Advancing High-Throughput Phenotyping of Wheat in Early Selection Cycles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material, Experimental Design, and Grain Yield Determination
2.2. Spectral Reflectance Measurements Obtained by Ground-Based Hyperspectral Sensing and Aerial-Based Multispectral Sensing
2.3. Calculation of Spectral Indices
2.4. Statistical Analysis
3. Results
3.1. Genotypic Variation in Plots with 1, 2, 3, and 12 Rows
3.2. Phenotypic and Genetic Correlations Between Spectral Indices and the Grain Yield in Different Row Variants
3.3. Heritability of Spectral Indices in Different Row Variants
4. Discussion
4.1. Phenotypic and Genetic Correlations Between the Grain Yield and Spectral Indices, as Obtained from Ground-Based Hyperspectral and Aerial-Based Multi-Spectral Sensing
4.2. Heritability of Spectral Indices from Ground- and Aerial-Based Sensing
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bevan, M.W.; Uauy, C.; Wulff, B.B.H.; Zhou, J.; Krasileva, K.; Clark, M.D. Genomic innovation for crop improvement. Nature 2017, 543, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Watson, A.; Ghosh, S.; Williams, M.J.; Cuddy, W.S.; Simmonds, J.; Rey, M.-D.; Hatta, M.A.M.; Hinchliffe, A.; Steed, A.; Reynolds, D.; et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat. Plants 2018, 4, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Zaidi, S.S.-E.-A.; Vanderschuren, H.; Qaim, M.; Mahfouz, M.M.; Kohli, A.; Mansoor, S.; Tester, M. New plant breeding technologies for food security. Science 2019, 363, 1390–1391. [Google Scholar] [CrossRef] [Green Version]
- Mir, R.R.; Reynolds, M.; Pinto, F.; Khan, M.A.; Bhat, M.A. High-throughput phenotyping for crop improvement in the genomics era. Plant Sci. 2019, 282, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Babar, M.A.; Reynolds, M.P.; Van Ginkel, M.; Klatt, A.R.; Raun, W.; Stone, M.L. Spectral Reflectance Indices as a Potential Indirect Selection Criteria for Wheat Yield under Irrigation. Crop. Sci. 2006, 46, 578–588. [Google Scholar] [CrossRef]
- Gutierrez, M.; Reynolds, M.P.; Raun, W.R.; Stone, M.L.; Klatt, A.R. Spectral Water Indices for Assessing Yield in Elite Bread Wheat Genotypes under Well-Irrigated, Water-Stressed, and High-Temperature Conditions. Crop. Sci. 2010, 50, 197–214. [Google Scholar] [CrossRef]
- Bowman, B.; Chen, J.; Zhang, J.; Wheeler, J.; Wang, Y.; Zhao, W.; Nayak, S.; Heslot, N.; Bockelman, H.; Bonman, J. Evaluating Grain Yield in Spring Wheat with Canopy Spectral Reflectance. Crop. Sci. 2015, 55, 1881–1890. [Google Scholar] [CrossRef] [Green Version]
- Becker, E.; Schmidhalter, U. Evaluation of Yield and Drought Using Active and Passive Spectral Sensing Systems at the Reproductive Stage in Wheat. Front. Plant Sci. 2017, 8, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lelong, C.C.D.; Burger, P.; Jubelin, G.; Roux, B.; Labbé, S.; Baret, F. Assessment of Unmanned Aerial Vehicles Imagery for Quantitative Monitoring of Wheat Crop in Small Plots. Sensors 2008, 8, 3557–3585. [Google Scholar] [CrossRef]
