Radar-Derived Internal Structure and Basal Roughness Characterization along a Traverse from Zhongshan Station to Dome A, East Antarctica
Abstract
:1. Introduction
2. Materials and Methods
2.1. IPR Data
2.2. Internal Layer Continuity Index
2.3. Basal Roughness
3. Results and Analysis
3.1. Internal Layers along the Traverse
3.2. Internal Layers Change with Depth
3.3. Subglacial Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- AitkeniD, A.R.; Roberts, J.L.; Van Ommen, T.; Young, D.A.; Golledge, N.; Greenbaum, J.S.; Blankenship, D.D.; Siegert, M.J. Repeated large-scale retreat and advance of Totten Glacier indicated by inland bed erosion. Nature 2016, 533, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Gulick, S.P.S.; Shevenell, A.E.; Montelli, A.; Fernandez, R.; Smith, C.; Warny, S.; Bohaty, S.M.; Sjunneskog, C.; Leventer, A.; Frederick, B.; et al. Initiation and long-term instability of the East Antarctic Ice Sheet. Nature 2017, 552, 225–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sime, L.C.; Karlsson, N.B.; Paden, J.D.; Gogineni, S. Isochronous information in a Greenland ice sheet radio echo sounding data set. Geophys. Res. Lett. 2014, 41, 1593–1599. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Sun, B.; Martín, C.; Ferraccioli, F.; Steinhage, D.; Cui, X.; Siegert, M.J. Summit of the East Antarctic Ice Sheet underlain by thick ice-crystal fabric layers linked to glacial–interglacial environmental change. Geol. Soc. 2017, 461, 131–143. [Google Scholar] [CrossRef]
- Winter, A.; Steinhage, D.; Creyts, T.T.; Kleiner, T.; Eisen, O. Age stratigraphy in the East Antarctic Ice Sheet inferred from radio-echo sounding horizons. Earth Syst. Sci. Data 2019, 11, 1069–1081. [Google Scholar] [CrossRef] [Green Version]
- Rippin, D.; Siegert, M.; Bamber, J. The englacial stratigraphy of Wilkes Land, East Antarctica, as revealed by internal radio-echo sounding layering, and its relationship with balance velocities. Ann. Glaciol. 2003, 36, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Ng, F.S.L.; Conway, H. Fast-flow signature in the stagnated Kamb Ice Stream, West Antarctica. Geology 2004, 32, 481–484, ISSN 0091-7613. [Google Scholar] [CrossRef] [Green Version]
- Bingham, R.G.; Siegert, M.; Young, D.; Blankenship, D.D. Organized flow from the South Pole to the Filchner-Ronne ice shelf: An assessment of balance velocities in interior East Antarctica using radio echo sounding data. J. Geophys. Res. Space Phys. 2007, 112, F03S26. [Google Scholar] [CrossRef] [Green Version]
- Bingham, R.G.; Siegert, M. Quantifying subglacial bed roughness in Antarctica: Implications for ice-sheet dynamics and history. Quat. Sci. Rev. 2009, 28, 223–236. [Google Scholar] [CrossRef]
- Keisling, B.A.; Christianson, K.; Alley, R.B.; Peters, L.E.; Christian, J.E.; Anandakrishnan, S.; Riverman, K.L.; Muto, A.; Jacobel, R.W. Basal conditions and ice dynamics inferred from radar-derived internal stratigraphy of the northeast Greenland ice stream. Ann. Glaciol. 2014, 55, 127–137. [Google Scholar] [CrossRef] [Green Version]
- Wilkens, N.; Behrens, J.; Kleiner, T.; Rippin, D.; Rückamp, M.; Humbert, A. Thermal structure and basal sliding parametrisation at Pine Island Glacier—A 3-D full-Stokes model study. Cryosphere 2015, 9, 675–690. [Google Scholar] [CrossRef] [Green Version]
