Remote Sensing Applications in Monitoring of Protected Areas
Abstract
:1. Introduction
2. Remote Sensing Applications in Monitoring of Protected Areas
3. Challenges of Remote Sensing Monitoring of Protected Areas
4. Highlights of the Special Issue Articles
5. Conclusion Remarks
Funding
Acknowledgments
Conflicts of Interest
References
- Dudley, N. Guidelines for Applying Protected Area Management Categories; IUCN: Gland, Switzerland, 2008. [Google Scholar]
- Wang, Y. Remote Sensing of Protected Lands; CRC Press: Boca Raton, FL, USA, 2011; ISBN 978-1-4398-4187-7. [Google Scholar]
- Kelleher, G. Guidelines for Marine Protected Areas; IUCN: Gland, Switzerland, 1999. [Google Scholar]
- UNEP-WCMC and IUCN. Protected Planet Report 2016; UNEP-WCMC: Cambridge, UK; IUCN: Gland, Switzerland, 2016. [Google Scholar]
- Crabtree, R.; Sheldon, J. Monitoring and modeling environmental change in protected areas: Integration of focal species populations and remote sensing. In Remote Sensing of Protected Lands; CRC Press: Boca Raton, FL, USA, 2011; pp. 495–524. [Google Scholar]
- IUCN. Shaping a sustainable future. In The IUCN Programme 2009–2012; IUCN: Gland, Switzerland, 2008. [Google Scholar]
- Heinen, J.; Hite, K. Protected natural areas. In Encyclopedia of Earth; Cutler, J., Cleveland, C.J., Eds.; Environmental Information Coalition, National Council for Science and the Environment: Washington, DC, USA, 2007. [Google Scholar]
- National Park Service. Organic Act of 1916. Available online: https://www.nps.gov/grba/learn/management/organic-act-of-1916.htm (accessed on 20 April 2020).
- National Park Service. National Parks Omnibus Management Act of 1998. Available online: https://www.nps.gov/gis/data_standards/omnibus_management_act.html (accessed on 20 April 2020).
- Gross, J.E.; Goetz, S.J.; Cihlar, J. Application of remote sensing to parks and protected area monitoring: Introduction to the special issue. Remote Sens. Environ. 2009, 113, 1343–1345. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Townsend, P.A.; Gross, J.E.; Cohen, W.B.; Bolstad, P.; Wang, Y.Q.; Adams, P. Remote sensing change detection and natural resource monitoring for managing natural landscapes. Remote Sens. Environ. 2009, 113, 1382–1396. [Google Scholar] [CrossRef]
- Wang, Y.; Mitchell, B.R.; Nugranad-Marzilli, J.; Bonynge, G.; Zhou, Y.; Shriver, G.W. Remote sensing of land-cover change and landscape context of the national parks: A case study of the Northeast Temperate Network. Remote Sens. Environ. 2009, 113, 1453–1461. [Google Scholar] [CrossRef]
- Hoffmann, M.; Hilton-Taylor, C.; Angulo, A.; Böhm, M.; Brooks, T.M.; Butchart, S.H.; Carpenter, K.E.; Chanson, J.; Collen, B.; Cox, N.A.; et al. The impact of conservation on the status of the World‘s vertebrates. Science 2010, 330, 1503–1509. [Google Scholar] [CrossRef] [Green Version]
- Pereira, H.M.; Leadley, P.W.; Proença, V.; Alkemade, R.; Scharlemann, J.P.; Fernandez-Manjarrés, J.F.; Araújo, M.B.; Balvanera, P.; Biggs, R.; Cheung, W.W.; et al. Scenarios for global biodiversity in the 21st century. Science 2010, 330, 1496–1501. [Google Scholar] [CrossRef] [Green Version]
- Watson, J.E.M.; Allan, J.R. Protected the Last of the Wild. Nature 2018, 563, 27. [Google Scholar] [CrossRef] [PubMed]
- IPBES. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) Media Release, Nature’s Dangerous Decline ‘Unprecedented‘ Species Extinction Rates ‘Accelerating’; IPBES: Bonn, Germany, 2019. [Google Scholar]
