Understanding Intra-Annual Dynamics of Ecosystem Services Using Satellite Image Time Series
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Workflow
2.3. RS to Capture Ecosystem Service Supply over Space and Time
2.4. Intra-Annual Dynamics of the Supply and Demand of Ecosystem Services
2.5. Data Description
Use | Variables | Data Description | Data Source |
---|---|---|---|
Input data | Vegetation types | Vector file | Provided by Living Lands [72] |
Agricultural lands, rivers | Vector files | Provided by Living Lands | |
Built-up areas | Vector files | Provided by Living Lands and Google Earth Pro | |
Build models, Stage 1 | Spectral indices: 11 vegetation indices, one soil index and one water index | Sentinel-2 level 2A image from 24/06/2017 | [90] |
Sentinel-2 level 2A image from 7/10/2018 (only for biomass for rosemary) | |||
Slope, aspect, elevation | 12.5 m resolution ALOS PALSAR derived DEM | [88] | |
Intra-annual variability, Stage 2 | IRECI, NDWI, NDI45 and MTCI | 60 cloud-free Sentinel-2 level 2A images, years 2017 and 2018 | [90] |
Slope | 12.5 m resolution ALOS PALSAR derived DEM | [88] | |
Demand assessment, Stage 2 | Monthly cumulative rainfall, maximum rainfall; maximum wind speed | Rain records of six stations (WRC, 2018); | [56] |
Wind records (World Weather Online, 2019) | [78] | ||
Monthly forage requirements | See Section 2.2 | See Section 2.2 | |
Rosemary expected yields | Expert knowledge | Personal communication with production manager from Devco |
3. Results
3.1. RS to Capture Ecosystem Service Supply over Space and Time
3.2. Intra-Annual Dynamics of Supply and the Demand of Ecosystem Services
4. Discussion
4.1. RS to Capture Ecosystem Service Supply over Space and Time
4.2. Describing Intra-Annual Dynamics of Supply and the Demand of Ecosystem Services
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO Food and Agriculture Organization. FAOSTAT Data on Land Use. Available online: http://www.fao.org/faostat/en/#data/EL (accessed on 24 November 2019).
- Power, A.G. Ecosystem services and agriculture: Tradeoffs and synergies. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2959–2971. [Google Scholar] [CrossRef]
- DeClerck, F.A.J.; Jones, S.K.; Attwood, S.; Bossio, D.; Girvetz, E.; Chaplin-Kramer, B.; Enfors, E.; Fremier, A.K.; Gordon, L.J.; Kizito, F.; et al. Agricultural ecosystems and their services: The vanguard of sustainability? Curr. Opin. Environ. Sustain. 2016, 23, 92–99. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Pacheco, F.A.L.; Sanches Fernandes, L.F.; Valle Junior, R.F.; Valera, C.A.; Pissarra, T.C.T. Land degradation: Multiple environmental consequences and routes to neutrality. Curr. Opin. Environ. Sci. Health 2018, 5, 79–86. [Google Scholar] [CrossRef]
- Sutton, P.C.; Anderson, S.J.; Costanza, R.; Kubiszewski, I. The ecological economics of land degradation: Impacts on ecosystem service values. Ecol. Econ. 2016, 129, 182–192. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Braat, L.; Kubiszewski, I.; Fioramonti, L.; Sutton, P.; Farber, S.; Grasso, M. Twenty years of ecosystem services: How far have we come and how far do we still need to go? Ecosyst. Serv. 2017, 28, 1–16. [Google Scholar] [CrossRef]
- Wood, S.L.R.; Jones, S.K.; Johnson, J.A.; Brauman, K.A.; Chaplin-Kramer, R.; Fremier, A.; Girvetz, E.; Gordon, L.J.; Kappel, C.V.; Mandle, L.; et al. Distilling the role of ecosystem services in the Sustainable Development Goals. Ecosyst. Serv. 2018, 29, 70–82. [Google Scholar] [CrossRef]
