Antarctic Supraglacial Lake Identification Using Landsat-8 Image Classification
Abstract
:1. Introduction
2. Methods
2.1. Overview and Study Area
2.2. Training Data Generation
2.3. Supervised Classification
2.4. Validation
3. Results
3.1. Error Assessment
3.2. Lake Areas from Supervised Classification
3.3. Classification Transferability across Ice Shelves
4. Discussion
4.1. Sensitivity of Lake Area Results to User Choices and Training Data
4.2. Spatial and Temporal Upscaling
4.3. Comparison with Threshold-Based Lake Identification
4.4. Classification of Non-Lake Environments and Commission Error
4.4.1. Rock Outcrops
4.4.2. Cloud Shadows
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shepherd, A.; Ivins, E.R.; Geruo, A.; Barletta, V.R.; Bentley, M.J.; Bettadpur, S.; Briggs, K.H.; Bromwich, D.H.; Forsberg, R.; Galin, N.; et al. A reconciled estimate of ice-sheet mass balance. Science 2012, 338, 1183–1189. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Mouginot, J.; Scheuchl, B.; van den Broeke, M.; Van Wessem, M.J.; Morlighem, M. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl. Acad. Sci. USA 2019, 116, 1095–1103. [Google Scholar] [CrossRef] [Green Version]
- Harig, C.; Simons, F.J. Mapping Greenland’s mass loss in space and time. Proc. Natl. Acad. Sci. USA 2012, 109, 19934–19937. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, D.G.; Comiso, J.; Allison, I.; Carrasco, J.; Kaser, G.; Kwok, R.; Mote, P.; Murray, T.; Paul, F.; Ren, J. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Velicogna, I.; Sutterley, T.C.; Van Den Broeke, M.R. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. J. Geophys. Res. Sp. Phys. 2014, 41, 8130–8137. [Google Scholar] [CrossRef] [Green Version]
- Van Den Broeke, M.R.; Enderlin, E.M.; Howat, I.M.; Kuipers Munneke, P.; Noël, B.P.Y.; Jan Van De Berg, W.; Van Meijgaard, E.; Wouters, B. On the recent contribution of the Greenland ice sheet to sea level change. Cryosphere 2016, 10, 1933–1946. [Google Scholar] [CrossRef] [Green Version]
- Noël, B.; Jan Van De Berg, W.; MacHguth, H.; Lhermitte, S.; Howat, I.; Fettweis, X.; Van Den Broeke, M.R. A daily, 1 km resolution data set of downscaled Greenland ice sheet surface mass balance (1958-2015). Cryosphere 2016, 10, 2361–2377. [Google Scholar] [CrossRef] [Green Version]
- Mouginot, J.; Rignot, E.; Bjørk, A.A.; van den Broeke, M.; Millan, R.; Morlighem, M.; Noël, B.; Scheuchl, B.; Wood, M. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl. Acad. Sci. USA 2019, 116, 9239–9244. [Google Scholar] [CrossRef] [Green Version]
- Church, J.A.; Clark, P.U.; Cazenave, A.; Gregory, J.M.; Jevrejeva, S.; Levermann, A.; Merrifield, M.A.; Milne, G.A.; Nerem, R.S.; Nunn, P.D. Sea Level Change. Climate Change 2013: The Physical Science Basis; Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change; Cambridge University Press: Cambridge, UK, 2013; pp. 1137–1216. [Google Scholar]
- Winkelmann, R.; Levermann, A.; Ridgwell, A.; Caldeira, K. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet. Sci. Adv. 2015, 1, e1500589. [Google Scholar] [CrossRef] [Green Version]
- Clark, P.U.; Shakun, J.D.; Marcott, S.A.; Mix, A.C.; Eby, M.; Kulp, S.; Levermann, A.; Milne, G.A.; Pfister, P.L.; Santer, B.D.; et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Chang. 2016, 6, 360–369. [Google Scholar] [CrossRef]