- Maimaitijiang, M.; Ghulam, A.; Sidike, P.; Hartling, S.; Maimaitiyiming, M.; Peterson, K.; Shavers, E.; Fishman, J.; Peterson, J.; Kadam, S.; et al. Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine. ISPRS J. Photogramm. Remote. Sens. 2017, 134, 43–58. [Google Scholar] [CrossRef]
- Aasen, H.; Bolten, A. Multi-temporal high-resolution imaging spectroscopy with hyperspectral 2D imagers—From theory to application. Remote. Sens. Environ. 2018, 205, 374–389. [Google Scholar] [CrossRef]
- Tattaris, M.; Reynolds, M.P.; Chapman, S.C. A Direct Comparison of Remote Sensing Approaches for High-Throughput Phenotyping in Plant Breeding. Front. Plant Sci. 2016, 7, 61. [Google Scholar] [CrossRef] [PubMed]
- Gnädinger, F.; Schmidhalter, U. Digital Counts of Maize Plants by Unmanned Aerial Vehicles (UAVs). Remote. Sens. 2017, 9, 544. [Google Scholar] [CrossRef] [Green Version]
- Sankaran, S.; Khot, L.R.; Espinoza, C.Z.; Jarolmasjed, S.; Sathuvalli, V.R.; VanDeMark, G.J.; Miklas, P.N.; Carter, A.H.; Pumphrey, M.O.; Knowles, N.R.; et al. Low-altitude, high-resolution aerial imaging systems for row and field crop phenotyping: A review. Eur. J. Agron. 2015, 70, 112–123. [Google Scholar] [CrossRef]
- Rebetzke, G.J.; Fischer, R.; Tony, A.; Van Herwaarden, A.F.; Bonnett, D.G.; Chenu, K.; Rattey, A.R.; Fettell, N.A. Plot size matters: Interference from intergenotypic competition in plant phenotyping studies. Funct. Plant Boil. 2014, 41, 107–118. [Google Scholar] [CrossRef]
- Rebetzke, G.J.; Jimenez-Berni, J.; Fischer, R.A.; Deery, D.M.; Smith, D.J. Review: High-throughput phenotyping to enhance the use of crop genetic resources. Plant Sci. 2019, 282, 40–48. [Google Scholar] [CrossRef]
- Barmeier, G.; Schmidhalter, U. High-Throughput Phenotyping of Wheat and Barley Plants Grown in Single or Few Rows in Small Plots Using Active and Passive Spectral Proximal Sensing. Sensors 2016, 16, 1860. [Google Scholar] [CrossRef] [Green Version]
- Meier, U. Growth Stages of Mono- and Dicotyledonous Plants; BBCH Monograph: Berlin, Germany, 2001. [Google Scholar]
- Prey, L.; Schmidhalter, U. Simulation of satellite reflectance data using high-frequency ground based hyperspectral canopy measurements for in-season estimation of grain yield and grain nitrogen status in winter wheat. ISPRS J. Photogramm. Remote. Sens. 2019, 149, 176–187. [Google Scholar] [CrossRef]
- Mistele, B.; Schmidhalter, U. Estimating the nitrogen nutrition index using spectral canopy reflectance measurements. Eur. J. Agron. 2008, 29, 184–190. [Google Scholar] [CrossRef]
- Peñuelas, J.; Isla, R.; Filella, I.; Araus, J.L. Visible and Near-Infrared Reflectance Assessment of Salinity Effects on Barley. Crop. Sci. 1997, 37, 198–202. [Google Scholar] [CrossRef]
- Claudio, H.; Cheng, Y.; Fuentes, D.; Gamon, J.; Luo, H.; Oechel, W.; Qiu, H.; Rahman, A.; Sims, D. Monitoring drought effects on vegetation water content and fluxes in chaparral with the 970 nm water band index. Remote. Sens. Environ. 2006, 103, 304–311. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Viña, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys. Res. Lett. 2003, 30, 1248. [Google Scholar] [CrossRef] [Green Version]
