Hailstorm Detection by Satellite Microwave Radiometers
Abstract
:1. Introduction
2. Data Selection
2.1. The MicroWave Cloud Classification (MWCC) Method
3. The Hail Detection Model
3.1. The MWCC Training Dataset
3.2. AMSU-B Matchup Data
3.3. The Hail Detection Model
4. Validation
5. Application Examples
6. Summary and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AMSU-B | Advanced Microwave Sounding Unit-B |
AR | Argentina |
ATMS | Advanced Technology Microwave Sounder |
BTD | Brightness Temperature Difference |
CONUS | Conterminous United States |
DPR | Dual-frequency Precipitation Radar |
ESSL | European Severe Storms Laboratory |
EU | Europe |
FOV | Field of View |
IFOV | Instantaneous FOV |
IR | InfraRed |
GMI | GPM Microwave Imager |
GPM | Global Precipitation Measurement mission |
MHS | Microwave Humidity Sounder |
MWCC | MicroWave Cloud Classification method |
NOAA | National Oceanic and Atmospheric Administration |
PMW | Passive Microwave |
PMWCC | Perturbation of MWCC |
SPC | Storm Prediction Center |
SSM/I | Special Sensor Microwave/Imager |
SSMIS | Special Sensor Microwave Imager/Sounder |
TB | Brightness Temperature |
TRMM | Tropical Rainfall Measuring Mission |
US | United States of America |
VIS | Visible |
183-WSL | Water vapor Strong Lines at 183 GHz algorithm |
References
- Ferraro, R.R.; Weng, F.; Grody, N.; Zhao, L.; Meng, H.; Kongoli, C.; Pellegrino, P.; Qiu, S.; Dean, C. NOAA operational hydrological products derived from the advanced atmospheric sounding unit. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1036–1049. [Google Scholar] [CrossRef]
- Staelin, D.H.; Chen, F.W. Precipitation observations near 54 and 183 GHz using the NOAA-15 satellite. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2322–2332. [Google Scholar] [CrossRef] [Green Version]
- Sanò, P.; Panegrossi, G.; Casella, D.; Marra, A.C.; D’Adderio, L.P.; Rysman, J.F.; Dietrich, S. The passive microwave neural network precipitation retrieval (PNPR) algorithm for the CONICAL scanning Global Microwave Imager (GMI) radiometer. Remote Sens. 2018, 10, 1122. [Google Scholar] [CrossRef] [Green Version]
- Laviola, S.; Levizzani, V. The 183-WSL fast rainrate retrieval algorithm. Part I: Retrieval design. Atmos. Res. 2011, 99, 443–461. [Google Scholar] [CrossRef]
- Laviola, S.; Levizzani, V.; Cattani, E.; Kidd, C. The 183-WSL fast rainrate retrieval algorithm. Part II: Validation using ground radar measurements. Atmos. Res. 2013, 134, 77–86. [Google Scholar] [CrossRef]
- Hong, G.; Heygster, G. Detection of deep convective clouds from AMSU-B water vapor channels measurements. J. Geophys. Res. 2005, 110, D05205. [Google Scholar] [CrossRef] [Green Version]
- Laviola, S.; Levizzani, V. Observing precipitation by means of water vapor absorption lines: A first check of the retrieval capabilities of the 183-WSL rain retrieval method. Ital. J. Remote Sens. 2009, 41, 39–49. [Google Scholar] [CrossRef]
- Funatsu, B.M.; Claud, C.; Chaboureau, J.-P. Potential of Advanced Microwave Sounding Unit to identify precipitating systems and associated upper-level features in the Mediterranean region: Case studies. J. Geophys. Res. 2007, 112, D17113. [Google Scholar] [CrossRef]
- Levizzani, V.; Laviola, S.; Cattani, E.; Costa, M.J. Extreme precipitation on the Island of Madeira on 20 February 2010 as seen by satellite passive microwave sounders. Eur. J. Remote Sens. 2013, 46, 475–489. [Google Scholar] [CrossRef] [Green Version]
- Bauer-Messmer, B.; Waldvogel, A. Satellite data detection and prediction of hail. Atmos. Res. 1997, 43, 217–231. [Google Scholar] [CrossRef]