- Golledge, N.R.; Kowalewski, D.E.; Naish, T.R.; Levy, R.H.; Fogwill, C.J.; Gasson, E.G.W. The multi-millennial Antarctic commitment to future sea-level rise. Nature 2015, 526, 421–425. [Google Scholar] [CrossRef]
- Deconto, R.M.; Pollard, D. Contribution of Antarctica to past and future sea-level rise. Nature 2016, 531, 591–597. [Google Scholar] [CrossRef]
- Kopp, R.E.; Horton, R.M.; Little, C.M.; Mitrovica, J.X.; Oppenheimer, M.; Rasmussen, D.J.; Strauss, B.H.; Tebaldi, C. Probabilistic 21st and 22nd century sea-level projections at a global network of tide-gauge sites. Earth’s Futur. 2014, 2, 383–406. [Google Scholar] [CrossRef]
- Kopp, R.E.; DeConto, R.M.; Bader, D.A.; Hay, C.C.; Horton, R.M.; Kulp, S.; Oppenheimer, M.; Pollard, D.; Strauss, B.H. Evolving Understanding of Antarctic Ice-Sheet Physics and Ambiguity in Probabilistic Sea-Level Projections. Earth’s Futur. 2017, 5, 1217–1233. [Google Scholar] [CrossRef] [Green Version]
- Zwally, H.J.; Abdalati, W.; Herring, T.; Larson, K.; Saba, J.; Steffen, K. Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow. Science 2002, 297, 218–222. [Google Scholar] [CrossRef]
- Shepherd, A.; Hubbard, A.; Nienow, P.; King, M.; McMillan, M.; Joughin, I. Greenland ice sheet motion coupled with daily melting in late summer. Geophys. Res. Lett. 2009, 36, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Bartholomew, I.; Nienow, P.; Mair, D.; Hubbard, A.; King, M.A.; Sole, A. Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier. Nat. Geosci. 2010, 3, 408–411. [Google Scholar] [CrossRef]
- Bartholomew, I.; Nienow, P.; Sole, A.; Mair, D.; Cowton, T.; King, M.A. Short-term variability in Greenland Ice Sheet motion forced by time-varying meltwater drainage: Implications for the relationship between subglacial drainage system behavior and ice velocity. J. Geophys. Res. Earth Surf. 2012, 117, F03002. [Google Scholar] [CrossRef]
- Schoof, C. Ice-sheet acceleration driven by melt supply variability. Nature 2010, 468, 803–806. [Google Scholar] [CrossRef]
- Sundal, A.V.; Shepherd, A.; Nienow, P.; Hanna, E.; Palmer, S.; Huybrechts, P. Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage. Nature 2011, 469, 521–524. [Google Scholar] [CrossRef]
- Hoffman, M.J.; Catania, G.A.; Neumann, T.A.; Andrews, L.C.; Rumrill, J.A. Links between acceleration, melting, and supraglacial lake drainage of the western Greenland Ice Sheet. J. Geophys. Res. Earth Surf. 2011, 116, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Joughin, I.; Das, S.B.; Flowers, G.E.; Behn, M.D.; Alley, R.B.; King, M.A.; Smith, B.E.; Bamber, J.L.; Van Den Broeke, M.R.; Van Angelen, J.H. Influence of ice-sheet geometry and supraglacial lakes on seasonal ice-flow variability. Cryosphere 2013, 7, 1185–1192. [Google Scholar] [CrossRef] [Green Version]
- Chu, V.W. Greenland ice sheet hydrology: A review. Prog. Phys. Geogr. 2014, 38, 19–54. [Google Scholar] [CrossRef]
- Smith, L.C.; Chu, V.W.; Yang, K.; Gleason, C.J.; Pitcher, L.H.; Rennermalm, A.K.; Legleiter, C.J.; Behar, A.E.; Overstreet, B.T.; Moustafa, S.E.; et al. Efficient meltwater drainage through supraglacial streams and rivers on the southwest Greenland ice sheet. Proc. Natl. Acad. Sci. USA 2015, 112, 1001–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.B.; Joughin, I.; Behn, M.D.; Howat, I.M.; King, M.A.; Lizarralde, D.; Bhatia, M.P. Fracture Propagation to the Base of the Greenland Ice Sheet During Supraglacial Lake Drainage. Science 2008, 320, 778–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedesco, M.; Willis, I.C.; Hoffman, M.J.; Banwell, A.F.; Alexander, P.; Arnold, N.S. Ice dynamic response to two modes of surface lake drainage on the Greenland ice sheet. Environ. Res. Lett. 2013, 8, 034007. [Google Scholar] [CrossRef]