- Mea, M.E.A. Millennium Ecosystem Assessment Ecosystems and Human Well-being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- De Groot, R.S.; Alkemade, R.; Braat, L.; Hein, L.; Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 2010, 7, 260–272. [Google Scholar] [CrossRef]
- Grêt-Regamey, A.; Sirén, E.; Brunner, S.H.; Weibel, B. Review of decision support tools to operationalize the ecosystem services concept. Ecosyst. Serv. 2017, 26, 306–315. [Google Scholar] [CrossRef]
- Guerry, A.D.; Polasky, S.; Lubchenco, J.; Chaplin-Kramer, R.; Daily, G.C.; Griffin, R.; Ruckelshaus, M.; Bateman, I.J.; Duraiappah, A.; Elmqvist, T.; et al. Natural capital and ecosystem services informing decisions: From promise to practice. Proc. Natl. Acad. Sci. USA 2015, 112, 7348–7355. [Google Scholar] [CrossRef]
- Maes, J.; Egoh, B.; Willemen, L.; Liquete, C.; Vihervaara, P.; Schägner, J.P.; Grizzetti, B.; Drakou, E.G.; Notte, A.L.; Zulian, G.; et al. Mapping ecosystem services for policy support and decision making in the European Union. Ecosyst. Serv. 2012, 1, 31–39. [Google Scholar] [CrossRef]
- Andersson, E.; McPhearson, T.; Kremer, P.; Gomez-Baggethun, E.; Haase, D.; Tuvendal, M.; Wurster, D. Scale and context dependence of ecosystem service providing units. Ecosyst. Serv. 2015, 12, 157–164. [Google Scholar] [CrossRef]
- Vrieling, A.; Meroni, M.; Mude, A.G.; Chantarat, S.; Ummenhofer, C.C.; de Bie, K.C. Early assessment of seasonal forage availability for mitigating the impact of drought on East African pastoralists. Remote Sens. Environ. 2016, 174, 44–55. [Google Scholar] [CrossRef]
- Dadhwal, V.K. Crop growth and productivity monitoring and simulation using remote sensing and GIS. In Satellite Remote Sensing and GIS Applications in Agricultural Meteorology; Sivakumar, M.V.K., Roy, P.S., Harmsen, K., Saha, S.K., Eds.; World Meteorological Organisation: Geneva, Switzerland, 2004; pp. 263–289. [Google Scholar]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.F.; Ceschia, E. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Alexandridis, T.K.; Sotiropoulou, A.M.; Bilas, G.; Karapetsas, N.; Silleos, N.G. The Effects of Seasonality in Estimating the C-Factor of Soil Erosion Studies. Land Degrad. Dev. 2015, 26, 596–603. [Google Scholar] [CrossRef]
- Cerdà, A. Seasonal variability of infiltration rates under contrasting slope conditions in southeast Spain. Geoderma 1996, 69, 217–232. [Google Scholar] [CrossRef]
- Vrieling, A.; de Jong, S.M.; Sterk, G.; Rodrigues, S.C. Timing of erosion and satellite data: A multi-resolution approach to soil erosion risk mapping. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 267–281. [Google Scholar] [CrossRef]
- Rau, A.L.; von Wehrden, H.; Abson, D.J. Temporal Dynamics of Ecosystem Services. Ecol. Econ. 2018, 151, 122–130. [Google Scholar] [CrossRef]
- Eigenbrod, F.; Armsworth, P.R.; Anderson, B.J.; Heinemeyer, A.; Gillings, S.; Roy, D.B.; Thomas, C.D.; Gaston, K.J. The impact of proxy-based methods on mapping the distribution of ecosystem services. J. Appl. Ecol. 2010, 47, 377–385. [Google Scholar] [CrossRef]
- Rieb, J.T.; Chaplin-Kramer, R.; Daily, G.C.; Armsworth, P.R.; Böhning-Gaese, K.; Bonn, A.; Cumming, G.S.; Eigenbrod, F.; Grimm, V.; Jackson, B.M.; et al. When, Where, and How Nature Matters for Ecosystem Services: Challenges for the Next Generation of Ecosystem Service Models. BioScience 2017, 67, 820–833. [Google Scholar] [CrossRef]
- Cord, A.F.; Brauman, K.A.; Chaplin-Kramer, R.; Huth, A.; Ziv, G.; Seppelt, R. Priorities to Advance Monitoring of Ecosystem Services Using Earth Observation. Trends Ecol. Evol. 2017, 32, 416–428. [Google Scholar] [CrossRef] [PubMed]
