Toward a Novel Laser-Based Approach for Estimating Snow Interception
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Field Measurements
2.3. Lidar Volume Estimates
2.4. Snow Density Estimates
2.5. Statistical Analysis
3. Results
4. Discussion
4.1. The Effect of Snow Density and Scan Duration on Model Performance
4.2. The Effect of Weather and Snow Properties on Model Performance
4.3. The Effect of Changing Tree Geometry on Model Performance
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Data Availability
References
- Hedstrom, N.R.; Pomeroy, J.W. Measurements and modelling of snow interception in the boreal forest. Hydrol. Process. 1998, 12, 1611–1625. [Google Scholar] [CrossRef]
- Molotch, N.P.; Blanken, P.D.; Williams, M.W.; Turnipseed, A.A.; Monson, R.K.; Margulis, S.A. Estimating sublimation of intercepted and sub-canopy snow using eddy covariance systems. Hydrol. Process. 2007, 21, 1567–1575. [Google Scholar] [CrossRef]
- Klos, P.Z.; Link, T.E.; Abatzoglou, J.T. Extent of the rain-snow transition zone in the western US under historic and projected climate. Geophys. Res. Lett. 2014, 41, 4560–4568. [Google Scholar] [CrossRef]
- Floyd, W.; Weiler, M. Measuring snow accumulation and ablation dynamics during rain-on-snow events: Innovative measurement techniques. Hydrol. Process. 2008, 22, 4805–4812. [Google Scholar] [CrossRef]
- Musselman, K.N.; Lehner, F.; Ikeda, K.; Clark, M.P.; Prein, A.F.; Liu, C.; Barlage, M.; Rasmussen, R. Projected increases and shifts in rain-on-snow flood risk over western North America. Nat. Clim. Chang. 2018, 8, 808. [Google Scholar] [CrossRef]
- Westerling, A.L. Increasing western US forest wildfire activity: Sensitivity to changes in the timing of spring. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2016, 371. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Cobb, N. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef] [Green Version]
- Bentz, B.J.; Régnière, J.; Fettig, C.J.; Hansen, E.M.; Hayes, J.L.; Hicke, J.A.; Seybold, S.J. Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. BioScience 2010, 60, 602–613. [Google Scholar] [CrossRef]
- Frank, J.M.; Massman, W.J.; Ewers, B.E.; Williams, D.G. Bayesian Analyses of 17 Winters of Water Vapor Fluxes Show Bark Beetles Reduce Sublimation. Water Resour. Res. 2019, 55, 1598–1623. [Google Scholar] [CrossRef]
- Knowles, N.; Dettinger, M.D.; Cayan, D.R. Trends in snowfall versus rainfall in the western United States. J. Clim. 2006, 19, 4545–4559. [Google Scholar] [CrossRef] [Green Version]
- Storck, P.; Lettenmaier, D.P.; Bolton, S.M. Measurement of snow interception and canopy effects on snow accumulation and melt in a mountainous maritime climate, Oregon, United States. Water Resour. Res. 2002, 38, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, K.; Nakai, Y. Canopy snow influence on water and energy balances in a coniferous forest plantation in northern Japan. J. Hydrol. 2008, 352, 126–138. [Google Scholar] [CrossRef]
- Brundl, M.; Bartelt, P.; Schneebeli, M.; Fluhler, H. Measuring branch defection of spruce branches caused by intercepted snow load. Hydrol. Process. 1999, 13, 2357–2369. [Google Scholar] [CrossRef]
- Schmidt, R.A.; Gluns, D.R. Snowfall interception on branches of three conifer species. Can. J. For. Res. 1991, 21, 1262–1269. [Google Scholar] [CrossRef]
- Miller, D.H. Res. Paper PSW-RP-18. In Interception Processes During Snowstorms; Pacific Southwest Forest & Range Experiment Station, Forest Service, US Department of Agriculture: Berkeley, CA, USA, 1964; Volume 18, pp. 18–43. [Google Scholar]
- Moeser, D.; Stähli, M.; Jonas, T. Improved snow interception modeling using canopy parameters derived from airborne LiDAR data. Water Resour. Res. 2015, 51, 5041–5059. [Google Scholar] [CrossRef] [Green Version]
- Edelsbrunner, H.; Mucke, E.P. Three-Dimensional Alpha Shapes. ACM Trans. Graph. 1994, 13, 43–72. [Google Scholar] [CrossRef]