- Doyle, S.H.; Hubbard, A.; Fitzpatrick, A.A.W.; van As, D.; Mikkelsen, A.B.; Pettersson, R.; Hubbard, B. Persistent flow acceleration within the interior of the Greenland ice sheet. Geophys. Res. Lett. 2014, 41, 899–905. [Google Scholar] [CrossRef] [Green Version]
- Scambos, T.; Hulbe, C.; Fahnestock, M.; Bohlander, J. The Link between Climate Warming and Ice Shelf Breakups in the Antarctic Peninsula. J. Glaciol. 2000, 46, 516–530. [Google Scholar] [CrossRef] [Green Version]
- Scambos, T.; Hulbe, C.; Fahnestock, M. Climate-induced ice shelf disintegration in the Antarctic Peninsula. Antarct. Penins. Clim. Var. Hist. Paleoenviron. Perspect. Antarct. Res. Ser. 2003, 79, 79–92. [Google Scholar]
- Banwell, A.F.; MacAyeal, D.R.; Sergienko, O.V. Breakup of the Larsen B Ice Shelf triggered by chain reaction drainage of supraglacial lakes. Geophys. Res. Lett. 2013, 40, 5872–5876. [Google Scholar] [CrossRef] [Green Version]
- Van den Broeke, M. Strong surface melting preceded collapse of Antarctic Peninsula ice shelf. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Sergienko, O.; Macayeal, D.R. Surface melting on Larsen Ice Shelf, Antarctica. Ann. Glaciol. 2005, 40, 215–218. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Casassa, G.; Gogineni, P.; Krabill, W.; Rivera, A.; Thomas, R. Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophys. Res. Lett. 2004, 31, 2–5. [Google Scholar] [CrossRef] [Green Version]
- Scambos, T.A.; Bohlander, J.A.; Shuman, C.A.; Skvarca, P. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica. Geophys. Res. Lett. 2004, 31, 2001–2004. [Google Scholar] [CrossRef] [Green Version]
- Shuman, C.A.; Berthier, E.; Scambos, T.A. 2001–2009 elevation and mass losses in the Larsen A and B embayments, Antarctic Peninsula. J. Glaciol. 2011, 57, 737–754. [Google Scholar] [CrossRef] [Green Version]
- Glasser, N.F.; Scambos, T.A.; Bohlander, J.; Truffer, M.; Pettit, E.; Davies, B.J. From ice-shelf tributary to tidewater glacier: Continued rapid recession, acceleration and thinning of Röhss Glacier following the 1995 collapse of the Prince Gustav Ice Shelf, Antarctic Peninsula. J. Glaciol. 2011, 57, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Rott, H.; Müller, F.; Nagler, T.; Floricioiu, D. The imbalance of glaciers after disintegration of Larsen-B ice shelf, Antarctic Peninsula. Cryosphere 2011, 5, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Weertman, J. Stability of the Junction of an Ice Sheet and an Ice Shelf. J. Glaciol. 1974, 13, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Schoof, C. Ice sheet grounding line dynamics: Steady states, stability, and hysteresis. J. Geophys. Res. Earth Surf. 2007, 112, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Bassis, J.N.; Walker, C.C. Upper and lower limits on the stability of calving glaciers from the yield strength envelope of ice. Proc. R. Soc. A Math. Phys. Eng. Sci. 2012, 468, 913–931. [Google Scholar] [CrossRef]