- Fahnestock, M.; Abdalati, W.; Joughin, I.; Brozena, J.; Gogineni, P. High Geothermal Heat Flow, Basal Melt, and the Origin of Rapid Ice Flow in Central Greenland. Science 2001, 294, 2338–2342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, H.; Severinghaus, J.; Brook, E.; Wolff, E.; Albert, M.; Alemany, O.; Arthern, R.; Bentley, C.; Blankenship, D.; Chappellaz, J.; et al. Where to find 1.5 million yr old ice for the IPICS “Oldest-Ice” ice core. Clim. Past 2013, 9, 2489–2505. [Google Scholar] [CrossRef] [Green Version]
- Young, D.; Roberts, J.L.; Ritz, C.; Frezzotti, M.; Quartini, E.; Cavitte, M.; Tozer, C.R.; Steinhage, D.; Urbini, S.; Corr, H.F.J.; et al. High-resolution boundary conditions of an old ice target near Dome C, Antarctica. Cryosphere 2017, 11, 1897–1911. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Sun, B.; Tian, G.; Jiang, Y.; Zhang, X.; Guo, J.; Tang, X. Progress and prospect of ice radar in investigating and researching Antarctic ice sheet. Adv. Earth Sci. 2009, 24, 392–402. [Google Scholar]
- Bingham, R.G.; Rippin, D.; Karlsson, N.B.; Ferraccioli, F.; Jordan, T.A.; Le Brocq, A.M.; Rose, K.C.; Ross, N.; Siegert, M.; Corr, H.F. Ice-flow structure and ice dynamic changes in the Weddell Sea sector of West Antarctica from radar-imaged internal layering. J. Geophys. Res. Earth Surf. 2015, 120, 655–670. [Google Scholar] [CrossRef] [Green Version]
- Winter, K.; Woodward, J.; Ross, N.; Dunning, S.; Bingham, R.G.; Corr, H.F.J.; Siegert, M. Airborne radar evidence for tributary flow switching in Institute Ice Stream, West Antarctica: Implications for ice sheet configuration and dynamics. J. Geophys. Res. Earth Surf. 2015, 120, 1611–1625. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, N.B.; Rippin, D.M.; Vaughan, D.; Corr, H.F. The internal layering of Pine Island Glacier, West Antarctica, from airborne radar-sounding data. Ann. Glaciol. 2009, 50, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, N.B.; Rippin, D.M.; Bingham, R.G.; Vaughan, D. A ‘continuity-index’ for assessing ice-sheet dynamics from radar-sounded internal layers. Earth Planet. Sci. Lett. 2012, 335, 88–94. [Google Scholar] [CrossRef]
- Holt, J.W.; Blankenship, D.D.; Morse, D.L.; Young, D.; Peters, M.E.; Kempf, S.D.; Richter, T.G.; Vaughan, D.; Corr, H.F.J. New boundary conditions for the West Antarctic Ice Sheet: Subglacial topography of the Thwaites and Smith glacier catchments. Geophys. Res. Lett. 2006, 33, 72–88. [Google Scholar] [CrossRef] [Green Version]
- Bingham, R.G.; Siegert, M. Radar-derived bed roughness characterization of Institute and Möller ice streams, West Antarctica, and comparison with Siple Coast ice streams. Geophys. Res. Lett. 2007, 34, L21504. [Google Scholar] [CrossRef] [Green Version]
- Siegert, M.J.; Le Brocq, A.; Payne, A.J. Hydrological Connections between Antarctic Subglacial Lakes, the Flow of Water beneath the East Antarctic Ice Sheet and Implications for Sedimentary Processes. Glacial Sediment. Process. Prod. 2009, 39, 3–10. [Google Scholar]
- Pattyn, F. Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model. Earth Planet. Sci. Lett. 2010, 295, 451–461. [Google Scholar] [CrossRef]
- Bell, R.E.; Ferraccioli, F.; Creyts, T.T.; Braaten, D.; Corr, H.; Das, I.; Damaske, D.; Frearson, N.; Jordan, T.A.; Rose, K.; et al. Widespread Persistent Thickening of the East Antarctic Ice Sheet by Freezing from the Base. Science 2011, 331, 1592–1595. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Sun, B.; Siegert, M.; Bingham, R.G.; Tang, X.; Zhang, N.; Cui, X.; Zhang, X. Characterization of subglacial landscapes by a two-parameter roughness index. J. Glaciol. 2010, 56, 831–836. [Google Scholar] [CrossRef] [Green Version]