- IPBES. Summary for Policymakers of the Assessment Report on Land Degradation and Restoration of the Intergovernmental SciencePolicy Platform on Biodiversity and Ecosystem Services; Scholes, R., Montanarella, L., Brainich, A., Barger, N., Brink, B.T., Cantele, M., Erasmus, B., Fisher, J., Gardner, T., Holland, T.G., et al., Eds.; IPBES Secreteriat: Bonn, Germany, 2018; p. 44. [Google Scholar]
- Pascual, U.; Balvanera, P.; Díaz, S.; Pataki, G.; Roth, E.; Stenseke, M.; Watson, R.T.; Başak Dessane, E.; Islar, M.; Kelemen, E.; et al. Valuing nature’s contributions to people: The IPBES approach. Curr. Opin. Environ. Sustain. 2017, 26, 7–16. [Google Scholar] [CrossRef]
- Bennett, E.M.; Cramer, W.; Begossi, A.; Cundill, G.; Díaz, S.; Egoh, B.N.; Geijzendorffer, I.R.; Krug, C.B.; Lavorel, S.; Lazos, E.; et al. Linking biodiversity, ecosystem services, and human well-being: Three challenges for designing research for sustainability. Curr. Opin. Environ. Sustain. 2015, 14, 76–85. [Google Scholar] [CrossRef]
- Renard, D.; Rhemtulla, J.M.; Bennett, E.M. Historical dynamics in ecosystem service bundles. Proc. Natl. Acad. Sci. USA 2015, 112, 13411–13416. [Google Scholar] [CrossRef]
- Hein, L.; Bagstad, K.; Edens, B.; Obst, C.; De Jong, R.; Lesschen, J.P. Defining ecosystem assets for natural capital accounting. PLoS ONE 2016, 11, e0164460. [Google Scholar] [CrossRef]
- Biggs, R.; Schlüter, M.; Schoon, M.L. An introduction to the resilience approach and principles to sustain ecosystem services in social–ecological systems. In Principles for Building Resilience: Sustaining Ecosystem Services in Social-Ecological Systems; Biggs, R., Schlüter, M., Schoon, M.L., Eds.; Cambridge University Press: Cambridge, UK, 2015; pp. 1–31. ISBN 9781316014240. [Google Scholar]
- Folke, C.; Carpenter, S.R.; Walker, B.; Scheffer, M.; Chapin, T.; Rockström, J. Resilience thinking: Integrating resilience, adaptability and transformability. Ecol. Soc. 2010, 15, 20. [Google Scholar] [CrossRef]
- Hulme, M. Meet the humanities. Nat. Clim. Chang. 2011, 1, 177–179. [Google Scholar] [CrossRef]
- Rounsevell, M.D.A.; Dawson, T.P.; Harrison, P.A. A conceptual framework to assess the effects of environmental change on ecosystem services. Biodivers. Conserv. 2010, 19, 2823–2842. [Google Scholar] [CrossRef]
- Wolff, S.; Schulp, C.J.E.; Verburg, P.H. Mapping ecosystem services demand: A review of current research and future perspectives. Ecol. Indic. 2015, 55, 159–171. [Google Scholar] [CrossRef]
- De Araujo Barbosa, C.C.; Atkinson, P.M.; Dearing, J.A. Remote sensing of ecosystem services: A systematic review. Ecol. Indic. 2015, 52, 430–443. [Google Scholar] [CrossRef]
- Verbesselt, J.; Hyndman, R.; Newnham, G.; Culvenor, D. Detecting trend and seasonal changes in satellite image time series. Remote Sens. Environ. 2010, 114, 106–115. [Google Scholar] [CrossRef]
- Ayanu, Y.Z.; Conrad, C.; Nauss, T.; Wegmann, M.; Koellner, T. Quantifying and mapping ecosystem services supplies and demands: A review of remote sensing applications. Environ. Sci. Technol. 2012, 46, 8529–8541. [Google Scholar] [CrossRef]
- Weiss, M.; Jacob, F.; Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 2020, 236, 111402. [Google Scholar] [CrossRef]
- Malmstrom, C.M.; Butterfield, H.S.; Barber, C.; Dieter, B.; Harrison, R.; Qi, J.; Riaño, D.; Schrotenboer, A.; Stone, S.; Stoner, C.J.; et al. Using remote sensing to evaluate the influence of grassland restoration activities on ecosystem forage provisioning services. Restor. Ecol. 2009, 17, 526–538. [Google Scholar] [CrossRef]
- Martínez-Harms, M.J.; Quijas, S.; Merenlender, A.M.; Balvanera, P. Enhancing ecosystem services maps combining field and environmental data. Ecosyst. Serv. 2016, 22, 32–40. [Google Scholar] [CrossRef]