- De Coning, E.; Gijben, M.; Maseko, B.; van Hemert, L. Using satellite data to identify and track intense thunderstorms in South and southern Africa. S. Afr. J. Sci. 2015, 111, 2014-0402. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Woodley, W.L.; Lerner, A.; Kelman, G.; Lindsey, D.T. Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J. Geophys. Res. 2008, 113, D04208. [Google Scholar] [CrossRef] [Green Version]
- Mecikalski, J.R.; Watts, P.D.; Koenig, M. Use of Meteosat Second Generation optimal cloud analysis fields for understanding physical attributes of growing cumulus clouds. Atmos. Res. 2011, 102, 175–190. [Google Scholar] [CrossRef]
- Merino, A.; López, L.; Sánchez, J.L.; García-Ortega, E.; Cattani, E.; Levizzani, V. Daytime identification of summer hailstorm cells from MSG data. Nat. Hazards Earth Syst. Sci. 2014, 14, 1017–1033. [Google Scholar] [CrossRef] [Green Version]
- Sánchez, J.L.; Gil-Robles, B.; Dessens, J.; Martin, E.; López, L.; Marcos, J.L.; Berthet, C.; Fernández, J.T.; García-Ortega, E. Characterization of hailstone size spectra in hailpad networks in France, Spain, and Argentina. Atmos. Res. 2009, 93, 641–654. [Google Scholar] [CrossRef]
- Prein, A.; Holland, G.J. Global estimates of damaging hail hazard. Weather Clim. Extrem. 2018, 22, 10–23. [Google Scholar] [CrossRef]
- Cintineo, J.L.; Smith, T.M.; Lakshmanan, V.; Brooks, H.E.; Ortega, K.L. An objective high-resolution hail climatology of the contiguous United States. Weather Forecast. 2012, 27, 1235–1248. [Google Scholar] [CrossRef] [Green Version]
- Nisi, L.; Martius, O.; Kunz, M.; Germann, U. Spatial and temporal distribution of hailstorms in the Alpine region: A long-term, high resolution, radar-based analysis. Quart. J. R. Meteorol. Soc. 2016, 142, 1590–1604. [Google Scholar] [CrossRef]
- Smith, T.M.; Lakshmanan, V.; Stumpf, G.J.; Ortega, K.L.; Hondl, K.; Cooper, K.; Calhoun, K.M.; Kingfield, D.M.; Manross, K.L.; Toomey, R.; et al. Multi-Radar Multi-Sensor severe weather and aviation products: Initial operating capabilities. Bull. Am. Meteorol. Soc. 2016, 97, 1617–1630. [Google Scholar] [CrossRef]
- Punge, H.J.; Bedka, K.M.; Kunz, M.; Werner, A. A new physically based stochastic event catalog for hail in Europe. Nat. Hazards 2014, 73, 1625–1645. [Google Scholar] [CrossRef]
- Warren, R.A.; Ramsay, H.A.; Siems, S.T.; Manton, M.J.; Peter, J.R.; Protat, A.; Pillalamarri, A. Radar-based climatology of damaging hailstorms in Brisbane and Sydney, Australia. Quart. J. R. Meteorol. Soc. 2019. [Google Scholar] [CrossRef]
- Ajvazyan, H.M.; Ajvazyan, H.H. Hail embryons detection in clouds using passive and active radars in millimeter and submillimeter wave bands. Int. J. Infrared Millim. Waves 1993, 14, 1155–1174. [Google Scholar] [CrossRef]
- Spencer, R.W.; Olson, W.S.; Rongzhang, W.; Martin, D.W.; Weinman, J.A.; Santek, D.A. Heavy thunderstorms observed over land by the Nimbus-7 scanning multichannel microwave radiometer. J. Clim. Appl. Meteorol. 1983, 22, 1041–1046. [Google Scholar] [CrossRef] [Green Version]
- Spencer, R.W.; Howland, M.R.; Santek, D.A. Severe storm identification with satellite microwave radiometry: An initial investigation with Nimbus-7 SMMR data. J. Clim. Appl. Meteorol. 1987, 26, 749–754. [Google Scholar] [CrossRef] [Green Version]
- Spencer, R.W.; Santek, D.A. Measuring the global distribution of intense convection over land with passive microwave radiometry. J. Clim. Appl. Meteorol. 1985, 24, 860–864. [Google Scholar] [CrossRef] [Green Version]
- Cecil, D.J. Passive microwave brightness temperatures as proxies for hailstorms. J. Appl. Meteorol. Climatol. 2009, 48, 1281–1286. [Google Scholar] [CrossRef]