- Rippin, D.M.; Bingham, R.G.; Jordan, T.A.; Wright, A.; Ross, N.; Corr, H.; Ferraccioli, F.; Le Brocq, A.; Rose, K.; Siegert, M. Basal roughness of the Institute and Möller Ice Streams, West Antarctica: Process determination and landscape interpretation. Geomorphology 2014, 214, 139–147. [Google Scholar] [CrossRef] [Green Version]
- Siegert, M.; Taylor, J.; Payne, A.J. Spectral roughness of subglacial topography and implications for former ice-sheet dynamics in East Antarctica. Glob. Planet. Chang. 2005, 45, 249–263. [Google Scholar] [CrossRef]
- Jordan, T.; Cooper, M.; Schroeder, D.; Williams, C.; Paden, J.D.; Siegert, M.; Bamber, J. Self-affine subglacial roughness: Consequences for radar scattering and basal water discrimination in northern Greenland. Cryosphere 2017, 11, 1247–1264. [Google Scholar] [CrossRef] [Green Version]
- Rippin, D.; Vaughan, D.; Corr, H. The basal roughness of Pine Island Glacier, West Antarctica. J. Glaciol. 2011, 57, 67–76. [Google Scholar] [CrossRef] [Green Version]
- Wright, A.P.; Young, D.; Roberts, J.L.; Schroeder, D.; Bamber, J.; Dowdeswell, J.; Young, N.W.; Le Brocq, A.; Warner, R.; Payne, A.J.; et al. Evidence of a hydrological connection between the ice divide and ice sheet margin in the Aurora Subglacial Basin, East Antarctica. J. Geophys. Res. 2012, 117, F01033. [Google Scholar] [CrossRef]
- Fujita, S.; Holmlund, P.; Matsuoka, K.; Enomoto, H.; Fukui, K.; Nakazawa, F.; Sugiyama, S.; Surdyk, S. Radar diagnosis of the subglacial conditions in Dronning Maud Land, East Antarctica. Cryosphere 2012, 6, 1203–1219. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Sun, B.; Tian, G.; Tang, X.; Zhang, X.; Jiang, Y.; Guo, J.; Li, X. Preliminary results of ice radar investigation along the traverse between Zhongshan and Dome A in East Antarctic ice sheet: Ice thickness and subglacial topography. Chin. Sci. Bull. 2010, 55, 2715–2722. [Google Scholar] [CrossRef]
- Cui, X.; Wang, T.; Sun, B.; Tang, X.; Guo, J. Chinese radioglaciological studies on the Antarctic ice sheet: Progress and prospects. Adv. Polar Sci. 2017, 28, 161–170. [Google Scholar] [CrossRef]
- Tang, X.; Sun, B.; Guo, J.; Liu, X.; Cui, X.; Zhao, B.; Chen, Y. A freeze-on ice zone along the Zhongshan–Kunlun ice sheet profile, East Antarctica, by a new ground-based ice-penetrating radar. Sci. Bull. 2015, 60, 574–576. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.; Guo, J.; Sun, B.; Wang, T.; Cui, X. Ice thickness, internal layers, and surface and subglacial topography in the vicinity of Chinese Antarctic Taishan station in Princess Elizabeth Land, East Antarctica. Appl. Geophys. 2016, 13, 203–208. [Google Scholar] [CrossRef]
- Ding, M.; Xiao, C.; Li, Y.; Ren, J.; Hou, S.; Jin, B.; Sun, B. Spatial variability of surface mass balance along a traverse route from Zhongshan station to Dome A, Antarctica. J. Glaciol. 2011, 57, 658–666. [Google Scholar]
- Ding, M.; Xiao, C.; Li, C.; Qin, D.; Jin, B.; Shi, G.; Xie, A.; Cui, X. Surface mass balance and its climate significance from the coast to Dome A, East Antarctica. Sci. China Earth Sci. 2015, 58, 1787–1797. [Google Scholar] [CrossRef]
- Zhang, S.E.D.; Wang, Z.; Li, Y.; Jin, B.; Zhou, C. Ice velocity from static GPS observations along the transect from Zhongshan station to Dome A, East Antarctica. Ann. Glaciol. 2008, 48, 113–118. [Google Scholar]
- Yang, Y.; Ke, H.; Wang, Z.; Li, F.; Ding, M.; Sun, B.; Jin, B.; Wang, L.; Ai, S. Decadal GPS-derived ice surface velocity along the transect from Zhongshan Station to and around Dome Argus, East Antarctica, 2005–2016. Ann. Glaciol. 2018, 59, 1–9. [Google Scholar]