- Zhongming, W.; Lees, B.G.; Feng, J.; Wanning, L.; Haijing, S. Stratified vegetation cover index: A new way to assess vegetation impact on soil erosion. Catena 2010, 83, 87–93. [Google Scholar] [CrossRef]
- Al-Gaadi, K.A.; Hassaballa, A.A.; Tola, E.; Kayad, A.G.; Madugundu, R.; Alblewi, B.; Assiri, F. Prediction of potato crop yield using precision agriculture techniques. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Clevers, J.G.P.W.; Kooistra, L.; van den Brande, M.M.M. Using Sentinel-2 data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop. Remote Sens. 2017, 9, 405. [Google Scholar] [CrossRef]
- Moriondo, M.; Maselli, F.; Bindi, M. A simple model of regional wheat yield based on NDVI data. Eur. J. Agron. 2007, 26, 266–274. [Google Scholar] [CrossRef]
- Jetz, W.; Cavender-Bares, J.; Pavlick, R.; Schimel, D.; Davis, F.W.; Asner, G.P.; Guralnick, R.; Kattge, J.; Latimer, A.M.; Moorcroft, P.; et al. Monitoring plant functional diversity from space. Nat. Plants 2016, 2, 1–5. [Google Scholar]
- Shen, H.; Meng, X.; Zhang, L. An Integrated Framework for the Spatio-Temporal-Spectral Fusion of Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2016, 54, 7135–7148. [Google Scholar] [CrossRef]
- Kassouk, Z.; Mabrouki, R.; Mougenot, B.; Lili Chabaane, Z. Annual and seasonal agriculture land-use mapping using remote sensing in case of arid region. In EGU General Assembly Conference Abstracts; EGU: Viena, Austria, 2018; Volume 20, p. 13677. [Google Scholar]
- Tewkesbury, A.P.; Comber, A.J.; Tate, N.J.; Lamb, A.; Fisher, P.F. A critical synthesis of remotely sensed optical image change detection techniques. Remote Sens. Environ. 2015, 160, 1–14. [Google Scholar] [CrossRef]
- Mandanici, E.; Bitelli, G. Preliminary comparison of sentinel-2 and landsat 8 imagery for a combined use. Remote Sens. 2016, 8, 1014. [Google Scholar] [CrossRef]
- Sakowska, K.; Juszczak, R.; Gianelle, D. Remote Sensing of Grassland Biophysical Parameters in the Context of the Sentinel-2 Satellite Mission. J. Sens. 2016. [Google Scholar] [CrossRef]
- Berger, M.; Moreno, J.; Johannessen, J.A.; Levelt, P.F.; Hanssen, R.F. ESA’s sentinel missions in support of Earth system science. Remote Sens. Environ. 2012, 120, 84–90. [Google Scholar] [CrossRef]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Vargas, L.; Willemen, L.; Hein, L. Assessing ecosystem capacity to supply ecosystem services over time using remote sensing and the ecosystem accounting approach. Environ. Manag. 2019, 63, 1–15. [Google Scholar] [CrossRef]
- Crane, W. Biodiversity conservation and land rights in South Africa: Whither the farm dwellers? Geoforum 2006, 37, 1035–1045. [Google Scholar] [CrossRef][Green Version]
- Petz, K.; Glenday, J.; Alkemade, R. Land management implications for ecosystem services in a South African rangeland. Ecol. Indic. 2014, 45, 692–703. [Google Scholar] [CrossRef]
- WRC Water Research Commission. Annual Report; WRC: Pretoria, South Africa, 2018. [Google Scholar]
- Jansen, H. Water for Food and Ecosystems in the Baviaanskloof Mega Reserve Land and Water Resources Assessment in the Baviaanskloof, Eastern Cape. Province, South Africa. Alterra-Report 1218; Alterra, Wageningen UR: Wageningen, The Netherlands, 2008. [Google Scholar]
- Van Luijk, G.; Cowling, R.M.; Riksen, M.J.P.M.; Glenday, J. Hydrological implications of desertification: Degradation of South African semi-arid subtropical thicket. J. Arid Environ. 2013, 91, 14–21. [Google Scholar] [CrossRef]