- Lafarge, T.; Pateiro-López, B.; Possolo, A.; Dunkers, J.R. Implementation of a polyhedral approximation to a 3d set of points using the alpha-shape. J. Stat. Softw. 2014, 56, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Pateiro-López, B.; Rodríguez-Casal, A. Generalizing the convex hull of a sample: The R package alphahull. J. Stat. Softw. 2010, 34, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Judson, A.; Doesken, N. Density of freshly fallen snow in the Central Rocky Mountains. Bull. Am. Meteorol. Soc. 2000, 81, 1577–1587. [Google Scholar] [CrossRef]
- Ryan, W.A.; Doesken, N.J.; Fassnacht, S.R. Preliminary results of ultrasonic snow depth sensor testing for National Weather Service (NWS) snow measurements in the US. Hydrological Processes. Int. J. 2008, 22, 2748–2757. [Google Scholar] [CrossRef] [Green Version]
- Ryan, W.A.; Doesken, N.J.; Fassnacht, S.R. Evaluation of ultrasonic snow depth sensors for U.S. Snow measurements. J. Atmos. Ocean. Technol. 2008, 25, 667–684. [Google Scholar] [CrossRef] [Green Version]
- Eitel, J.U.; Vierling, L.A.; Magney, T.S. A lightweight, low cost autonomously operating terrestrial laser scanner for quantifying and monitoring ecosystem structural dynamics. Agric. For. Meteorol. 2013, 180, 86–96. [Google Scholar] [CrossRef]
- Adams, M.S.; Bauer, A.; Paar, G. Monitoring snow avalanche terrain with automated terrestrial laser scanning. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 4006–4009. [Google Scholar]
- Buhler, Y.; Adams, M.S.; Bosch, R.; Stoffel, A. Mapping snow depth in alpine terrain with unmanned aerial systems (UASs): Potential and limitations. Cryosphere 2016, 10, 1075–1088. [Google Scholar] [CrossRef] [Green Version]
- Hood, J.; Hayashi, M. Assessing the application of a laser rangefinder for determining snow depth in inaccessible alpine terrain. Hydrol. Earth Syst. Sci. 2010, 14, 901. [Google Scholar] [CrossRef] [Green Version]
- Deems, J.S.; Painter, T.H.; Finnegan, D.C. Lidar measurement of snow depth: A review. J. Glaciol. 2013, 59, 467–479. [Google Scholar] [CrossRef] [Green Version]
- Painter, T.H.; Berisford, D.F.; Boardman, J.W.; Bormann, K.J.; Deems, J.S.; Gehrke, F.; Winstral, A. The airborne snow observatory: Fusion of scanning lidar, imaging spectrometer, and physically-based modeling for mapping snow water equivalent and snow albedo. Remote Sens. Environ. 2016, 184, 139–152. [Google Scholar] [CrossRef] [Green Version]
- Almeida, D.R.A.; Stark, S.C.; Silva, C.A.; Hamamura, C.; Valbuena, R. Package ‘leafR’. 2019. Available online: https://cran.r-project.org/web/packages/leafR/leafR.pdf (accessed on 23 March 2020).
- Western Regional Climate Center. 2016. Available online: https://wrcc.dri.edu/ (accessed on 1 February 2019).
- Diamond, M.; Lowry, W.P. Correlation of the Density of New Snow with 700 Mb Temperature; Snow, Ice and Permafrost Research Establishment, Corps of Engineers, US Army: Hanover, NH, USA, 1953; Volume 1. [Google Scholar]
- LaChapelle, E.R. The Density Distribution of New Snow; Alta Avalanche Study Center: Richmond, UT, USA, 1962. [Google Scholar]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2013. [Google Scholar]
- Piñeiro, G.; Perelman, S.; Guerschman, J.P.; Paruelo, J.M. How to evaluate models: Observed vs. predicted or predicted vs. observed? Ecol. Model. 2008, 216, 316–322. [Google Scholar] [CrossRef]
- Mair, E.; Leitinger, G.; Della Chiesa, S.; Niedrist, G.; Tappeiner, U.; Bertoldi, G. A simple method to combine snow height and meteorological observations to estimate winter precipitation at sub-daily resolution. Hydrol. Sci. J. 2016, 61, 2050–2060. [Google Scholar] [CrossRef]
- Fassnacht, S.R.; Soulis, E.D. Implications during transitional periods of improvements to the snow processes in the land surface scheme-hydrological model WATCLASS. Atmos. Ocean. 2002, 40, 389–403. [Google Scholar] [CrossRef]
- Condliffe, J. This new lidar sensor could equip every autonomous car in the world by the end of 2018. MIT Technology Review. 12 April 2018. Available online: https://www.technologyreview.com/s/610858/this-new-lidar-sensor-could-equip-every-autonomous-car-in-the-world-by-the-end-of-2018/ (accessed on 15 January 2019).