- Pollard, D.; DeConto, R.M.; Alley, R.B. Potential Antarctic Ice Sheet retreat driven by hydrofracturing and ice cliff failure. Earth Planet. Sci. Lett. 2015, 412, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Robel, A.A.; Banwell, A.F. A Speed Limit on Ice Shelf Collapse Through Hydrofracture. Geophys. Res. Lett. 2019, 46, 12092–12100. [Google Scholar] [CrossRef] [Green Version]
- Bell, R.E.; Chu, W.; Kingslake, J.; Das, I.; Tedesco, M.; Tinto, K.J.; Zappa, C.J.; Frezzotti, M.; Boghosian, A.; Lee, W.S. Antarctic ice shelf potentially stabilized by export of meltwater in surface river. Nature 2017, 544, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Bell, R.E.; Banwell, A.F.; Trusel, L.D.; Kingslake, J. Antarctic surface hydrology and impacts on ice-sheet mass balance. Nat. Clim. Chang. 2018, 8, 1044–1052. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index ( NDWI ) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Box, J.E.; Ski, K. Remote sounding of Greenland supraglacial melt lakes: Implications for subglacial hydraulics. J. Glaciol. 2007, 53, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Doyle, S.H.; Hubbard, A.L.; Dow, C.F.; Jones, G.A.; Fitzpatrick, A.; Gusmeroli, A.; Kulessa, B.; Lindback, K.; Pettersson, R.; Box, J.E. Ice tectonic deformation during the rapid in situ drainage of a supraglacial lake on the Greenland Ice Sheet. Cryosphere 2013, 7, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Johansson, A.M.; Brown, I.A. Adaptive classification of supra-glacial lakes on the west greenland ice sheet. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 1998–2007. [Google Scholar] [CrossRef]
- Leeson, A.A.; Shepherd, A.; Sundal, A.V.; Johansson, A.M.; Selmes, N.; Briggs, K.; Hogg, A.E.; Fettweis, X. A comparison of supraglacial lake observations derived from MODIS imagery at the western margin of the Greenland ice sheet. J. Glaciol. 2013, 59, 1179–1188. [Google Scholar] [CrossRef] [Green Version]
- Morriss, B.F.; Hawley, R.L.; Chipman, J.W.; Andrews, L.C.; Catania, G.A.; Hoffman, M.J.; Lüthi, M.P. A ten-year record of supraglacial lake evolution and rapid drainage in West Greenland using an automated processing algorithm for multispectral imagery. Cryosphere 2013, 7, 1869–1877. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.; Smith, L.C. Supraglacial streams on the Greenland Ice Sheet delineated from combined spectral—Shape information in high-resolution satellite imagery. IEEE Geosci. Remote Sens. Lett. 2013, 10, 801–805. [Google Scholar] [CrossRef]
- Arnold, N.S.; Banwell, A.F.; Willis, I.C. High-resolution modelling of the seasonal evolution of surface water storage on the Greenland Ice Sheet. Cryosphere 2014, 8, 1149–1160. [Google Scholar] [CrossRef] [Green Version]
- Banwell, A.F.; Caballero, M.; Arnold, N.S.; Glasser, N.F.; Cathles, L.M.; MacAyeal, D.R. Supraglacial lakes on the Larsen B ice shelf, Antarctica, and at Paakitsoq, West Greenland: A comparative study. Ann. Glaciol. 2014, 55, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Fitzpatrick, A.A.W.; Hubbard, A.L.; Box, J.E.; Quincey, D.J.; Van As, D.; Mikkelsen, A.P.B.; Doyle, S.H.; Dow, C.F.; Hasholt, B.; Jones, G.A. A decade (2002–2012) of supraglacial lake volume estimates across Russell Glacier, West Greenland. Cryosphere 2014, 8, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Moussavi, M.S.; Abdalati, W.; Pope, A.; Scambos, T.; Tedesco, M.; MacFerrin, M.; Grigsby, S. Derivation and validation of supraglacial lake volumes on the Greenland Ice Sheet from high-resolution satellite imagery. Remote Sens. Environ. 2016, 183, 294–303. [Google Scholar] [CrossRef] [Green Version]
