. 2005, 6, 878–891. [Google Scholar] [CrossRef]
- Fisher, J.B.; Tu, K.P.; Baldocchi, D.D. Global estimates of the land–atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sens. Environ. 2008, 112, 901–919. [Google Scholar] [CrossRef]
- WikimediaCommonsContributors. China Map of Köppen Climate Classification; 14 February 2018 ed.. Wikimedia Commons—The Free Media Repository, 2018. Available online: https://commons.wikimedia.org/w/index.php?title=File:China_map_of_K%C3%B6ppen_climate_classification.svg&oldid=287152692 (accessed on 7 February 2020).
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and future Köppen-Geiger climate classification maps at 1-km resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef] [Green Version]
- Krishna, S.; Manavalan, P.; Rao, P. Estimation of Net Radiation using satellite based data inputs. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2014, XL-8, 307–313. [Google Scholar] [CrossRef] [Green Version]
- WikimediaCommonsContributors. Ghana Map of Köppen Climate Classification. Available online: https://commons.wikimedia.org/w/index.php?title=File:Ghana_map_of_K%C3%B6ppen_climate_classification.svg&oldid=287173920 (accessed on 7 February 2020).
- Bisht, G.; Bras, R.L. Estimation of Net Radiation From the Moderate Resolution Imaging Spectroradiometer Over the Continental United States. IEEE Trans. Geosci. Remote Sens. 2011, 49, 2448–2462. [Google Scholar] [CrossRef]
- Nicholson, S.E. The West African Sahel: A Review of Recent Studies on the Rainfall Regime and Its Interannual Variability. ISRN Meteorol. 2013, 2013, 32. [Google Scholar] [CrossRef]
- Bliefernicht, J.; Berger, S.; Salack, S.; Guug, S.; Hingerl, L.; Heinzeller, D.; Mauder, M.; Steinbrecher, R.; Steup, G.; Bossa, A.Y.; et al. The WASCAL Hydrometeorological Observatory in the Sudan Savanna of Burkina Faso and Ghana. Vadose Zone J. 2018, 17. [Google Scholar] [CrossRef] [Green Version]
- Alhassan, A.; Agyare, W.A.; Asante, C.Y. Impact of Landuse Changes on Soil Erosion and Sedimentation in the Tono Reservoir Watershed Using GeoWEPP Model. Int. J. Irrig. Agric. Dev. 2018, 1, 106–119. [Google Scholar]
- Forkuor, G.; Conrad, C.; Thiel, M.; Zoungrana, B.; Tondoh, J. Multiscale Remote Sensing to Map the Spatial Distribution and Extent of Cropland in the Sudanian Savanna of West Africa. Remote Sens. 2017, 9, 839. [Google Scholar] [CrossRef] [Green Version]
- Ouedraogo, I.; Savadogo, P.; Tigabu, M.; Cole, R.; Odén, P.C.; Ouadba, J.-M. Is rural migration a threat to environmental sustainability in Southern Burkina Faso? Land Degrad. Dev. 2009, 20, 217–230. [Google Scholar] [CrossRef]
- Quansah, E.; Mauder, M.; Balogun, A.A.; Amekudzi, L.K.; Hingerl, L.; Bliefernicht, J.; Kunstmann, H. Carbon dioxide fluxes from contrasting ecosystems in the Sudanian Savanna in West Africa. Carbon Balance Manag. 2015, 10, 1. [Google Scholar] [CrossRef] [Green Version]
- Bliefernicht, J.; Kunstmann, H.; Hingerl, L.; Rummler, T.; Andresen, S.; Mauder, M.; Steinbrecher, R.; Frieß, R.; Gochis, D.; Gessner, U.; et al. Field and Simulation Experiments for Investigating Regional Land-Atmosphere Interactions in West Africa: Experimental Set-up and First Results; IAHS Publ.: Gothenburg, Sweden, 2013. [Google Scholar]