- Eitel, J.U.H.; Höfle, B.; Vierling, L.A.; Abellán, A.; Asner, G.P.; Deems, J.; Glennie, C.L.; Joerg, P.C.; Lewinter, A.L.; Magney, T.S.; et al. Beyond 3-D: The new spectrum of lidar applications for earth and ecological sciences. Remote Sens. Environ. 2016, 186, 372–392. [Google Scholar] [CrossRef] [Green Version]
- Kaasalainen, S.; Kaartinen, H.; Kukko, A. Snow cover change detection with laser scanning range and brightness measurements. EARSeL eProc. 2008, 7, 133–141. [Google Scholar]
- Prokop, A. Assessing the applicability of terrestrial laser scanning for spatial snow depth measurements. Cold Reg. Sci. Technol. 2008, 54, 155–163. [Google Scholar] [CrossRef]
- Zande, D.V.D.; Jonckheere, I.; Stuckens, J.; Verstraeten, W.W.; Coppin, P. Sampling design of ground-based lidar measurements of forest canopy structure and its effect on shadowing. Can. J. Remote Sens. 2008, 34, 526–538. [Google Scholar] [CrossRef]
- Xie, D.; Wang, X.; Qi, J.; Chen, Y.; Mu, X.; Zhang, W.; Yan, G. Reconstruction of single tree with leaves based on terrestrial lidar point cloud data. Remote Sens. 2018, 10, 686. [Google Scholar] [CrossRef] [Green Version]
- Russell, M.T.; Eitel, J.H.; Maguire, A.J.; Link, T.E. Dataset: Toward a Novel Laser-Based Approach for Estimating Snow Interception; Northwest Knowledge Network: Moscow, ID, USA, 2020. [Google Scholar]
Density Estimation Method | Mean Fresh Snow Density (kg/m3): Winter 2017 | Mean Fresh Snow Density (kg/m3): Winter 2018 |
---|---|---|
1. constant | 100 | 100 |
2. Diamond–Lowry [31] | 111.59 ± 29.46 | 99.58 ± 23.77 |
3. LaChapelle [32] | 141.49 ± 39.52 | 123.20 ± 31.81 |
4. Hedstrom–Pomeroy [1] | 142.58 ± 150.61 | 105.19 ± 53.30 |
Left Tree | |||
---|---|---|---|
Density Method | R2 | RMSE (kg) | Slope |
1. Constant | 0.71 | 1.06 | 0.97 |
2. Diamond-Lowry | 0.53 | 1.35 | 0.98 |
3. LaChapelle | 0.53 | 1.36 | 0.80 |
4. Hedstrom-Pomeroy | 0.05 | 1.93 | 0.17 |
Right Tree | |||
Density Method | R2 | RMSE (kg) | Slope |
1. Constant | 0.69 | 0.91 | 1.07 |
2. Diamond-Lowry | 0.51 | 1.14 | 1.13 |
3. LaChapelle | 0.47 | 1.19 | 0.89 |
4. Hedstrom-Pomeroy | 0.01 | 1.63 | 0.03 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Russell, M.; U. H. Eitel, J.; J. Maguire, A.; E. Link, T. Toward a Novel Laser-Based Approach for Estimating Snow Interception. Remote Sens. 2020, 12, 1146. https://doi.org/10.3390/rs12071146
Russell M, U. H. Eitel J, J. Maguire A, E. Link T. Toward a Novel Laser-Based Approach for Estimating Snow Interception. Remote Sensing. 2020; 12(7):1146. https://doi.org/10.3390/rs12071146
Chicago/Turabian StyleRussell, Micah, Jan U. H. Eitel, Andrew J. Maguire, and Timothy E. Link. 2020. "Toward a Novel Laser-Based Approach for Estimating Snow Interception" Remote Sensing 12, no. 7: 1146. https://doi.org/10.3390/rs12071146
APA StyleRussell, M., U. H. Eitel, J., J. Maguire, A., & E. Link, T. (2020). Toward a Novel Laser-Based Approach for Estimating Snow Interception. Remote Sensing, 12(7), 1146. https://doi.org/10.3390/rs12071146