- Vlok, J.H.J.; Euston-Brown, D.I.W.; Cowling, R.M. Acocks’ Valley Bushveld 50 years on: New perspectives on the delimitation, characterisation and origin of subtropical thicket vegetation. S. Afr. J. Bot. 2003, 69, 27–51. [Google Scholar] [CrossRef]
- Havstad, K.M.; Herrick, J.E.; Schlesinger, W.H. Desert rangelands, degradation and nutrients. In Rangeland Desertification; Springer: Dordrecht, The Netherlands, 2000; pp. 77–87. [Google Scholar]
- Powell, M.J. Restoration of Degraded Subtropical Thickets in the Baviaanskloof Megareserve; Rhodes University: Grahamstown, South Africa, 2009; pp. 1–151. [Google Scholar]
- Stuart-Hill, G.C. Effects of Elephants and Goats on the Kaffrarian Succulent Thicket of the Eastern Cape, South Africa. J. Appl. Ecol. 1992. [Google Scholar] [CrossRef]
- Lechmere-Oertel, R.G.; Kerley, G.I.H.; Cowling, R.M. Patterns and implications of transformation in semi-arid succulent thicket, South Africa. J. Arid Environ. 2005, 62, 459–474. [Google Scholar] [CrossRef]
- Sigwela, A.M.; Kerley, G.I.H.; Mills, A.J.; Cowling, R.M. The impact of browsing-induced degradation on the reproduction of subtropical thicket canopy shrubs and trees. South Afr. J. Bot. 2009, 75, 262–267. [Google Scholar] [CrossRef]
- Mills, A.J.; Turpie, J.K.; Cowling, R.M.; Marais, C.; Kerley, G.I.H.; Lechmere-Oertel, R.G.; Sigwela, A.M.; Powell, M. Assessing costs, benefits, and feasibility of restoring natural capital in Subtropical Thicket in South Africa. Restoring Nat. Cap. Sci. Bus. Pract. Sci. Pract. Ecol. Restor. Ser. 2007, 2, 179–187. [Google Scholar]
- Mills, A.J.; Robson, A. Survivorship of spekboom (Portulacaria afra) planted within the subtropical thicket restoration programme. South Afr. J. Sci. 2017, 113, 3–5. [Google Scholar] [CrossRef][Green Version]
- Van der Vyver, M.L.; Cowling, R.M.; Mills, A.J.; Difford, M. Spontaneous return of biodiversity in restored subtropical thicket: Portulacaria afra as an ecosystem engineer. Restor. Ecol. 2013, 21, 736–744. [Google Scholar] [CrossRef]
- Del Río-Mena, T.; Willemen, L.; Vrieling, A.; Nelson, A. Remote sensing for mapping ecosystem services to support evaluation of ecological restoration interventions in an arid landscape. Ecol. Indic. 2020, 113, 106182. [Google Scholar] [CrossRef]
- Efron, B.; Gong, G. A leisurely look at the bootstrap, the jackknife, and cross-validation. Am. Stat. 1983, 37, 36–48. [Google Scholar]
- Colloff, M.J.; Pullen, K.R.; Cunningham, S.A. Restoration of an Ecosystem Function to Revegetation Communities: The Role of Invertebrate Macropores in Enhancing Soil Water Infiltration. Restor. Ecol. 2010, 18, 65–72. [Google Scholar] [CrossRef]
- Flombaum, P.; Sala, O.E. A non-destructive and rapid method to estimate biomass and aboveground net primary production in arid environments. J. Arid Environ. 2007, 69, 352–358. [Google Scholar] [CrossRef]
- Hoare, D.B.; Mucina, L.; Rutherford, M.C.; Vlok, J.H.J.; Euston-Brown, D.I.W.; Palmer, A.R.; Powrie, L.W.; Lechmere-Oertel, R.G.; Procheş, Ş.M.; Dold, A.P.; et al. Albany Thicket Biome. In The vegetation of South Africa, Lesotho and Swaziland. Strelitzia 19.; Mucina, L., Ruther, Eds.; South African National Biodiversity Institute: Pretoria, South Africa, 2006. [Google Scholar]
- Memarsadeghi, N.; Mount, D.M.; Netanyahu, N.S.; Le Moigne, J. A fast implementation of the isodata clustering algorithm. Proc. Int. J. Comput. Geometry Appl. 2007. [Google Scholar] [CrossRef]
- Akima, H. A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures. J. ACM JACM 1970, 17, 589–602. [Google Scholar] [CrossRef]
- Borchers, H.W. Package ‘pracma’. Available online: https://cran.r-project.org/package=pracma (accessed on 19 July 2019).