- Fratini, G.; Mauder, M. Towards a consistent eddy-covariance processing: An intercomparison of EddyPro and TK3. Atmos. Meas. Tech. 2014, 7, 2273–2281. [Google Scholar] [CrossRef] [Green Version]
- Mauder, M.; Foken, T. Documentation and Instruction Manual of the Eddy-Covariance Software Package TK3; Universität Bayreuth, Abteilung Mikrometeorologie: Bayreuth, Germany, 2011. [Google Scholar]
- Mauder, M.; Foken, T.; Clement, R.; Elbers, J.A.; Eugster, W.; Grünwald, T.; Heusinkveld, B.; Kolle, O. Quality control of CarboEurope flux data? Part 2: Inter-comparison of eddy-covariance software. Biogeosciences 2008, 5, 451–462. [Google Scholar] [CrossRef] [Green Version]
- Kaimal, J.C.; Finnigan, J.J. Atmospheric Boundary Layer Flows: Their Structure and Measurement; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Foken, T.; Leuning, R.; Oncley, S.R.; Mauder, M.; Aubinet, M. Corrections and Data Quality Control. In Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Aubinet, M., Vesala, T., Papale, D., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 85–131. [Google Scholar] [CrossRef]
- Foken, T.; Wichura, B. Tools for quality assessment of surface-based flux measurements. Agric. Forest Meteorol. 1996, 78, 83–105. [Google Scholar] [CrossRef]
- FAO; ITPS. Status of the World’s Soil Resources (SWSR)—Main Report; Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils: Rome, Italy, 2015. [Google Scholar]
- Michael, A.; Simon, H.; Bhaskar, R. ASTER Users Handbook Version 2; Jet Propulsion Laboratory/California Institute of Technology: Pasadena, CA, USA, 1998. [Google Scholar]
- R-Core-Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Krehbiel, C. Working with ASTER L1T Visible and Near Infrared (VNIR) Data in R; Innovate!, Inc., Contractor to the U.S. Geological Survey, Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2017. [Google Scholar]
- Rouse, J.W. Monitoring vegetation system in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium, Goddard Space Flight Center, Washington, DC, USA, 14 December 1973; pp. 309–317. [Google Scholar]
- Deering, D.W. Measuring forage production of grazing units from Landsat MSS data. In Proceedings of the 10th International Symposium on Remote Sensing of Environment, Ann Arbor, MI, USA, 6 October 1975; pp. 1169–1178. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Schlerf, M.; Atzberger, C.; Hill, J. Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens. Environ. 2005, 95, 177–194. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, X.; Tang, S. Validation of the SEBS-derived sensible heat for FY3A/VIRR and TERRA/MODIS over an alpine grass region using LAS measurements. Int. J. Appl. Earth Obs. Geoinf. 2013, 23, 226–233. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Sobrino, J.A. Feasibility of Retrieving Land-Surface Temperature From ASTER TIR Bands Using Two-Channel Algorithms: A Case Study of Agricultural Areas. IEEE Geosci. Remote Sens. Lett. 2007, 4, 60–64. [Google Scholar] [CrossRef]