- Pope, A. Reproducibly estimating and evaluating supraglacial lake depth with Landsat 8 and other multispectral sensors. Earth Sp. Sci. 2016, 3, 176–188. [Google Scholar] [CrossRef]
- Pope, A.; Scambos, T.A.; Moussavi, M.; Tedesco, M.; Willis, M.; Shean, D.; Grigsby, S. Estimating supraglacial lake depth in West Greenland using Landsat 8 and comparison with other multispectral methods. Cryosphere 2016, 10, 15–27. [Google Scholar] [CrossRef] [Green Version]
- Miles, K.E.; Willis, I.C.; Benedek, C.L.; Williamson, A.G.; Tedesco, M. Toward Monitoring Surface and Subsurface Lakes on the Greenland Ice Sheet Using Sentinel-1 SAR and Landsat-8 OLI Imagery. Front. Earth Sci. 2017, 5, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Sundal, A.V.; Shepherd, A.; Nienow, P.; Hanna, E.; Palmer, S.; Huybrechts, P. Evolution of supra-glacial lakes across the Greenland Ice Sheet. Remote Sens. Environ. 2009, 113, 2164–2171. [Google Scholar] [CrossRef]
- Selmes, N.; Murray, T.; James, T.D. Fast draining lakes on the Greenland Ice Sheet. Geophys. Res. Lett. 2011, 38, 1–5. [Google Scholar] [CrossRef]
- Everett, A.; Murray, T.; Selmes, N.; Rutt, I.C.C.; Luckman, A.; James, T.D.D.; Clason, C.; Leary, M.O.; Karunarathna, H.; Moloney, V.; et al. Annual down-glacier drainage of lakes and water-filled crevasses at Helheim Glacier, southeast Greenland. J. Geophys. Res. Earth Surf. 2016, 121, 1819–1833. [Google Scholar] [CrossRef] [Green Version]
- Williamson, A.G.; Arnold, N.S.; Banwell, A.F.; Willis, I.C. A Fully Automated Supraglacial lake area and volume Tracking (“FAST”) algorithm: Development and application using MODIS imagery of West Greenland. Remote Sens. Environ. 2017, 196, 113–133. [Google Scholar] [CrossRef]
- Williamson, A.; Willis, I.C.; Arnold, N.S.; Banwell, A.F. Controls on rapid supraglacial lake drainage in West Greenland: An Exploratory Data Analysis approach. J. Glaciol. 2018, 64, 208–226. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Colgan, W.; Lv, Q.; Steffen, K.; Abdalati, W.; Stroeve, J.; Gallaher, D.; Bayou, N. A decadal investigation of supraglacial lakes in West Greenland using a fully automatic detection and tracking algorithm. Remote Sens. Environ. 2012, 123, 127–138. [Google Scholar] [CrossRef] [Green Version]
- Howat, I.M.; de la Peña, S.; van Angelen, J.H.; Lenaerts, J.T.M.; van den Broeke, M.R. Expansion of meltwater lakes on the Greenland Ice Sheet. Cryosphere 2013, 7, 201–204. [Google Scholar] [CrossRef] [Green Version]
- Lettang, F.J.; Crocker, R.I.; Emery, W.J.; Maslanik, J.A. Estimating the extent of drained supraglacial lakes on the Greenland Ice Sheet. Int. J. Remote Sens. 2013, 34, 4754–4768. [Google Scholar] [CrossRef]
- Depoorter, M.A.; Bamber, J.L.; Griggs, J.A.; Lenaerts, J.T.M.; Ligtenberg, S.R.M.; Van Den Broeke, M.R.; Moholdt, G. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 2013, 502, 89–92. [Google Scholar] [CrossRef]
- Langley, E.S.; Leeson, A.A.; Stokes, C.R.; Jamieson, S.S.R. Seasonal evolution of supraglacial lakes on an East Antarctic outlet glacier. Geophys. Res. Lett. 2016, 43, 8563–8571. [Google Scholar] [CrossRef]