- Burkhard, B.; Kroll, F.; Nedkov, S.; Müller, F. Mapping ecosystem service supply, demand and budgets. Ecol. Indic. 2012, 21, 17–29. [Google Scholar] [CrossRef]
- Lal, R. Soil degradation by erosion. Land Degrad. Dev. 2001, 12, 519–539. [Google Scholar] [CrossRef]
- World Weather Online Baviaanskloof Farming Community, Eastern Cape, South Africa Weather. Available online: https://www.worldweatheronline.com/baviaanskloof-farming-community-weather-averages/eastern-cape/za.aspx (accessed on 6 August 2019).
- Owen-Smith, N. Foraging responses of kudus to seasonal changes in food resources: Elasticity in constraints. Ecology 1994, 75, 1050–1062. [Google Scholar] [CrossRef]
- Pekins, P.J.; Smith, K.S.; Mautz, W.W. The energy cost of gestation in white-tailed deer. Can. J. Zool. 1998, 76, 1091–1097. [Google Scholar] [CrossRef]
- Parker, K.L.; Barboza, P.S.; Gillingham, M.P. Nutrition integrates environmental responses of ungulates. Funct. Ecol. 2009, 23, 57–69. [Google Scholar] [CrossRef]
- Oftedal, O.T. Pregnancy and Lactation. In Bioenergetics of Wild Herbivores; Hudson, R.J., White, R.G., Eds.; CRC Press: Boca Raton, FL, USA, 2018; pp. 215–238. [Google Scholar]
- Robbins, C.T.; Robbins, B.L. Fetal and Neonatal Growth Patterns and Maternal Reproductive Effort in Ungulates and Subungulates. Am. Nat. 1979, 114, 101–116. [Google Scholar] [CrossRef]
- Perrin, M.R. The social organisation of the greater kudu Tragelaphus strepsiceros (Pallas 1766). Trop. Zool. 1999, 12, 169–208. [Google Scholar] [CrossRef][Green Version]
- Hanley, T.A.; Rogers, J.J. Estimating Carrying Capacity with Simultaneous Nutritional Constraints; United States Department of Agriculture: Washington, DC, USA, 1989; Volume 485. [Google Scholar]
- Luo, J.; Goetsch, A.L.; Nsahlai, I.V.; Moore, J.E.; Galyean, M.L.; Johnson, Z.B.; Sahlu, T.; Ferrell, C.L.; Owens, F.N. Voluntary feed intake by lactating, Angora, growing and mature goats. Small Rumin. Res. 2004, 53, 357–378. [Google Scholar] [CrossRef]
- Sauvant, D.; Morand-Fehr, P.; Giger-Reverdin, S. Dry matter intake of adult goats. In Goat nutrition; EAAP Publication: Wageningen, The Netherlands, 1991; pp. 25–36. [Google Scholar]
- Geophysical Institute of the University of Alaska Fairbanks Alaska Satellite Facility (ASF) Data Portal. Available online: https://vertex.daac.asf.alaska.edu/# (accessed on 2 July 2018).
- European Space Agency (ESA) Sen2Cor. Available online: http://step.esa.int/main/third-party-plugins-2/sen2cor/ (accessed on 18 June 2018).
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 6 August 2019).