- Kustas, W.P.; Norman, J.M.; Anderson, M.C.; French, A.N. Estimating subpixel surface temperatures and energy fluxes from the vegetation index–radiometric temperature relationship. Remote Sens. Environ. 2003, 85, 429–440. [Google Scholar] [CrossRef]
- Consoli, S.; Vanella, D. Comparisons of satellite-based models for estimating evapotranspiration fluxes. J. Hydrol. 2014, 513, 475–489. [Google Scholar] [CrossRef]
- Li, Z.L.; Tang, R.; Wan, Z.; Bi, Y.; Zhou, C.; Tang, B.; Yan, G.; Zhang, X. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data. Sensors 2009, 9, 3801–3853. [Google Scholar] [CrossRef] [Green Version]
- Kalma, J.D.; McVicar, T.R.; McCabe, M.F. Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data. Surv. Geophys. 2008, 29, 421–469. [Google Scholar] [CrossRef]
- Sánchez, J.M.; Scavone, G.; Caselles, V.; Valor, E.; Copertino, V.A.; Telesca, V. Monitoring daily evapotranspiration at a regional scale from Landsat-TM and ETM+ data: Application to the Basilicata region. J. Hydrol. 2008, 351, 58–70. [Google Scholar] [CrossRef]
- Wang, K.; Dickinson, R.E. A review of global terrestrial evapotranspiration: Observation, modeling, climatology, and climatic variability. Rev. Geophys. 2012, 50. [Google Scholar] [CrossRef]
- Mira, M.; Valor, E.; Boluda, R.; Caselles, V.; Coll, C. Influence of soil water content on the thermal infrared emissivity of bare soils: Implication for land surface temperature determination. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Rubio, E.; Caselles, V.; Coll, C.; Valour, E.; Sospedra, F. Thermal–infrared emissivities of natural surfaces: Improvements on the experimental set-up and new measurements. Int. J. Remote Sens. 2003, 24, 5379–5390. [Google Scholar] [CrossRef]
- Colaizzi, P.D.; Kustas, W.P.; Anderson, M.C.; Agam, N.; Tolk, J.A.; Evett, S.R.; Howell, T.A.; Gowda, P.H.; O’Shaughnessy, S.A. Two-source energy balance model estimates of evapotranspiration using component and composite surface temperatures. Adv. Water Resour. 2012, 50, 134–151. [Google Scholar] [CrossRef] [Green Version]
- Morillas, L.; García, M.; Nieto, H.; Villagarcia, L.; Sandholt, I.; Gonzalez-Dugo, M.P.; Zarco-Tejada, P.J.; Domingo, F. Using radiometric surface temperature for surface energy flux estimation in Mediterranean drylands from a two-source perspective. Remote Sens. Environ. 2013, 136, 234–246. [Google Scholar] [CrossRef] [Green Version]
- García, M.; Sandholt, I.; Ceccato, P.; Ridler, M.; Mougin, E.; Kergoat, L.; Morillas, L.; Timouk, F.; Fensholt, R.; Domingo, F. Actual evapotranspiration in drylands derived from in-situ and satellite data: Assessing biophysical constraints. Remote Sens. Environ. 2013, 131, 103–118. [Google Scholar] [CrossRef]
- Myneni, R.B.; Williams, D.L. On the relationship between FAPAR and NDVI. Remote Sens. Environ. 1994, 49, 200–211. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, S.; Yu, G.; Bonnefond, J.-M.; Chen, J.; Davis, K.; Desai, A.R.; Goldstein, A.H.; Gianelle, D.; Rossi, F.; et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. Remote Sens. Environ. 2010, 114, 1416–1431. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Davenport, A.G.; Grimmond, C.; Oke, T.; Wieringa, J. Estimating the roughness of cities and sheltered country. In Proceedings of the 15th Conference on Probability and Statistics in the Atmospheric Sciences/12th Conference on Applied Climatology, Ashville, NC, USA, 8–12 May 2000; pp. 96–99. [Google Scholar]