- Sala, O.E.F.S.; Chapin, J.J., III; Armesto, E.; Berlow, J.; Bloomfield, R.; Dirzo, E.; Huber-Sanwald, L.F.; Huenneke, R.B.; Jackson, A.; Kinzig, R.; et al. Global Biodiversity Scenarios for the Year 2100. Science 2010, 287, 1770–1774. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010, 114, 2897–2910. [Google Scholar] [CrossRef]
- Buckley, R.; Zhou, R.; Zhong, L. How Pristine Are China ‘s Parks? Front. Ecol. Evol. 2016, 4, 136. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Xiao, Y.; Zhang, J.; Yang, W.; Zhang, L.; Hull, W.; Wang, Z.; Zheng, H.; Liu, J.; Polasky, S.; et al. Strengthening protected areas for biodiversity and ecosystem services in China. Proc. Natl. Acad. Sci. 2017, 114, 1601–1606. [Google Scholar] [CrossRef] [Green Version]
- Fancy, S.G.; Gross, J.E.; Carter, S.L. Monitoring the condition of natural resources in U.S. National Parks. Environ. Monit. Assess. 2009, 151, 161–174. [Google Scholar] [CrossRef]
- Gross, J.E.; Nemani, R.R.; Turner, W.; Melton, F. Remote sensing for the national parks. Park Sci. 2006, 24, 30–36. [Google Scholar]
- Nagler, P.L.; Glenn, E.P.; Hinojosa-Huerta, O. Synthesis of ground and remote sensing data for monitoring ecosystem functions in the Colorado River Delta, Mexico. Remote Sens. Environ. 2009, 113, 1473–1485. [Google Scholar] [CrossRef]
- Clark, J.; Wang, Y.; August, P. Assessing current and projected suitable habitats for tree-of-heaven along the Appalachian Trail. Philos. Trans. R. Soc. B 2012, 369, 20130192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, B.; Li, Y.; Wang, Y.; Campbell, A.; Zhang, B.; Yin, S.; Zhu, H.; Xing, Z.; Jin, X. Evaluation of riparian condition of Songhua River by integration of remote sensing and field measurements. Sci. Rep. 2017, 7, 2565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dennison, P.E.; Nagler, P.L.; Hultine, K.R.; Glenn, E.P.; Ehleringer, J.R. Remote monitoring of tamarisk defoliation and evapotranspiration following saltcedar leaf beetle attack. Remote Sens. Environ. 2009, 113, 1462–1472. [Google Scholar] [CrossRef]
- Wang, Y.; Moskovits, D.K. Tracking Fragmentation of Natural Communities and Changes in Land Cover: Applications of Landsat Data for Conservation in an Urban Landscape (Chicago Wilderness). Conserv. Biol. 2001, 15, 835–843. [Google Scholar] [CrossRef]
- Sippel, S.; Hamilton, S.; Melack, J. Inundation area and morphometry of lakes on the Amazon river floodplain, Brazil. Arch. Fur Hydrobiol. Stuttg. 1992, 123, 385–400. [Google Scholar]
- Birkett, C. Synergistic remote sensing of Lake Chad: Variability of basin inundation. Remote Sens. Environ. 2000, 72, 218–236. [Google Scholar] [CrossRef]
- Zhang, J.; Xu, K.; Yang, Y.; Qi, L.; Hayashi, S.; Watanabe, M. Measuring water storage fluctuations in lake Dongting, China, by topex/poseidon satellite altimetry. Environ. Monit. Assess. 2006, 115, 23–37. [Google Scholar] [CrossRef]
- Schlaffer, S.; Matgen, P.; Hollaus, M.; Wagner, W. Flood detection from multi-temporal SAR data using harmonic analysis and change detection. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 15–24. [Google Scholar] [CrossRef]
- Smith, L.C.; Sheng, Y.; MacDonald, G.M. A first pan-arctic assessment of the influence of glaciation, permafrost, topography and peatlands on northern hemisphere lake distribution. Permafr. Periglac. Process. 2007, 18, 201–208. [Google Scholar] [CrossRef]