- CGIAR. Ecosystem Services and Resilience Framework: CGIAR Research Program on Water, Land and Ecosystems (WLE); CGIAR: Colombo, Sri Lanka, 2014; ISBN 9789290908050. [Google Scholar]
- Schmidt, H.; Karnieli, A. Remote sensing of the seasonal variability of vegetation in a semi-arid environment. J. Arid Environ. 2000, 45, 43–59. [Google Scholar] [CrossRef]
- Bradford, J.M.; Ferris, J.E.; Remley, P.A. Interrill soil erosion processes: I. Effect of surface sealing on infiltration, runoff, and soil splash detachment. Soil Sci. Soc. Am. J. 1987, 51, 1566–1571. [Google Scholar] [CrossRef]
- Munang, R.; Thiaw, I.; Alverson, K.; Mumba, M.; Liu, J.; Rivington, M. Climate change and Ecosystem-based Adaptation: A new pragmatic approach to buffering climate change impacts. Curr. Opin. Environ. Sustain. 2013, 5, 67–71. [Google Scholar] [CrossRef]
- Harris, J.A.; Hobbs, R.J.; Higgs, E.; Aronson, J. Ecological restoration and global climate change. Restor. Ecol. 2006, 14, 170–176. [Google Scholar] [CrossRef]
- Keesstra, S.; Nunes, J.; Novara, A.; Finger, D.; Avelar, D.; Kalantari, Z.; Cerdà, A. The superior effect of nature based solutions in land management for enhancing ecosystem services. Sci. Total Environ. 2018, 610, 997–1009. [Google Scholar] [CrossRef]
- Barral, M.P.; Rey Benayas, J.M.; Meli, P.; Maceira, N.O. Quantifying the impacts of ecological restoration on biodiversity and ecosystem services in agroecosystems: A global meta-analysis. Agric. Ecosyst. Environ. 2015, 202, 223–231. [Google Scholar] [CrossRef]
- Benayas, J.; Newton, A.C.; Diaz, A.; Bullock, J.M. Enhancement of biodiversity and ecosystem services by ecological restoration: A meta-analysis. Science 2009, 325, 1121–1124. [Google Scholar] [CrossRef]
- Schulte, R.P.O.; Creamer, R.E.; Donnellan, T.; Farrelly, N.; Fealy, R.; O’Donoghue, C.; O’hUallachain, D. Functional land management: A framework for managing soil-based ecosystem services for the sustainable intensification of agriculture. Environ. Sci. Policy 2014, 38, 45–58. [Google Scholar] [CrossRef]
- Tscharntke, T.; Klein, A.M.; Kruess, A.; Steffan-Dewenter, I.; Thies, C. Landscape perspectives on agricultural intensification and biodiversity - Ecosystem service management. Ecol. Lett. 2005, 8, 857–874. [Google Scholar] [CrossRef]
- Fjelde, H.; von Uexkull, N. Climate triggers: Rainfall anomalies, vulnerability and communal conflict in Sub-Saharan Africa. Polit. Geogr. 2012, 31, 444–453. [Google Scholar] [CrossRef]
- Mirhosseini, G.; Srivastava, P.; Stefanova, L. The impact of climate change on rainfall Intensity-Duration-Frequency (IDF) curves in Alabama. Reg. Environ. Chang. 2013, 13, 25–33. [Google Scholar] [CrossRef]
- Kirby, J.M.; Mainuddin, M.; Mpelasoka, F.; Ahmad, M.D.; Palash, W.; Quadir, M.E.; Shah-Newaz, S.M.; Hossain, M.M. The impact of climate change on regional water balances in Bangladesh. Clim. Chang. 2016, 135, 481–491. [Google Scholar] [CrossRef]
- Milgroom, J.; Giller, K.E. Courting the rain: Rethinking seasonality and adaptation to recurrent drought in semi-arid Southern Africa. Agric. Syst. 2013, 118, 91–104. [Google Scholar] [CrossRef]
- Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T. VIIRS night-time lights. Int. J. Remote Sens. 2017, 38, 5860–5879. [Google Scholar] [CrossRef]