- Fretwell, P.; Pritchard, H.D.; Vaughan, D.; Bamber, J.; Barrand, N.E.; Bell, R.; Bianchi, C.; Bingham, R.G.; Blankenship, D.D.; Casassa, G.; et al. Bedmap2: Improved ice bed, surface and thickness datasets for Antarctica. Cryosphere 2013, 7, 375–393. [Google Scholar] [CrossRef] [Green Version]
- Greene, C.A.; Gwyther, D.; Blankenship, D.D. Antarctic Mapping Tools for Matlab. Comput. Geosci. 2017, 104, 151–157. [Google Scholar] [CrossRef]
- Cumming, I.G.; Wong, F.H. Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation; Artech House: Boston, MA, USA, 2005. [Google Scholar]
- Liu, X.; Lang, S.; Zhao, B.; Zhang, F.; Liu, Q.; Tang, C.; Li, D.; Fang, G. High-Resolution Ice-Sounding Radar Measurements of Ice Thickness Over East Antarctic Ice Sheet as a Part of Chinese National Antarctic Research Expedition. IEEE Trans. Geosci. Remote. Sens. 2018, 56, 3657–3666. [Google Scholar] [CrossRef]
- Gupta, G. Algorithm for image processing using improved median filter and comparison of mean, median and improved median filter. Int. J. Soft Comput. Eng. (IJSCE) 2011, 1, 304–311. [Google Scholar]
- Steinhage, D.; Nixdorf, U.; Meyer, U.; Miller, H. Subglacial topography and internal structure of central and western Dronning Maud Land, Antarctica, determined from airborne radio echo sounding. J. Appl. Geophys. 2001, 47, 183–189. [Google Scholar] [CrossRef]
- Karlsson, N.B.; Binder, T.; Eagles, G.; Helm, V.; Pattyn, F.; Van Liefferinge, B.; Eisen, O. Glaciological characteristics in the Dome Fuji region and new assessment for “Oldest Ice”. Cryosphere 2018, 12, 2413–2424. [Google Scholar] [CrossRef] [Green Version]
- Taylor, J.; Siegert, M.; Payne, A.J.; Hubbard, B. Regional-scale bed roughness beneath ice masses: Measurement and analysis. Comput. Geosci. 2004, 30, 899–908. [Google Scholar] [CrossRef]
- Holschuh, N.; Christianson, K.; Anandakrishnan, S. Power loss in dipping internal reflectors, imaged using ice-penetrating radar. Ann. Glaciol. 2014, 55, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.-Y.; Sun, B.; Wang, T. Radar isochronic layer dating for a deep ice core at Kunlun Station, Antarctica. Sci. China Earth Sci. 2019, 63, 303–308. [Google Scholar] [CrossRef]
- Winter, K.; Woodward, J.; Dunning, S.; Turney, C.; Fogwill, C.J.; Hein, A.S.; Golledge, N.; Bingham, R.G.; Marrero, S.; Sugden, D.E.; et al. Assessing the continuity of the blue ice climate record at Patriot Hills, Horseshoe Valley, West Antarctica. Geophys. Res. Lett. 2016, 43, 2019–2026. [Google Scholar] [CrossRef]
- Rignot, E.; Mouginot, J.; Scheuchl, B. Ice Flow of the Antarctic Ice Sheet. Science 2011, 333, 1427–1430. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Mouginot, J.; Scheuchl, B. MEaSUREs InSAR-Based Antarctica Ice Velocity Map, Version 2. [Indicate Subset Used; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA.
- Das, I.; Bell, R.E.; Scambos, T.A.; Wolovick, M.; Creyts, T.T.; Studinger, M.; Frearson, N.; Nicolas, J.P.; Lenaerts, J.; Broeke, M.V.D. Influence of persistent wind scour on the surface mass balance of Antarctica. Nat. Geosci. 2013, 6, 367–371. [Google Scholar] [CrossRef] [Green Version]
- Scambos, T.; Frezzotti, M.; Haran, T.; Bohlander, J.; Lenaerts, J.; Broeke, M.V.D.; Jezek, K.; Long, D.G.; Urbini, S.; Farness, K.; et al. Extent of low-accumulation ’wind glaze’ areas on the East Antarctic plateau: Implications for continental ice mass balance. J. Glaciol. 2012, 58, 633–647. [Google Scholar] [CrossRef] [Green Version]
Parameter Name | Value | Units |
---|---|---|
RF carrier frequency | 150 | MHz |
RF bandwidth | 100 | MHz |
Rang sampling rate | 500 | MHz |
Peak transmit power | 500 | W |