- Matta, E.; Giardino, C.; Boggero, A.; Bresciani, M. Use of satellite and in situ reflectance data for lake water color characterization in the Everest Himalayan region. Mt. Res. Dev. 2017, 37, 16–23. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Zhang, L. Frontiers of Radar Remote Sensing. Photogram. Eng. Remote Sens. 2014, 80, 5–13. [Google Scholar]
- Goetz, S.J.; Jantz, P.; Jantz, C.A. Connectivity of core habitat in the northeastern United States: Parks and protected areas in a landscape context. Remote Sens. Environ. 2009, 113, 1421–1429. [Google Scholar] [CrossRef]
- Crabtree, R.L.; Potter, C.S.; Mullen, R.S.; Sheldon, J.W.; Huang, S.; Harmsen, J.A. A modeling and spatiotemporal analysis framework for monitoring environmentalchange using NPP as an ecosystem indicator. Remote Sens. Environ. 2009, 113, 1486–1496. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.; Schleerweis, K.; Thomas, N.; Goward, S.N. Forest Dynamics within and around Olympic National Park Assessed Using Time Series Landsat Observations. In Remote Sensing of Protected Lands; CRC Press: Boca Raton, FL, USA, 2011; pp. 75–94. [Google Scholar]
- Reed, B.; Budde, M.; Spencer, P.; Miller, A.E. Integration of MODIS-derived metrics to assess interannual variability in snowpack, lake ice, and NDVI in southwest Alaska. Remote Sens. Environ. 2009, 113, 1443–1452. [Google Scholar] [CrossRef]
- Huang, C.; Goward, S.N.; Schleeweis, K.; Thomas, N.; Masek, J.G.; Zhu, Z. Dynamics of national forests assessed using the Landsat record: Case studies in eastern United States. Remote Sens. Environ. 2009, 113, 1430–1442. [Google Scholar] [CrossRef]
- Fraser, R.; Olthof, I.; Pouliot, D. Monitoring land cover change and ecological integrity in Canada‘s national parks. Remote Sens. Environ. 2009, 113, 1397–1409. [Google Scholar] [CrossRef]
- Zorn, P.; Ure, D.; Sharma, R.; O’Grady, S. Using earth observation to monitor species-specific habitat change in the Greater Kejimkujik National Park Region of Canada. In Remote Sensing of Protected Lands; CRC Press: Boca Raton, FL, USA, 2011; pp. 95–110. [Google Scholar]
- Ressl, R.; Lopez, G.; Cruz, I.; Ressl, S.; Schmidt, M.I.; Jiménez, R. Operational active fire mapping and burnt area identification applicable to Mexican nature protection areas using MODIS-DB data. Remote Sens. Environ. 2009, 113, 1113–1126. [Google Scholar] [CrossRef]
- Gillespie, T.W.; Madson, A.; Cusack, C.F.; Xue, Y. Changes in NDVI and human population in protected areas on the Tibetan Plateau. Arct. Antarct. Alp. Res. 2019, 51, 428–439. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Zhang, H.; Wang, Y.; Clark, J. Mapping and assessing typhoon-induced forest disturbance in Changbai Mountain National Nature Reserve using time series Landsat imagery. J. Mt. Sci. 2015, 12, 404–416. [Google Scholar] [CrossRef]
- Chi, H.; Sun, G.; Huang, J.; Li, R.; Ren, X.; Ni, W.; Fu, A. Estimation of Forest Aboveground Biomass in Changbai Mountain Region Using ICESat/GLAS and Landsat/TM Data. Remote Sens. 2017, 9, 707. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.; Alsdorf, D. Automated ortho-rectification of Amazon basin-wide SAR mosaics using SRTM DEM data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1929–1940. [Google Scholar] [CrossRef]
- Arima, E.Y.; Walker, R.T.; Sales, M.; Souza, C., Jr.; Perz, S.G. The fragmentation of space in the Amazon basin: Emergent road networks. Photogram. Eng. Remote Sens. 2008, 74, 699–709. [Google Scholar] [CrossRef]
- Walsh, S.J.; Messina, J.P.; Brown, D.G. Mapping & modeling land use/land cover dynamics in frontier settings. Photogram. Eng. Remote Sens. 2008, 74, 677–679. [Google Scholar]