- Jean, N.; Burke, M.; Xie, M.; Davis, W.M.; Lobell, D.B.; Ermon, S. Combining satellite imagery and machine learning to predict poverty. Science 2016, 353, 790–794. [Google Scholar] [CrossRef]
- Patela, N.N.; Angiuli, E.; Gamba, P.; Gaughan, A.; Lisini, G.; Stevens, F.R.; Tatem, A.J.; Trianni, G. Multitemporal settlement and population mapping from landsatusing google earth engine. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 199–208. [Google Scholar] [CrossRef]
Ecosystem Service | Ecosystem Service Indicator | Evaluated Vegetation Types |
---|---|---|
Erosion prevention | Stratified vegetation cover index (% Str.VC) | Thicket, pastures and rosemary fields |
Regulation of water flows | Soil infiltration rate (cm h−1) | Thicket |
Provision of forage | Green biomass (kg m−2) | Thicket, pastures and rosemary fields |
Biomass for essential oil production | Fresh biomass (g m−2) | Rosemary fields |
Ecosystem Service | Indicator | R2 | Standardized RMSE | Explanatory Variable | β Estimate | Partial R2 | df |
---|---|---|---|---|---|---|---|
Erosion prevention | Stratified vegetation cover (%) | 0.81 | 0.07 | Intercept | −1.08 | 30 | |
IRECI | 27.35 | 0.81 | |||||
Regulation of water flows | Infiltration rate (cm hr−1) | 0.61 | 0.24 | Intercept | 0.96 | 17 | |
NDWI | 3.01 | 0.31 | |||||
Slope | 0.04 | 0.36 | |||||
Provision of forage | Green biomass (kg m−2) | 0.89 | 0.10 | Intercept | 2.91 | 28 | |
NDI45 | 120.08 | 0.38 | |||||
NDWI | 43.16 | 0.6 | |||||
Slope | 0.24 | 0.16 | |||||
Biomass for essential oil production | Total fAGB (g m−2) | 0.71 | 0.26 | Intercept | −705.09 | ||
MTCI | 368.1 | 0.38 | 21 | ||||
Slope | 90.85 | 0.33 |
Ecosystem Service | Vegetation Type | Coefficient of Variation of Supply 2017 ± Std.dev. between Clusters | Coefficient of Variation of Supply 2018 ± Std.dev. between Clusters | Coefficient of Variation of Demand |
---|---|---|---|---|
Erosion prevention | Thicket | 0.28 ± 0.08 | 0.25 ± 0.08 | 1.06/0.91 * |
Pastures | 0.39 ± 0.19 | 0.46 ± 0.18 | 0.12/0.25 * | |
Rosemary | 0.37 ± 0.14 | 0.49 ± 0.14 | 0.12/0.25 * | |
Regulation of water flows | Thicket | 0.07 ± 0.03 | 0.12 ± 0.02 | 1.07/0.99 1 |
Provision of forage | Thicket | 0.28 ± 0.05 | 0.24 ± 0.03 | 0.28/0.26 2 |
Pastures | 0.41 ± 0.13 | 0.36 ± 0.11 | 0.28/0.26 2 | |
Rosemary | 0.53 ± 0.12 | 0.45 ± 0.14 | 0.28/0.26 2 | |
Biomass for essential oil production | Rosemary | 0.77 ± 0.27 | 0.42 ± 0.18 | na |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
del Río-Mena, T.; Willemen, L.; Vrieling, A.; Nelson, A. Understanding Intra-Annual Dynamics of Ecosystem Services Using Satellite Image Time Series. Remote Sens. 2020, 12, 710. https://doi.org/10.3390/rs12040710
del Río-Mena T, Willemen L, Vrieling A, Nelson A. Understanding Intra-Annual Dynamics of Ecosystem Services Using Satellite Image Time Series. Remote Sensing. 2020; 12(4):710. https://doi.org/10.3390/rs12040710
Chicago/Turabian Styledel Río-Mena, Trinidad, Louise Willemen, Anton Vrieling, and Andy Nelson. 2020. "Understanding Intra-Annual Dynamics of Ecosystem Services Using Satellite Image Time Series" Remote Sensing 12, no. 4: 710. https://doi.org/10.3390/rs12040710
APA Styledel Río-Mena, T., Willemen, L., Vrieling, A., & Nelson, A. (2020). Understanding Intra-Annual Dynamics of Ecosystem Services Using Satellite Image Time Series. Remote Sensing, 12(4), 710. https://doi.org/10.3390/rs12040710