Pulse repetition frequency | 8000 | Hz |
Transmitted pulse duration | 8 | μs |
Subglacial distance resolution | 1.0 | m |
Polar ice detection depth | >3000 | m |
Zone | Average Slope (m/km) | Start Distance (km) | End Distance (km) | Start Coordinate (Lat.(S), Long.(E)) | End Coordinate (Lat.(S), Long.(E)) |
Zone A | 6.28 | 0 | 12.835 | (−69.574°,76.281°) | (−69.630°,76.464°) |
15.489 | 28.519 | (−69.652°,76.490°) | (−69.765°,76.482°) | ||
34.355 | 34.766 | (−69.817°,76.471°) | (−69.820°,76.468°) | ||
35.204 | 60.164 | (−69.824°,76.468°) | (−70.041°,76.551°) | ||
71.289 | 74.454 | (−70.140°,76.600°) | (−70.167°,76.620°) | ||
74.934 | 86.272 | (−70.171°,76.622°) | (−70.270°,76.682°) | ||
90.091 | 100.008 | (−70.303°,76.703°) | (−70.390°,76.751°) | ||
119.722 | 262.007 | (−70.564°,76.856°) | (−71.783°,77.854°) | ||
Zone B | 1.80 | 267.158 | 431.655 | (−71.827°,77.896°) | (−73.254°,77.095°) |
Zone C | 0.76 | 461.691 | 465.776 | (−73.521°,76.978°) | (−73.557°,76.969°) |
467.071 | 467.947 | (−73.569°,76.967°) | (−73.577°,76.966°) | ||
476.049 | 500.239 | (−73.649°,76.964°) | (−73.864°,76.976°) | ||
502.719 | 502.811 | (−73.886°,76.986°) | (−73.887°,76.986°) | ||
503.239 | 527.251 | (−73.891°,76.987°) | (−74.105°,76.999°) | ||
571.584 | 664.503 | (−74.502°,77.034°) | (−75.319°,76.912°) | ||
668.027 | 673.636 | (−75.351°,76.919°) | (−75.398°,76.915°) | ||
703.885 | 752.080 | (−75.669°,76.855°) | (−76.091°,76.974°) | ||
Zone D | 1.50 | 752.084 | 766.352 | (−76.091°,76.974°) | (−76.218°,77.016°) |
766.800 | 784.441 | (−76.222°,77.016°) | (−76.379°,77.029°) | ||
785.150 | 847.706 | (−76.385°,77.028°) | (−76.943°,77.002°) | ||
853.704 | 853.836 | (−76.997°,76.994°) | (−76.998°,76.993°) | ||
854.386 | 888.968 | (−77.003°,76.993°) | (−77.310°,76.930°) | ||
890.802 | 890.902 | (−77.327°,76.927°) | (−77.328°,76.926°) | ||
893.986 | 949.358 | (−77.355°,76.916°) | (−77.829°,77.183°) | ||
958.895 | 965.183 | (−77.914°,77.125°) | (−77.970°,77.120°) | ||
971.687 | 972.215 | (−78.028°,77.104°) | (−78.032°,77.107°) | ||
Zone E | 3.35 | 972.219 | 972.223 | (−78.032°,77.107°) | (−78.032°,77.107°) |
972.695 | 976.355 | (−78.036°,77.101°) | (−78.068°,77.076°) | ||
976.881 | 977.201 | (−78.073°,77.076°) | (−78.076°,77.075°) | ||
978.067 | 1087.2 | (−78.083°,77.074°) | (−79.053°,76.939°) | ||
1089.600 | 1243.697 | (−79.074°,76.912°) | (−80.409°,77.133°) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, K.; Liu, S.; Guo, J.; Wang, T.; Li, L.; Cui, X.; Sun, B.; Tang, X. Radar-Derived Internal Structure and Basal Roughness Characterization along a Traverse from Zhongshan Station to Dome A, East Antarctica. Remote Sens. 2020, 12, 1079. https://doi.org/10.3390/rs12071079
Luo K, Liu S, Guo J, Wang T, Li L, Cui X, Sun B, Tang X. Radar-Derived Internal Structure and Basal Roughness Characterization along a Traverse from Zhongshan Station to Dome A, East Antarctica. Remote Sensing. 2020; 12(7):1079. https://doi.org/10.3390/rs12071079
Chicago/Turabian StyleLuo, Kun, Sixin Liu, Jingxue Guo, Tiantian Wang, Lin Li, Xiangbin Cui, Bo Sun, and Xueyuan Tang. 2020. "Radar-Derived Internal Structure and Basal Roughness Characterization along a Traverse from Zhongshan Station to Dome A, East Antarctica" Remote Sensing 12, no. 7: 1079. https://doi.org/10.3390/rs12071079
APA StyleLuo, K., Liu, S., Guo, J., Wang, T., Li, L., Cui, X., Sun, B., & Tang, X. (2020). Radar-Derived Internal Structure and Basal Roughness Characterization along a Traverse from Zhongshan Station to Dome A, East Antarctica. Remote Sensing, 12(7), 1079. https://doi.org/10.3390/rs12071079