- Mena, C.F. Trajectories of land-use and land-cover in the northern Ecuadorian Amazon: Temporal composition, spatial configuration, and probability of change. Photogram. Eng. Remote Sens. 2008, 74, 737–751. [Google Scholar] [CrossRef]
- Wang, C.; Qi, J.; Cochrane, M. Assessment of tropical forest degradation with canopy fractional cover from Landsat ETM+ and IKONOS imagery. Earth Interact. 2005, 9, 1–18. [Google Scholar] [CrossRef]
- Wang, C.; Qi, J. Biophysical estimation in tropical forests using JERS-1 SAR and VNIR Imagery: II-aboveground woody biomass. Int. J. Remote Sens. 2008, 29, 6827–6849. [Google Scholar] [CrossRef]
- Sun, G.; Ranson, K.J.; Kharuk, V.I. Radiometric slope correction for forest biomass estimation from SAR data in Western Sayani mountains, Siberia. Remote Sens. Environ. 2002, 79, 279–287. [Google Scholar] [CrossRef]
- Bergen, K.M.; Zhao, T.; Kharuk, V.; Blam, Y.; Brown, D.G.; Peterson, L.K.; Miller, N. Changing regimes: Forested land cover dynamics in central Siberia 1974–2001. Photogram. Eng. Remote Sens. 2008, 74, 787–798. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Ranson, K.J.; Im, S.T. Siberian silkmoth outbreak pattern analysis based on SPOT VEGETATION data. Int. J. Remote Sens. 2009, 30, 2377–2388. [Google Scholar] [CrossRef]
- Stow, D.A.; Hope, A.; McGuire, D.; Verbyla, D.; Gamon, J.; Huemmrich, F.; Houston, S.; Racine, C.; Sturm, M.; Tape, K.; et al. Remote sensing of vegetation and land-cover change in Arctic tundra ecosystems. Remote Sens. Environ. 2004, 89, 281–308. [Google Scholar] [CrossRef] [Green Version]
- Sheng, Y.; Shah, C.A.; Smith, L.C. Automated image registration for hydrologic change detection in the lake-rich arctic. IEEE Geosci. Remote Sens. Lett. 2008, 5, 414–418. [Google Scholar] [CrossRef]
- Sheng, Y.; Li, J. Satellite-observed endorheic lake dynamics across the Tibetan plateau between circa 1976 and 2000. In Remote Sensing of Protected Lands; CRC Press: Boca Raton, FL, USA, 2011; pp. 305–319. [Google Scholar]
- Ranson, K.J.; Sun, G.; Kharuk, V.I.; Howl, J. Multisensor Remote Sensing of Forest Dynamics in Central Siberia. In Remote Sensing of Protected Lands; CRC Press: Boca Raton, FL, USA, 2011; pp. 321–377. [Google Scholar]
- Sherman, N.J.; Loboda, T.V.; Sun, G.; Shugart, H.H. Remote sensing and modeling for assessment of complex Amur (Siberian) Tiger and Amur (Far Eastern) Leopard Habitats in the Russian Far East. In Remote Sensing of Protected Lands; CRC Press: Boca Raton, FL, USA, 2011; pp. 379–407. [Google Scholar]
- Chen, L.; Ren, C.; Li, L.; Wang, Y.; Zhang, B.; Wang, Z.; Li, L. A Comparative Assessment of Geostatistical, Machine Learning, and Hybrid Approaches for Mapping Topsoil Organic Carbon Content. ISPRS Int. J. Geo-Inf. 2019, 8, 174. [Google Scholar] [CrossRef] [Green Version]
- Stabach, J.A.; Dabek, L.; Jensen, R.; Wang, Y.Q. Discrimination of dominant forest types for Matschie’s tree kangaroo conservation in Papua New Guinea using high-resolution remote sensing data. Int. J. Remote Sens. 2009, 30, 405–422. [Google Scholar] [CrossRef]
- Ayebare, S.; Moyer, D.; Plumptre, A.J.; Wang, Y. Remote sensing for biodiversity conservation of the Albertine Rift in Eastern Africa. In Remote Sensing of Protected Lands; CRC Press: Boca Raton, FL, USA, 2011; pp. 183–201. [Google Scholar]
- GAO (U.S. General Accounting Office). Activities Outside Park Borders Have Caused Damage to Resources and Will Likely Cause More; U.S. Government Printing Office GAO/RCED-94-59; GAO: Washington, DC, USA, 1994.