- Mistele, B.; Schmidhalter, U. Tractor-Based Quadrilateral Spectral Reflectance Measurements to Detect Biomass and Total Aerial Nitrogen in Winter Wheat. Agron. J. 2010, 102, 499–506. [Google Scholar] [CrossRef]
- Falconer, D.S. Introduction to Quantitative Genetics, 3rd ed.; Longman Scientific and Technical: New York, NY, USA, 1989. [Google Scholar]
- Holland, J.B.; Nyquist, W.E.; Cervantes-Martínez, C.T. Estimating and interpreting heritability for plant breeding: An update. Plant Breeding Rev. 2003, 22, 9–112. [Google Scholar]
- Rischbeck, P.; Baresel, P.; Elsayed, S.; Mistele, B.; Schmidhalter, U. Development of a diurnal dehydration index for spring barley phenotyping. Funct. Plant Boil. 2014, 41, 1249–1260. [Google Scholar] [CrossRef]
- Negin, B.; Moshelion, M. The advantages of functional phenotyping in pre-field screening or drought-tolerant crops. Funct. Plant Biol. 2017, 44, 107–118. [Google Scholar] [CrossRef]
- Al-Tamimi, N.; Brien, C.; Oakey, H.; Berger, B.; Saade, S.; Ho, Y.S.; Schmöckel, S.M.; Tester, M.; Negrão, S. Salinity tolerance loci revealed in rice using high-throughput non-invasive phenotyping. Nat. Commun. 2016, 7, 13342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Hendawy, S.; Al-Suhaibani, N.; Elsayed, S.; Alotaibi, M.; Hassan, W.; Schmidhalter, U. Performance of optimized hyperspectral reflectance indices and partial least squares regression for estimating the chlorophyll fluorescence and grain yield of wheat grown in simulated saline field conditions. Plant Physiol. Biochem. 2019, 144, 300–311. [Google Scholar] [CrossRef]
- Kyratzis, A.C.; Skarlatos, D.P.; Menexes, G.C.; Vamvakousis, V.F.; Katsiotis, A. Assessment of vegetation indices derived by UAV imagery for durum wheat phenotyping under a water limited and heat stressed Mediterranean environment. Front. Plant Sci. 2018, 8, 1114. [Google Scholar] [CrossRef] [Green Version]
- Hassan, M.A.; Yang, M.; Rasheed, A.; Jin, X.; Xia, X.; Xiao, Y.; He, Z. Time-Series Multispectral Indices from Unmanned Aerial Vehicle Imagery Reveal Senescence Rate in Bread Wheat. Remote. Sens. 2018, 10, 809. [Google Scholar] [CrossRef] [Green Version]
- Sagan, V.; Maimaitijiang, M.; Sidike, P.; Eblimit, K.; Peterson, K.T.; Hartling, S.; Esposito, F.; Khanal, K.; Newcomb, M.; Pauli, D.; et al. UAV-Based High Resolution Thermal Imaging for Vegetation Monitoring, and Plant Phenotyping Using ICI 8640 P, FLIR Vue Pro R 640, and thermoMap Cameras. Remote. Sens. 2019, 11, 330. [Google Scholar] [CrossRef] [Green Version]
- Dyson, J.; Mancini, A.; Frontoni, E.; Zingaretti, P. Deep Learning for Soil and Crop Segmentation from Remotely Sensed Data. Remote. Sens. 2019, 11, 1859. [Google Scholar] [CrossRef] [Green Version]
Index Name | Formula | References | ||
---|---|---|---|---|
Ground-Based Hyperspectral Sensing | Aerial-Based Multispectral Sensing | |||
WBI (Water band index) | R900/R970 | [21,22] | ||