- Cecil, D.J. Relating passive 37-GHz scattering to radar profiles in strong convection. J. Appl. Meteorol. Climatol. 2011, 50, 233–240. [Google Scholar] [CrossRef]
- Cecil, D.J.; Blankenship, C.B. Toward a global climatology of severe hailstorms as estimated by satellite passive microwave imagers. J. Clim. 2012, 25, 687–703. [Google Scholar] [CrossRef]
- Ferraro, R.R.; Beauchamp, J.; Cecil, D.J.; Heymsfield, G. A prototype hail detection algorithm and climatology developed with the Advanced Microwave Sounding Unit (AMSU). Atmos. Res. 2015, 163, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Ni, X.; Liu, C.; Zhang, Q.; Cecil, D.J. Properties of hail storms over China and the United States from the Tropical Rainfall Measuring Mission. J. Geophys. Res. 2016, 121, 12031–12044. [Google Scholar] [CrossRef]
- Ni, X.; Liu, C.; Cecil, D.J.; Zhang, Q. On the detection of hail using satellite microwave radiometers and precipitation radar. J. Appl. Meteorol. Climatol. 2017, 56, 2693–2709. [Google Scholar] [CrossRef] [Green Version]
- Marra, A.C.; Porcù, F.; Baldini, L.; Petracca, M.; Casella, D.; Dietrich, S.; Mugnai, A.; Sanò, P.; Vulpiani, G.; Panegrossi, G. Observational analysis of an exceptionally intense hailstorm over the Mediterranean area: Role of the GPM Core Observatory. Atmos. Res. 2017, 192, 72–90. [Google Scholar] [CrossRef]
- Mroz, K.; Battaglia, A.; Lang, T.J.; Cecil, D.J.; Tanelli, S.; Tridon, F. Hail-detection algorithm for the GPM Core Observatory satellite sensors. J. Appl. Meteorol. Climatol. 2017, 56, 1939–1957. [Google Scholar] [CrossRef] [Green Version]
- Mroz, K.; Battaglia, A.; Lang, T.J.; Tanelli, S.; Sacco, G.F. Global Precipitation Measuring Dual-Frequency Precipitation Radar observations of hailstorm vertical structure: Current capabilities and drawbacks. J. Appl. Meteorol. Climatol. 2018, 57, 2161–2178. [Google Scholar] [CrossRef]
- Bang, S.D.; Cecil, D.J. Constructing a multifrequency passive microwave hail retrieval and climatology in the GPM domain. J. Appl. Meteorol. Climatol. 2019, 58, 1889–1904. [Google Scholar] [CrossRef]
- Leppert, K.D., II; Cecil, D.J. Signatures of hydrometeor species from airborne passive microwave data for frequencies 10-183 GHz. J. Appl. Meteorol. Climatol. 2015, 54, 1313–1334. [Google Scholar] [CrossRef]
- Bauer, P.; Moreau, E.; Di Michele, S. Hydrometeor retrieval accuracy using microwave window and sounding channel observations. J. Appl. Meteorol. 2005, 44, 1016–1032. [Google Scholar] [CrossRef]
- Bennartz, R.; Bauer, P. Sensitivity of microwave radiances at 85–183 GHz to precipitating ice particles. Radio Sci. 2003, 38, 8075. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.M.; Gasiewski, A.J.; Wang, J.R. Influence of microphysical cloud parameterizations on microwave brightness temperatures. IEEE Trans. Geosci. Remote Sens. 2002, 40, 187–196. [Google Scholar] [CrossRef]
- Hong, G.; Heygster, G. Sensitivity of microwave brightness temperatures to hydrometeors in a tropical deep convective cloud system at 89–190 GHz. Radio Sci. 2005, 40, RS4003. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.R.; Zhan, J.; Racette, P. Storm-associated microwave radiometric signatures in the frequency range of 90–220 GHz. J. Atmos. Ocean. Technol. 1997, 14, 13–31. [Google Scholar] [CrossRef]
- Karbou, F.; Prigent, C.; Eymard, L.; Pardo, J. Microwave land emissivity calculations using AMSU measurements. IEEE Trans. Geosci. Remote Sens. 2005, 43, 948–958. [Google Scholar] [CrossRef]
- Verhulst, P.-F. Recherches mathématiques sur la loi d’accroissement de la population. Nouv. Mémoires l’Académie R. Sci. Belles-Lett. Brux. 1845, 18, 14–54. Available online: http://eudml.org/doc/182533 (accessed on 12 February 2020).