- Hansen, A.J.; DeFries, R. Ecological mechanisms linking protected areas to surrounding lands. Ecol. Appl. 2007, 17, 974–988. [Google Scholar] [CrossRef]
- Svancara, L.; Scott, J.M.; Loveland, T.R.; Pidgorma, A.B. Assessing the landscape context and conversion risk of protected areas using remote-sensing derived data. Remote Sens. Environ. 2009, 113, 1357–1369. [Google Scholar] [CrossRef]
- Wittemyer, G.; Elsen, P.; Bean, W.T.; Burton, A.C.O.; Brashares, J.S. Accelerated human population growth at protected area edges. Science 2008, 321, 123–126. [Google Scholar] [CrossRef] [Green Version]
- Townsend, P.A.; Lookingbill, T.R.; Kingdon, C.C. Spatial pattern analysis for monitoring protected areas. Remote Sens. Environ. 2009, 113, 1410–1420. [Google Scholar] [CrossRef]
- Wiens, J.A.; Sutter, R.D.; Anderson, M.; Blanchard, J.; Barnett, A.; Aguilar-Amuchastegui, N. Selecting and conserving lands for biodiversity: The role of remote sensing. Remote Sens. Environ. 2009, 113, 1370–1381. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.A.; Hansen, A.J.; Bly, K.; Doherty, K.; Verschuyl, J.P.; Paugh, J.I.; Carle, R.; Story, S.J. Monitoring land use and cover around parks: A conceptual approach. Remote Sens. Environ. 2009, 113, 1346–1356. [Google Scholar] [CrossRef]
- Lu, X.; Zhou, Y.; Liu, Y.; Yannick, L.P. The role of protected areas in land use/land cover change and the carbon cycle in the conterminous United States. Glob. Chang. Biol. 2017. [Google Scholar] [CrossRef] [PubMed]
- Edgar, G.J.; Russ, G.R.; Babcock, R.C. Marine protected areas. In Marine Ecology; Oxford University Press: Oxford, UK, 2007; pp. 533–555. [Google Scholar]
- Wedding, L.; Friedlander, A.M. Determining the influence of seascape structure on coral reef fishes in Hawaii using a geospatial approach. Mar. Geod. 2008, 31, 246–266. [Google Scholar] [CrossRef]
- Wedding, L.; Friedlander, A.; McGranaghan, M.; Yost, R.; Monaco, M.E. Using bathymetric Lidar to define nearshore benthic habitat complexity: Implications for management of reef fish assemblages in Hawaii. Remote Sens. Environ. 2008, 112, 4159–4165. [Google Scholar] [CrossRef]
- Friedlander, A.M.; Brown, E.K.; Monaco, M.E. Coupling ecology and GIS to evaluate efficacy of màine protected areas in Hawaii. Ecol. Appl. 2007, 17, 715–730. [Google Scholar] [CrossRef] [Green Version]
- Friedlander, A.M.; Wedding, L.M.; Caselle, J.E.; Costa, B.M. Integration of remote sensing and in situ ecology for the design and evaluation of marine protected areas: Examples from tropical and temperate ecosystems. In Remote Sensing of Protected Lands; CRC Press: Boca Raton, FL, USA, 2011; pp. 245–280. [Google Scholar]
- Wang, Y.; Tobey, J.; Bonynge, G.; Nugranad, J.; Makota, V.; Ngusaru, N.; Traber, M. Involving Geospatial Information in the Analysis of Land Cover Change along Tanzania Coast. Coast. Manag. 2005, 33, 89–101. [Google Scholar] [CrossRef]
- Wang, Y.; Traber, M.; Milestead, B.; Stevens, S. Terrestrial and submerged aquatic vegetation mapping in Fire Island National Seashore using high spatial resolution remote sensing data. Mar. Geod. 2007, 30, 77–95. [Google Scholar] [CrossRef]
- Li, X.; Cheng, X.; Gong, P.; Yan, K. Design and Implementation of a Wireless Sensor Network-Based Remote Water-Level Monitoring System. Sensors 2011, 11, 1706–1720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laliberte, A.S.; Goforth, M.A.; Steele, C.M.; Rango, A. Multispectral Remote Sensing from Unmanned Aircraft: Image Processing Workflows and Applications for Rangeland Environments. Remote Sens. 2011, 3, 2529–2551. [Google Scholar] [CrossRef] [Green Version]
- D‘ Oleire-Oltmanns, S.; Marzolff, I.; Peter, K.D.; Ries, J.B. Unmanned Aerial Vehicle (UAV) for Monitoring Soil Erosion in Morocco. Remote Sens. 2012, 4, 3390–3416. [Google Scholar] [CrossRef] [Green Version]