NDVI (Red Normalized difference vegetation index) | (R800−R680)/(R800+R680) | (R790−R660)/(R790+R660) | [20,21,22,23] | |
Simple ratios | NIR:NIR | R780/R740 | R790/R735 | [24] |
NIR:Green | R780/R550 | R790/R550 | [20] | |
NIR:Red | R760/R670 | R790/R660 | [23] |
Grain Yield (g/row) | Row Number Variants | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 12 | |||||||||
Min | 1364 | 965 | 839 | 757 | ||||||||
Max | 2369 | 1662 | 1286 | 1055 | ||||||||
Mean±SD | 1836a | ± | 257 | 1281b | ± | 179 | 1035c | ± | 122 | 891d | ± | 99 |
h2 | 0.82 | 0.87 | 0.9 | 0.92 |
Row Number Variants | Spectral Indices | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
NIR:Red | NIR:Green | NDVI | NIR:NIR | WBI | ||||||
Ground-based hyperspectral sensing | ||||||||||
BBCH 49 | ||||||||||
1 | 0.21 | ns | 0.30 | ns | 0.20 | ns | 0.50 | ** | 0.42 | * |
2 | 0.26 | ns | 0.29 | ns | 0.29 | ns | 0.58 | ** | 0.51 | ** |
3 | 0.41 | * | 0.36 | * | 0.45 | ** | 0.49 | ** | 0.51 | ** |
12 | 0.31 | ns | 0.28 | ns | 0.24 | ns | 0.37 | * | 0.44 | * |
BBCH 65 | ||||||||||
1 | 0.24 | ns | 0.38 | * | 0.28 | ns | 0.55 | ** | 0.16 | ns |
2 | 0.30 | ns | 0.37 | * | 0.30 | ns | 0.66 | ** | 0.42 | * |
3 | 0.22 | ns | 0.24 | ns | 0.26 | ns | 0.56 | ** | 0.60 | ** |
12 | −0.02 | ns | 0.06 | ns | −0.04 | ns | 0.44 | * | 0.47 | ** |
BBCH 85 | ||||||||||
1 | 0.43 | * | 0.31 | ns | 0.37 | * | 0.36 | * | 0.47 | ** |
2 | 0.66 | ** | 0.55 | ** | 0.63 | ** | 0.65 | ** | 0.72 | ** |
3 | 0.55 | ** | 0.36 | * | 0.54 | ** | 0.47 | ** | 0.60 | ** |
12 | 0.45 | * | 0.25 | ns | 0.51 | ** | 0.38 | * | 0.64 | ** |
Aerial-based multispectral sensing | ||||||||||
BBCH 49 | ||||||||||
1 | 0.42 | * | 0.48 | ** | 0.35 | * | 0.54 | ** | - | |
2 | 0.55 | ** | 0.61 | ** | 0.52 | ** | 0.71 | ** | - | |
3 | 0.59 | ** | 0.63 | ** | 0.60 | ** | 0.61 | ** | - | |
12 | 0.37 | * | 0.35 | ns | 0.33 | ns | 0.51 | ** | - | |
BBCH 65 | ||||||||||
1 | 0.33 | ns | 0.38 | * | 0.31 | ns | 0.58 | ** | - | |
2 | 0.40 | * | 0.54 | ** | 0.41 | * | 0.67 | ** | - | |
3 | 0.36 | * | 0.53 | ** | 0.38 | * | 0.72 | ** | - | |
12 | 0.27 | ns | 0.35 | ns | 0.27 | ns | 0.58 | ** | - | |
BBCH 85 | ||||||||||
1 | 0.44 | * | 0.40 | * | 0.44 | * | 0.40 | * | - | |
2 | 0.68 | ** | 0.60 | ** | 0.68 | ** | 0.64 | ** | - | |
3 | 0.62 | ** | 0.44 | * | 0.63 | ** | 0.57 | ** | - | |
12 | 0.55 | ** | 0.49 | ** | 0.59 | ** | 0.45 | * | - |
Row Number Variants | Spectral Indices | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
NIR:Red | NIR:Green | NDVI | NIR:NIR | WBI | ||||||
Ground-based hyperspectral sensing | ||||||||||
BBCH 49 | ||||||||||
1 | 0.44 | ns | 0.56 | ns | 0.37 | ns | 0.68 | * | 0.66 | * |
2 | 0.44 | ns | 0.50 | ns | 0.49 | ns | 0.80 | * | 0.56 | * |
3 | 0.54 | * | 0.53 | ns | 0.65 | * | 0.54 | * | 0.58 | * |
12 | 0.41 | ns | 0.37 | ns | 0.37 | ns | 0.40 | ns | 0.44 | * |
BBCH 65 | ||||||||||
1 | 0.65 | ns | 0.86 | * | 0.70 | ns | 0.75 | ** | 0.33 | ns |
2 | 0.48 | ns | 0.65 | * | 0.57 | ns | 0.81 | ** | 0.53 | * |
3 | 0.37 | ns | 0.39 | ns | 0.48 | ns | 0.71 | ** | 0.80 | ** |
12 | 0.01 | ns | 0.10 | ns | 0.02 | ns | 0.46 | * | 0.51 | * |