- Kljun, N.; Calanca, P.; Rotach, M.W.; Schmid, H.P. A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci. Model Dev. 2015, 8, 3695–3713. [Google Scholar] [CrossRef] [Green Version]
- Schotanus, P.; Nieuwstadt, F.T.M.; Bruin, H.A.R. Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Bound. Layer Meteorol. 1983, 26, 81–93. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, J.; Liu, J.; Yang, J.; Xu, Y.; Li, J. Evapotranspiration of a drip-irrigated, film-mulched cotton field in northern Xinjiang, China. Hydrol. Process. 2012, 26, 1169–1178. [Google Scholar] [CrossRef]
- Bezerra, B.G.; Bezerra, J.R.C.; Silva, B.B.D.; Santos, C.A.C.D. Surface energy exchange and evapotranspiration from cotton crop under full irrigation conditions in the Rio Grande do Norte State, Brazilian Semi-Arid. Bragantia 2015, 74, 120–128. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Zhang, Y.; Kondoh, A.; Tang, C.; Chen, J.; Xiao, J.; Sakura, Y.; Liu, C.; Sun, H. Seasonal Variation of Energy Partitioning in Irrigated Lands. Hydrol. Process. 2004, 18, 2223–2234. [Google Scholar] [CrossRef]
- Hardwick, S.R.; Toumi, R.; Pfeifer, M.; Turner, E.C.; Nilus, R.; Ewers, R.M. The relationship between leaf area index and microclimate in tropical forest and oil palm plantation: Forest disturbance drives changes in microclimate. Agric. For. Meteorol. 2015, 201, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Compaoré, H. The Impact of Savannah Vegetation on the Spatial and Temporal Variation of Actual Evapotranspiration in the Volta Basin. Ph.D. Thesis, Cuvillier, Bonn, Germany, 2005. [Google Scholar]
- Ahmad, M.D.; Biggs, T.; Turral, H.; Scott, C.A. Application of SEBAL approach and MODIS time-series to map vegetation water use patterns in the data scarce Krishna river basin of India. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2006, 53, 83–90. [Google Scholar] [CrossRef]
Land Cover Type | Percent Contribution of Each Land Cover Type to the 1873.113 sq. km of Watershed Area | Dec-17 | Dec-09 | ||||
---|---|---|---|---|---|---|---|
Dec-17 | Dec-09 | ± Change | Producer Accuracy | User Accuracy | Producer Accuracy | User Accuracy | |
Water | 0.985 | 0.922 | 0.063 | 1.0000 | 1.0000 | 1.0000 | 0.9994 |
Bareland | 3.109 | 3.067 | 0.042 | 0.7869 | 0.8421 | 0.6769 | 0.7586 |
Forest | 10.434 | 20.398 | −9.964 | 0.6234 | 0.6107 | 0.6149 | 0.5997 |
Burned area | 5.814 | 0.917 | 4.898 | 1.0000 | 1.0000 | 0.9976 | 0.9826 |
Shrubland | 41.603 | 7.534 | 34.069 | 0.7887 | 0.6667 | 0.6717 | 0.5497 |
Cropland/Agroforestry | 29.905 | 55.159 | −25.254 | 0.9157 | 0.9185 | 0.9302 | 0.8104 |
Builtup | 2.407 | 1.469 | 0.939 | 0.7727 | 0.7083 | 0.6765 | 0.6564 |
Grassland | 5.743 | 10.536 | −4.793 | 0.5427 | 0.7347 | 0.5190 | 0.6416 |
Overall Accuracy | 89.49% | 82.70% | |||||
Kappa | 84.03% | 72.85% |
Flux | Measured Average (W/m2) | Simulated Average (W/m2) | Bias (W/m2) | RMSE (W/m2) | MAE |