- Hruska, R.; Mitchell, J.; Anderson, M.; Glenn, N.F. Radiometric and Geometric Analysis of Hyperspectral Imagery Acquired from an Unmanned Aerial Vehicle. Remote Sens. 2012, 4, 2736–2752. [Google Scholar] [CrossRef] [Green Version]
- Harwin, S.; Lucieer, A. Assessing the Accuracy of Georeferenced Point Clouds Produced via Multi-View Stereopsis from Unmanned Aerial Vehicle (UAV) Imagery. Remote Sens. 2012, 4, 1573–1599. [Google Scholar] [CrossRef] [Green Version]
- Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a UAV-LiDAR System with Application to Forest Inventory. Remote Sens. 2012, 4, 1519–1543. [Google Scholar] [CrossRef] [Green Version]
- Campbell, A.; Wang, Y. Examining the Influence of Tidal Stage on Salt Marsh Mapping using High Spatial Resolution Satellite Remote Sensing and Topobathymetric LiDAR. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5169–5176. [Google Scholar] [CrossRef]
- Campbell, A.; Wang, Y. Assessment of salt marsh change on Assateague Island National Seashore between 1962 and 2016. Photogram. Eng. Remote Sens. 2020, 86, 187–194. [Google Scholar] [CrossRef]
- Campbell, A.; Wang, Y.; Christiano, M.; Stevens, S. Salt Marsh Monitoring in Jamaica Bay, New York from 2003 to 2013: A Decade of Change from Restoration to Hurricane Sandy. Remote Sens. 2017, 9, 131. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, S.J.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2016, 202, 18–27. [Google Scholar] [CrossRef]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–422. [Google Scholar] [CrossRef]
- Sengupta, D.; Chen, R.; Meadows, M.E.; Choi, Y.R.; Banerjee, A.; Zilong, X. Mapping Trajectories of Coastal Land Reclamation in Nine Deltaic Megacities using Google Earth Engine. Remote Sens. 2019, 11, 2621. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Qiu, C.; Ma, L.; Schmitt, M.; Zhu, X.X. Mapping the Land Cover of Africa at 10 m Resolution from Multi-Source Remote Sensing Data with Google Earth Engine. Remote Sens. 2020, 12, 602. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, A.; Chen, R.E.; Meadows, M.; Singh, R.; Mal, S.; Sengupta, D. An Analysis of Long-Term Rainfall Trends and Variability in the Uttarakhand Himalaya Using Google Earth Engine. Remote Sens. 2020, 12, 709. [Google Scholar] [CrossRef] [Green Version]
- Campbell, A.; Wang, Y. Salt marsh monitoring along the Mid-Atlantic coast by Google Earth Engine enabled time series. PLoS ONE 2020, 15, e0229605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, D.R.; Belcher, R.N. Global Changes in Urban Vegetation Cover. Remote Sens. 2020, 12, 23. [Google Scholar] [CrossRef] [Green Version]
- Stromann, O.; Nascetti, A.; Yousif, O.; Ban, Y. Dimensionality Reduction and Feature Selection for Object-Based Land Cover Classification based on Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine. Remote Sens. 2020, 12, 76. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Dong, X.; Liu, Z.; Gao, W.; Hu, Z.; Wu, G. Mapping Tidal Flats with Landsat 8 Images and Google Earth Engine: A Case Study of the China ‘s Eastern Coastal Zone circa 2015. Remote Sens. 2019, 11, 924. [Google Scholar] [CrossRef] [Green Version]
- Barnosky, A.D.; Hadly, E.A.; Bascompte, J.; Berlow, E.L.; Brown, J.H.; Fortelius, M.; Getz, W.M.; Harte, J.; Hastings, A.; Marquet, P.A.; et al. Approaching a state shift in Earth‘s biosphere. Nature 2012, 486, 52–58. [Google Scholar] [CrossRef]
- Urban, M.C. Accelerating extinction risk from climate change. Science 2015, 348, 571–573. [Google Scholar] [CrossRef] [Green Version]
- Wernberg, T.; Bennett, S.; Babcock, R.C.; de Bettignies, T.; Cure, K.; Depczynski, M.; Dufois, F.; Fromont, J.; Fulton, C.J.; Hovey, R.K.; et al. Climate-driven regime shift of a temperate marine ecosystem. Science 2016, 353, 169–172. [Google Scholar] [CrossRef] [Green Version]
- Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B 2018, 285, 20180792. [Google Scholar] [CrossRef] [PubMed]
- Warren, R.; Price, J.; Graham, E.; Forstenhaeusler, N.; VanDerWal, J. The projected effect on insects, vertebrates, and plants of limiting global warming to 1.5 °C rather than 2 °C. Science 2018, 360, 791–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trisos, C.H.; Merow, C.; Pigot, A.L. The projected timing of abrupt ecological disruption from climate change. Nature 2020. [Google Scholar] [CrossRef] [PubMed]
- Thomas, C.; Gillingham, P.K. The performance of protected areas for biodiversity under climate change. Biol. J. Linn. Soc. 2015, 115, 718–730. [Google Scholar] [CrossRef]
- Hockings, M.; Stolton, S.; Leverington, F.; Dudley, N.; Courrau, J. Evaluating Effectiveness: A Framework for Assessing Management Effectiveness of Protected Areas, 2nd ed.; IUCN: Gland, Switzerland; Cambridge, UK, 2006; p. 105. [Google Scholar]
- Campbell, A.; Wang, Y. High Spatial Resolution Remote Sensing for Salt Marsh Mapping and Change Analysis at Fire Island National Seashore. Remote Sens. 2019, 11, 1107. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Ngusaru, A.; Tobey, J.; Makota, V.; Bonynge, G.; Nugranad, J.; Traber, M.; Hale, L.; Bowen, R. Remote Sensing of Mangrove Change Along the Tanzania Coast. Mar. Geod. 2003, 26, 35–48. [Google Scholar] [CrossRef]
- Gross, J.E.; Hansen, A.J.; Goetz, S.J.; Theobald, D.M.; Melton, F.M.; Piekielek, N.B.; Nemani, R.R. Remote Sensing for Inventory and Monitoring of U.S. National Parks. In Remote Sensing of Protected Lands; CRC Press: Boca Raton, FL, USA, 2011; pp. 29–56. [Google Scholar]
- Nemani, R.R.; Hashimoto, H.; Votava, P.; Melton, F.; White, M.; Wang, W.; Michaelis, A.; Mutch, L.; Milesi, C.; Hiatt, S.; et al. Monitoring and forecasting ecosystem dynamics using the using the Terrestrial Observation and Prediction System (TOPS). Remote Sens. Environ. 2009, 113, 1497–1509. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, Y.; Hashimoto, H.; Melton, F.S.; Hiatt, S.H.; Zhang, H.; Nemani, R.R. The variation of land surface phenology from 1982 to 2006 along the Appalachian Trail. IEEE Trans. Geosci. Remote Sens. 2012, 51, 2087–2095. [Google Scholar] [CrossRef]
- Meng, L.; Zhou, Y.; Lia, X.; Asrar, G.R.; Mao, J.; Alan, D.; Wanamaker, A.D., Jr.; Wang, Y. Divergent responses of spring phenology to daytime and nighttime warming. Agric. For. Meteorol. 2020, 281, 107832. [Google Scholar] [CrossRef]
- Mao, D.; Wang, Z.; Dua, B.; Li, L.; Tian, Y.; Jia, M.; Zeng, Y.; Song, K.; Jiang, M.; Wang, Y. National wetland mapping in China: A new product resulting from object based and hierarchical classification of Landsat 8 OLI images. ISPRS J. Photogramm. Remote Sens. 2020, 164, 11–25. [Google Scholar] [CrossRef]
- Wang, Y. Coastal Environments: Remote Sensing. In Coastal and Marine Environments, the Handbook of Natural Resources, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2020; pp. 267–276. [Google Scholar]
- Wang, Y.; Yésou, H. Remote Sensing of Floodpath Lakes and Wetlands: A Challenging Frontier in the Monitoring of Changing Environments. Remote Sens. 2018, 10, 1955. [Google Scholar] [CrossRef] [Green Version]
- Popkin, G. U.S. government considers charging for popular earth-observing data. Nature 2018, 556, 417–418. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Smith, S.J.; Zhao, K.; Imhoff, M.; Thomson, A.; Bond-Lamberty, B.; Asrar, G.R.; Zhang, X.; He, C.; Elvidge, C.D. A global map of urban extent from nightlights. Environ. Res. Lett. 2015, 10, 054011. [Google Scholar] [CrossRef]