- Mayer, P.S.; Ausbel, J.H. Carrying capacity: A model with logistically varying limits. Technol. Forecast. Soc. Chang. 1999, 61, 209–214. [Google Scholar] [CrossRef]
Location | Date | Latitude (deg) | Longitude (deg) | Overpass Time (UTC) | SatID * | Hail Size (cm) |
---|---|---|---|---|---|---|
U.S. (Colorado, N. Mexico) | 9 May 2017 | 30.00–45.00 N | 115.00–95.00 W | 0337 | MOA | 3.5 |
U.S. (Minnesota, N. Dakota) | 10 Jun 2017 | 40.00–50.00 N | 110.00–83.00 W | 0110/ 0237/ 0331 | N18/ MOA/ MOB | 3.5 |
Bulgaria (Sofia) | 8 Jul 2014 | 42.00–43.00 N | 22.00–23.50 E | 1337 | N18 | 7.0 |
Bulgaria (Montana District) | 8 Jul 2014 | 43.00–44.00 N | 23.00–24.00 E | 1928 | MOA | 4.0 |
Germany (Reutlingen) | 28 Jul 2013 | 48.00–50.00 N | 08.00–11.00 E | 1427 | N18 | 5.0 |
U.S. (S. Dakota, Vivian) | 23 Jul 2010 | 43.00–49.00 N | 104.00.96.00 W | 2254 | N15 | 11 |
Argentina (Viale Entre Rios) | 7 Sep 2009 | 35.00–30.00 S | 63.00–55.00 W | 0753/ 1239 | N15/ N17 | 12 |
Bosnia-Herzegovina (Gorazde) | 19 Jun 2007 | 43.67–43.71 N | 18.94–18.98 E | 1927/ 2018 | MOA/ N17 | 8.0 |
U.S. (S. Dakota, Charles) | 21 Aug 2007 | 39.00–43.00 N | 104.00–95.00 W | 227/ 2341 | N16/ N15 | 14 |
Argentina (Colonia Liebig’s) | 13 Nov 2007 | 29.00–26.00 S | 60.00–53.00 W | 2045/ 2136 | N16/ N15 | 11 |
TB90 (K) | TB150 (K) | TB184 (K) | TB186 (K) | TB190 (K) | Hail Diameter (cm) |
---|---|---|---|---|---|
199,92 (20.92) | 174,57 (17.04) | 202,94 (12.81) | 186,31 (15.35) | 175,61 (15.51) | 2 < d < 10 |
130,10 (12.32) | 121,37 (9.47) | 148,94 (17.06) | 134,22 (14.65) | 124,38 (11.40) | d > 10 |
TB90 (K) | TB150 (K) | TB184 (K) | TB186 (K) | TB190 (K) | (%) (2 < d < 10) | No. of Data |
241.79 | 204.37 | 209.07 | 199.57 | 194.15 | 15–25 | 94 |
218.65 | 182.31 | 212.54 | 196.51 | 182.63 | 25–35 | 295 |
197.00 | 160.60 | 201.18 | 180.17 | 163.76 | >35 | 54 |
TB90 (K) | TB150 (K) | TB184 (K) | TB186 (K) | TB190 (K) | (%) (d > 10) | No. of Data |
250.34 | 217.48 | 206.64 | 205.36 | 195.85 | 15–25 | 416 |
220.66 | 181.58 | 200.28 | 189.55 | 175.11 | 25–35 | 233 |
174.90 | 148.91 | 175.24 | 161.43 | 147.37 | > 35 | 91 |
TB90 (K) | TB150 (K) | TB184 (K) | TB186 (K) | TB190 (K) | No. of Data | |
---|---|---|---|---|---|---|
240.32 | 215.10 | 214.39 | 209.40 | 204.66 | 15–25 | 1814 |
209.88 | 180.01 | 203.00 | 188.08 | 176.53 | 25–35 | 1306 |
169.81 | 148.01 | 178.89 | 159.51 | 148.78 | > 35 | 903 |
Training Datasets | ||
---|---|---|
1st dataset | 528 | 145 |
2nd dataset | 1306 | 903 |
TB90 (K) | TB150 (K) | TB184 (K) | TB186 (K) | TB190 (K) | No. Data | |
---|---|---|---|---|---|---|
216.40 | 181.30 | 205.27 | 191.38 | 178.09 | 25–35 | 1 |
180.90 | 152.51 | 185.10 | 167.04 | 153.30 | > 35 | 2 |
114.30 | 103.70 | 122.20 | 112.00 | 107.50 | Abs. min | 3 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laviola, S.; Levizzani, V.; Ferraro, R.R.; Beauchamp, J. Hailstorm Detection by Satellite Microwave Radiometers. Remote Sens. 2020, 12, 621. https://doi.org/10.3390/rs12040621
Laviola S, Levizzani V, Ferraro RR, Beauchamp J. Hailstorm Detection by Satellite Microwave Radiometers. Remote Sensing. 2020; 12(4):621. https://doi.org/10.3390/rs12040621
Chicago/Turabian StyleLaviola, Sante, Vincenzo Levizzani, Ralph R. Ferraro, and James Beauchamp. 2020. "Hailstorm Detection by Satellite Microwave Radiometers" Remote Sensing 12, no. 4: 621. https://doi.org/10.3390/rs12040621
APA StyleLaviola, S., Levizzani, V., Ferraro, R. R., & Beauchamp, J. (2020). Hailstorm Detection by Satellite Microwave Radiometers. Remote Sensing, 12(4), 621. https://doi.org/10.3390/rs12040621