---|---|---|---|---|---|
Rn | 264.64 | 280.24 | 15.60 | 20.85 | 18.62 |
G | 58.63 | 45.76 | −12.87 | 14.91 | 12.87 |
LE | 187.47 | 190.07 | 2.60 | 13.45 | 11.48 |
H | 18.87 | 19.59 | 0.72 | 1.73 | 1.36 |
Land Use | Dec-09 | Dec-17 | ||||||
---|---|---|---|---|---|---|---|---|
Rn | G | LE | H | Rn | G | LE | H | |
Water | 33.849 | 8.489 | 23.822 | 1.508 | 305.128 | 66.458 | 220.360 | 18.036 |
Bareland | 208.772 | 38.424 | 154.700 | 15.793 | 262.921 | 49.438 | 194.086 | 19.083 |
Forest | 202.602 | 34.924 | 150.566 | 16.093 | 271.329 | 47.042 | 202.036 | 21.417 |
Burned area | 208.191 | 38.952 | 153.282 | 15.193 | 259.701 | 55.649 | 187.921 | 15.808 |
Shrubland | 201.112 | 36.499 | 149.021 | 15.375 | 261.185 | 49.655 | 192.436 | 18.712 |
Cropland/Agroforestry | 210.542 | 35.146 | 157.304 | 17.301 | 270.793 | 46.619 | 201.766 | 21.515 |
Builtup | 208.304 | 38.541 | 154.014 | 15.567 | 263.023 | 49.680 | 194.182 | 19.001 |
Grassland | 205.386 | 35.532 | 153.334 | 16.479 | 266.238 | 46.085 | 198.087 | 21.019 |
Land Use | Dec-09 | Dec-17 | ||||||
---|---|---|---|---|---|---|---|---|
G/Rn (%) | LE/Rn (%) | H/Rn (%) | LAI | G/Rn (%) | LE/Rn (%) | H/Rn (%) | LAI | |
Forest | 17.238 | 74.316 | 7.943 | 0.4793 | 17.338 | 74.462 | 7.893 | 0.3925 |
Shrubland | 18.148 | 74.098 | 7.645 | 0.4512 | 19.011 | 73.678 | 7.164 | 0.3709 |
Cropland/Agroforestry | 16.693 | 74.714 | 8.217 | 0.5104 | 17.216 | 74.509 | 7.945 | 0.4091 |
Grassland | 17.300 | 74.656 | 8.024 | 0.4839 | 17.310 | 74.402 | 7.895 | 0.4256 |
Land Use | 9-Dec | 17-Dec | ||||
---|---|---|---|---|---|---|
Mean (mm/d) | Range (mm/d) | CV | Mean (mm/d) | Range (mm/d) | CV | |
Water | 4.486 | 1–7 | 24.478 | 5.28 | 1–7 | 11.762 |
Bareland | 3.713 | 2–5.5 | 15.95 | 4.65 | 3–7 | 11.815 |
Forest | 3.614 | 1.5–5.5 | 18.579 | 4.841 | 3–7 | 11.479 |
Burned area | 3.679 | 1.5–5.5 | 19.738 | 4.502 | 2–7 | 11.891 |
Shrubland | 3.576 | 1.5–5.5 | 15.581 | 4.611 | 2.5–7 | 11.923 |
Cropland/Agroforestry | 3.775 | 1.5–6.5 | 20.954 | 4.834 | 3–7 | 12.365 |
Builtup | 3.698 | 2–4.5 | 14.208 | 4.652 | 3–6.5 | 11.181 |
Grassland | 3.68 | 2–5 | 14.593 | 4.746 | 3–6.5 | 10.415 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alhassan, A.; Jin, M. Evapotranspiration in the Tono Reservoir Catchment in Upper East Region of Ghana Estimated by a Novel TSEB Approach from ASTER Imagery. Remote Sens. 2020, 12, 569. https://doi.org/10.3390/rs12030569
Alhassan A, Jin M. Evapotranspiration in the Tono Reservoir Catchment in Upper East Region of Ghana Estimated by a Novel TSEB Approach from ASTER Imagery. Remote Sensing. 2020; 12(3):569. https://doi.org/10.3390/rs12030569
Chicago/Turabian StyleAlhassan, Abdullah, and Menggui Jin. 2020. "Evapotranspiration in the Tono Reservoir Catchment in Upper East Region of Ghana Estimated by a Novel TSEB Approach from ASTER Imagery" Remote Sensing 12, no. 3: 569. https://doi.org/10.3390/rs12030569
APA StyleAlhassan, A., & Jin, M. (2020). Evapotranspiration in the Tono Reservoir Catchment in Upper East Region of Ghana Estimated by a Novel TSEB Approach from ASTER Imagery. Remote Sensing, 12(3), 569. https://doi.org/10.3390/rs12030569