- Fan, L.; Zhao, J.; Wang, Y.; Ren, Z.; Zhang, H.; Guo, X. Assessment of Night-Time Lighting for Global Terrestrial Protected and Wilderness Areas. Remote Sens. 2019, 11, 2699. [Google Scholar] [CrossRef] [Green Version]
- Bei, X.; Yao, Y.; Zhang, L.; Xu, T.; Jia, K.; Zhang, X.; Shang, K.; Xu, J.; Chen, X. Long-Term Spatiotemporal Dynamics of Terrestrial Biophysical Variables in the Three-River Headwaters Region of China from Satellite and Meteorological Datasets. Remote Sens. 2019, 11, 1633. [Google Scholar] [CrossRef] [Green Version]
- Fang, L.; Crocker, E.V.; Yang, J.; Yan, Y.; Yang, Y.; Liu, Z. Competition and Burn Severity Determine Post-Fire Sapling Recovery in a Nationally Protected Boreal Forest of China: An Analysis from Very High-Resolution Satellite Imagery. Remote Sens. 2019, 11, 603. [Google Scholar] [CrossRef] [Green Version]
- Guirado, E.; Blanco-Sacristán, J.; Rigol-Sánchez, J.P.; Alcaraz-Segura, D.; Cabello, J. A Multi-Temporal Object-Based Image Analysis to Detect Long-Lived Shrub Cover Changes in Drylands. Remote Sens. 2019, 11, 2649. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Ren, C.; Zhang, B.; Wang, Z.; Wang, Y. Mapping Spatial Variations of Structure and Function Parameters for Forest Condition Assessment of the Changbai Mountain National Nature Reserve. Remote Sens. 2019, 11, 3004. [Google Scholar] [CrossRef] [Green Version]
- Han, Y.; Li, Z.; Huang, C.; Zhou, Y.; Zong, S.; Hao, T.; Niu, H.; Yao, H. Monitoring Droughts in the Greater Changbai Mountains Using Multiple Remote Sensing-Based Drought Indices. Remote Sens. 2020, 12, 530. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Huang, F.; Qin, L.; Qi, H.; Sun, N. Spatio-Temporal Variations of Carbon Use Efficiency in Natural Terrestrial Ecosystems and the Relationship with Climatic Factors in the Songnen Plain, China. Remote Sens. 2019, 11, 2513. [Google Scholar] [CrossRef] [Green Version]
- Lu, C.; Ren, C.; Wang, Z.; Zhang, B.; Man, W.; Yu, H.; Gao, Y.; Liu, M. Monitoring and Assessment of Wetland Loss and Fragmentation in the Cross-Boundary Protected Area: A Case Study of Wusuli River Basin. Remote Sens. 2019, 11, 2581. [Google Scholar] [CrossRef] [Green Version]
- Shirvani, Z. A Holistic Analysis for Landslide Susceptibility Mapping Applying Geographic Object-Based Random Forest: A Comparison between Protected and Non-Protected Forests. Remote Sens. 2020, 12, 434. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Gao, C.; Wang, Y. Extraction of Spatial and Temporal Patterns of Concentrations of Chlorophyll-a and Total Suspended Matter in Poyang Lake Using GF-1 Satellite Data. Remote Sens. 2020, 12, 622. [Google Scholar] [CrossRef] [Green Version]
- Duan, P.; Wang, Y.; Yin, P. Remote Sensing Applications in Monitoring of Protected Areas: A Bibliometric Analysis. Remote Sens. 2020, 12, 772. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y. Protected Areas: Remote Sensing. In Landscape and Land Capacity, the Handbook of Natural Resources, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2020; pp. 75–84. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Lu, Z.; Sheng, Y.; Zhou, Y. Remote Sensing Applications in Monitoring of Protected Areas. Remote Sens. 2020, 12, 1370. https://doi.org/10.3390/rs12091370
Wang Y, Lu Z, Sheng Y, Zhou Y. Remote Sensing Applications in Monitoring of Protected Areas. Remote Sensing. 2020; 12(9):1370. https://doi.org/10.3390/rs12091370
Chicago/Turabian StyleWang, Yeqiao, Zhong Lu, Yongwei Sheng, and Yuyu Zhou. 2020. "Remote Sensing Applications in Monitoring of Protected Areas" Remote Sensing 12, no. 9: 1370. https://doi.org/10.3390/rs12091370
APA StyleWang, Y., Lu, Z., Sheng, Y., & Zhou, Y. (2020). Remote Sensing Applications in Monitoring of Protected Areas. Remote Sensing, 12(9), 1370. https://doi.org/10.3390/rs12091370