- Lenaerts, J.T.M.; Lhermitte, S.; Drews, R.; Ligtenberg, S.R.M.; Berger, S.; Helm, V.; Smeets, C.J.P.P.; Broeke, M.R.; Van De Berg, W.J.; Van Meijgaard, E.; et al. Meltwater produced by wind-albedo interaction stored in an East Antarctic ice shelf. Nat. Clim. Chang. 2017, 7, 58–62. [Google Scholar] [CrossRef] [Green Version]
- Kingslake, J.; Ely, J.C.; Das, I.; Bell, R.E. Widespread movement of meltwater onto and across Antarctic ice shelves. Nature 2017, 544, 349–352. [Google Scholar] [CrossRef] [Green Version]
- Stokes, C.R.; Sanderson, J.E.; Miles, B.W.; Jamieson, S.S.; Leeson, A.A. Widespread development of supraglacial lakes around the margin of the East Antarctic Ice Sheet. Sci. Rep. 2019, 9, 13823. [Google Scholar] [CrossRef] [Green Version]
- Rignot, E.; Thomas, R.H. Mass balance of polar ice sheets. Science 2002, 297, 1502–1506. [Google Scholar] [CrossRef] [Green Version]
- Fricker, H.A.; Hyland, G.; Coleman, R.; Young, N.W. Digital elevation models for the Lambert Glacier-Amery ice shelf system, East Antarctica, From ERS-1 satellite radar altimetry. J. Glaciol. 2000, 46, 553–570. [Google Scholar] [CrossRef] [Green Version]
- Mellor, M.; McKinnon, G. The Amery Ice Shelf and its hinterland. Polar Rec. Gr. Brit. 1960, 10, 30–34. [Google Scholar] [CrossRef]
- Swithinbank, C. Satellite Image Atlas of Glaciers of of the World: Antarctica; U.S. Geological Survey Professional Paper 1386–B; Unites States Government Printing Office: Washington, DC, USA, 1988; Volume 1386, ISBN 2330-7102. [Google Scholar]
- Phillips, H.A. Surface meltstreams on the Amery Ice Shelf, East Antarctica. Ann. Glaciol. 1998, 27, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Trusel, L.D.; Frey, K.E.; Das, S.B.; Munneke, P.K.; Van Den Broeke, M.R. Satellite-based estimates of Antarctic surface meltwater fluxes. Geophys. Res. Lett. 2013, 40, 6148–6153. [Google Scholar] [CrossRef] [Green Version]
- Bindschadler, R.; Vornberger, P.; Fleming, A.; Fox, A.; Mullins, J.; Binnie, D.; Paulsen, S.J.; Granneman, B.; Gorodetzky, D. The Landsat Image Mosaic of Antarctica. Remote Sens. Environ. 2008, 112, 4214–4226. [Google Scholar] [CrossRef]
- Arthur, D.; Vassilvitskii, S. k-means++: The advantages of careful seeding. In Proceedings of the The Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, New Orleans, Louisiana, 7–9 January 2007; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2007; pp. 1027–1035. [Google Scholar]
- Pelleg, D.; Moore, A.W. X-means: Extending k-means with efficient estimation of the number of clusters. In Proceedings of the Seventeenth International Conference on Machine Learning (ICML 2000), Stanford, CA, USA, 29 June–2 July 2000; pp. 727–734. [Google Scholar]
- Hubbard, B.; Luckman, A.; Ashmore, D.W.; Bevan, S.; Kulessa, B.; Kuipers Munneke, P.; Philippe, M.; Jansen, D.; Booth, A.; Sevestre, H.; et al. Massive subsurface ice formed by refreezing of ice-shelf melt ponds. Nat. Commun. 2016, 7, 11897. [Google Scholar] [CrossRef] [Green Version]
- Burton-Johnson, A.; Black, M.; Peter, T.F.; Kaluza-Gilbert, J. An automated methodology for differentiating rock from snow, clouds and sea in Antarctica from Landsat 8 imagery: A new rock outcrop map and area estimation for the entire Antarctic continent. Cryosphere 2016, 10, 1665–1677. [Google Scholar] [CrossRef] [Green Version]
- Achanta, R.; Susstrunk, S. Superpixels and Polygons using Simple Non-Iterative Clustering. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 4895–4904. [Google Scholar]