BBCH 85 | ||||||||||
1 | 0.51 | * | 0.41 | ns | 0.46 | ns | 0.40 | ns | 0.49 | * |
2 | 0.74 | ** | 0.67 | * | 0.70 | ** | 0.71 | ** | 0.75 | ** |
3 | 0.64 | ** | 0.50 | * | 0.64 | ** | 0.56 | * | 0.45 | ns |
12 | 0.48 | * | 0.28 | ns | 0.55 | * | 0.42 | * | 0.65 | ** |
Aerial-based multispectral sensing | ||||||||||
BBCH 49 | ||||||||||
1 | 0.79 | * | 0.94 | ** | 0.57 | * | 1.00 | ** | - | |
2 | 0.75 | ** | 0.92 | ** | 0.74 | ** | 1.00 | ** | - | |
3 | 0.92 | * | 0.85 | ** | 0.77 | ** | 0.79 | ** | - | |
12 | 0.39 | ns | 0.36 | ns | 0.36 | ns | 0.55 | * | - | |
BBCH 65 | ||||||||||
1 | 0.71 | * | 0.64 | * | 0.59 | * | 0.87 | * | - | |
2 | 0.71 | * | 0.80 | ** | 0.67 | * | 0.79 | ** | - | |
3 | 0.53 | * | 0.69 | ** | 0.56 | * | 0.85 | ** | - | |
12 | 0.22 | ns | 0.37 | ns | 0.31 | ns | 0.61 | ** | - | |
BBCH 85 | ||||||||||
1 | 0.57 | * | 0.53 | * | 0.55 | * | 0.53 | * | - | |
2 | 0.74 | ** | 0.67 | ** | 0.74 | ** | 0.71 | ** | - | |
3 | 0.68 | ** | 0.51 | * | 0.70 | ** | 0.64 | ** | - | |
12 | 0.58 | ** | 0.53 | * | 0.63 | ** | 0.46 | * | - |
Row Number Variants | Spectral Indices | ||||
---|---|---|---|---|---|
NIR:Red | NIR:Green | NDVI | NIR:NIR | WBI | |
Ground-based hyperspectral sensing | |||||
BBCH 49 | |||||
1 | 0.51 | 0.52 | 0.52 | 0.64 | 0.65 |
2 | 0.49 | 0.44 | 0.39 | 0.49 | 0.57 |
3 | 0.57 | 0.50 | 0.54 | 0.72 | 0.76 |
12 | 0.58 | 0.55 | 0.52 | 0.86 | 0.88 |
BBCH 65 | |||||
1 | 0.36 | 0.37 | 0.33 | 0.67 | 0.80 |
2 | 0.63 | 0.47 | 0.48 | 0.72 | 0.82 |
3 | 0.55 | 0.56 | 0.41 | 0.70 | 0.81 |
12 | 0.50 | 0.52 | 0.55 | 0.89 | 0.92 |
BBCH 85 | |||||
1 | 0.80 | 0.65 | 0.77 | 0.76 | 0.81 |
2 | 0.85 | 0.69 | 0.84 | 0.78 | 0.79 |
3 | 0.84 | 0.66 | 0.84 | 0.81 | 0.80 |
12 | 0.96 | 0.88 | 0.95 | 0.96 | 0.95 |
Aerial-based multispectral sensing | |||||
BBCH 49 | |||||
1 | 0.45 | 0.48 | 0.64 | 0.13 | - |
2 | 0.58 | 0.52 | 0.63 | 0.46 | - |
3 | 0.33 | 0.55 | 0.62 | 0.56 | - |
12 | 0.73 | 0.93 | 0.84 | 0.89 | - |
BBCH 65 | |||||
1 | 0.51 | 0.65 | 0.57 | 0.44 | - |
2 | 0.55 | 0.65 | 0.61 | 0.76 | - |
3 | 0.60 | 0.72 | 0.59 | 0.70 | - |
12 | 0.79 | 0.89 | 0.87 | 0.93 | - |
BBCH 85 | |||||
1 | 0.83 | 0.79 | 0.86 | 0.73 | - |
2 | 0.91 | 0.91 | 0.94 | 0.90 | - |
3 | 0.85 | 0.85 | 0.90 | 0.86 | - |
12 | 0.95 | 0.95 | 0.96 | 0.96 | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Knapp, S.; Schmidhalter, U. Advancing High-Throughput Phenotyping of Wheat in Early Selection Cycles. Remote Sens. 2020, 12, 574. https://doi.org/10.3390/rs12030574
Hu Y, Knapp S, Schmidhalter U. Advancing High-Throughput Phenotyping of Wheat in Early Selection Cycles. Remote Sensing. 2020; 12(3):574. https://doi.org/10.3390/rs12030574
Chicago/Turabian StyleHu, Yuncai, Samuel Knapp, and Urs Schmidhalter. 2020. "Advancing High-Throughput Phenotyping of Wheat in Early Selection Cycles" Remote Sensing 12, no. 3: 574. https://doi.org/10.3390/rs12030574
APA StyleHu, Y., Knapp, S., & Schmidhalter, U. (2020). Advancing High-Throughput Phenotyping of Wheat in Early Selection Cycles. Remote Sensing, 12(3), 574. https://doi.org/10.3390/rs12030574