- Moussavi, M.S.; Pope, A.; Halberstadt, A.R.W.; Trusel, L.D.; Cioffi, L.; Abdalati, W. Antarctic supraglacial lake detection using Landsat 8 and Sentinel-2 imagery: Towards continental generation of lake volumes. Remote Sens. 2020, 12, 134. [Google Scholar] [CrossRef] [Green Version]
- Paul, F.; Barrand, N.E.; Baumann, S.; Berthier, E.; Bolch, T.; Casey, K.; Frey, H.; Joshi, S.P.; Konovalov, V.; Le Bris, R.; et al. On the accuracy of glacier outlines derived from remote-sensing data. Ann. Glaciol. 2013, 54, 171–182. [Google Scholar] [CrossRef] [Green Version]
Training Dataset | Classes | Description of Training Dataset | Supervised Classifier |
---|---|---|---|
t6A | 6 | Lake (blue regions with distinct boundaries); slush (blue regions with diffuse boundaries); blue ice (slightly blue areas with homogenous appearance over large areas, often on the edge of the ice stream), two different kinds of flowing ice (whiter- and darker-colored ice that appears similar to slush or blue ice but covers large regions across the ice stream); and firn (white non-ice-stream areas). Training data selected from Amery Ice Shelf. | c6A |
t7A | 7 | Uses the t6A classes, but ‘lake’ class is separated into shallow lakes (k-means clusters that group areas of high confidence lake interpretation together with uncertain or frozen/lidded lake areas) and deep lakes (high-confidence lake areas only). Training data selected from Amery Ice Shelf. | c7A |
t9A | 9 | Uses the t7A classes, with the addition of two cloud shadow classes (more opaque and less opaque cloud shadows). Training data selected from Amery Ice Shelf. | c9A |
t11A | 11 | Uses the t9A classes, with the addition of two rock classes (sunlit and shadowed rock outcrops). Training data selected from Amery Ice Shelf. | c11A |
tOB11A | 11 | Uses the t11A classes, but this object-based (“OB”) training dataset also includes shape parameters (area, perimeter, area to perimeter ratio, width to height ratio) in addition to band reflectance. Training data selected from Amery Ice Shelf. | cOB11A |
t6B | 6 | Uses the t6A classes, with training data from Roi Baudouin Ice Shelf. | c6B |
t7B | 7 | Uses the t7A classes, with training data from Roi Baudouin Ice Shelf. | c7B |
t9B | 9 | Uses the t9A classes, with training data from Roi Baudouin Ice Shelf. | c9B |
t11B | 11 | Uses the t11A classes, with training data from Roi Baudouin Ice Shelf. | c11B |
tOB11B | 11 | Uses the t11B classes and shape parameters (area, perimeter, area to perimeter ratio, width to height ratio) with training data from Roi Baudouin Ice Shelf. | cOB11B |
t11AB | 11 | Uses the t11A classes, but combining training data from both Amery and Roi Baudouin ice shelves. | c11AB |
Landsat-8 scene | Feb-04-2014 | Dec-26-2016 | Dec-21-2014 | Amery Average | Jan-16-2014 | Feb-25-2017 | Roi Baudouin Average |
---|---|---|---|---|---|---|---|
Amery | Roi Baudouin | ||||||
Number of traced lakes; traced lake area | 47; 39.3 km2 | 237; 70.5 km2 | 15; 1.1 km2 | 35; 8.5 km2 | 32; 31.6 km2 | ||
c11AB | 99.5% | 98.8% | 99.9% | 99.4% | 99.3% | 98.8% | 99.1% |
c11A | 99.0% | 97.7% | 99.9% | 98.9% | 96.7% | 96.7% | 96.7% |
cOB11A | 99.1% | 98.0% | 99.7% | 98.9% | 97.2% | 93.6% | 95.4% |
c9A | 99.0% | 98.0% | 99.9% | 99.0% | 97.2% | 92.8% | 95.0% |
c7A | 99.3% | 98.9% | 99.5% | 99.2% | 98.1% | 88.0% | 93.1% |
c6A | 99.6% | 99.5% | 97.3% | 98.8% | 99.1% | 86.1% | 92.6% |
c11B | 91.5% | 87.2% | 98.7% | 92.5% | 99.6% | 99.9% | 99.8% |
cOB11B | 92.8% | 84.9% | 95.8% | 91.2% | 97.9% | 99.7% | 98.8% |
c9B | 91.5% | 87.2% | 98.7% | 92.5% | 99.6% | 99.9% | 99.8% |
c7B | 99.3% | 98.8% | 97.9% | 98.7% | 99.7% | 88.9% | 94.3% |
c6B | 93.3% | 95.6% | 79.7% | 89.5% | 98.1% | 93.1% | 95.6% |
Moussavi et al. | 97.9% | 99.0% | 99.9% | 98.9% | 98.8% | 99.9% | 99.4% |
Landsat-8 scene | Feb-04-2014 | Dec-26-2016 | Dec-21-2014 | Jan-02-2017 | Amery Average | Jan-16-2014 | Feb-25-2017 | Roi Baudouin Average |
---|---|---|---|---|---|---|---|---|
Amery | Roi Baudouin | |||||||
Low-confidence pixels | 4.0% | 3.5% | 6.5% | 6.0% | 12.0% | 9.5% | ||
c11AB | 96.5% | 90.0% | 94.5% | 98.0% | 94.8% | 91.5% | 87.5% | 89.5% |
c11A | 97.0% | 77.5% | 94.5% | 99.0% | 92.0% | 68.5% | 85.0% | 76.8% |
cOB11A | 94.0% | 77.5% | 92.0% | 95.0% | 89.6% | 63.0% | 74.5% | 68.8% |
c9A | 95.0% | 86.5% | 93.5% | 98.0% | 93.3% | 69.0% | 90.0% | 79.5% |
c7A | 97.0% | 76.5% | 94.0% | 99.0% | 91.6% | 73.0% | 87.5% | 80.3% |
c6A | 97.0% | 75.0% | 94.0% | 99.5% | 91.4% | 99.0% | 92.0% | 95.5% |
c11B | 74.0% | 82.5% | 72.5% | 84.5% | 78.4% | 99.5% | 97.0% | 98.3% |
cOB11B | 78.5% | 75.5% | 75.5% | 84.0% | 78.4% | 81.5% | 90.0% | 85.8% |
c9B | 74.0% | 82.5% | 72.5% | 84.5% | 78.4% | 99.5% | 97.0% | 98.3% |
c7B | 98.5% | 76.0% | 96.5% | 98.5% | 92.4% | 99.0% | 95.5% | 97.3% |
c6B | 96.0% | 68.0% | 92.5% | 98.0% | 88.6% | 98.5% | 95.5% | 97.0% |
Moussavi et al. | 91.5% | 94.5% | 89.5% | 95.5% | 92.8% | 99.0% | 96.5% | 97.8% |
Training Dataset | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
t6A | t7A | t9A | t11A | t6B | t7B | t9B | t11B | t11AB | ||
Trained Classifier | c6A | 99.3 | 85.0 | 63.7 | 50.2 | 23.8 | 25.1 | 18.8 | 13.7 | 35.6 |
c7A | 93.0 | 99.2 | 74.2 | 58.4 | 17.2 | 21.8 | 16.3 | 11.9 | 39.8 | |
c9A | 81.1 | 81.6 | 99.2 | 77.0 | 15.3 | 19.7 | 25.5 | 18.6 | 53.6 | |
c11A | 80.7 | 81.6 | 99.2 | 99.3 | 15.2 | 19.7 | 25.1 | 45.3 | 77.7 | |
c6B | 30.6 | 28.8 | 21.5 | 17.4 | 99.7 | 82.7 | 62.0 | 45.1 | 28.0 | |
c7B | 33.9 | 31.7 | 23.9 | 19.4 | 89.8 | 99.6 | 74.7 | 54.3 | 33.4 | |
c9B | 22.5 | 20.7 | 32.1 | 25.9 | 89.8 | 99.6 | 99.6 | 72.5 | 44.6 | |
c11B | 23.4 | 21.5 | 32.2 | 44.0 | 89.8 | 99.6 | 99.6 | 99.4 | 66.2 | |
c11AB | 81.4 | 82.0 | 99.1 | 99.3 | 89.9 | 99.7 | 99.7 | 99.6 | 99.4 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Halberstadt, A.R.W.; Gleason, C.J.; Moussavi, M.S.; Pope, A.; Trusel, L.D.; DeConto, R.M. Antarctic Supraglacial Lake Identification Using Landsat-8 Image Classification. Remote Sens. 2020, 12, 1327. https://doi.org/10.3390/rs12081327
Halberstadt ARW, Gleason CJ, Moussavi MS, Pope A, Trusel LD, DeConto RM. Antarctic Supraglacial Lake Identification Using Landsat-8 Image Classification. Remote Sensing. 2020; 12(8):1327. https://doi.org/10.3390/rs12081327
Chicago/Turabian StyleHalberstadt, Anna Ruth W., Colin J. Gleason, Mahsa S. Moussavi, Allen Pope, Luke D. Trusel, and Robert M. DeConto. 2020. "Antarctic Supraglacial Lake Identification Using Landsat-8 Image Classification" Remote Sensing 12, no. 8: 1327. https://doi.org/10.3390/rs12081327
APA StyleHalberstadt, A. R. W., Gleason, C. J., Moussavi, M. S., Pope, A., Trusel, L. D., & DeConto, R. M. (2020). Antarctic Supraglacial Lake Identification Using Landsat-8 Image Classification. Remote Sensing, 12(8), 1327. https://doi.org/10.3390/rs12081327