Improving Land Cover Classification Using Extended Multi-Attribute Profiles (EMAP) Enhanced Color, Near Infrared, and LiDAR Data
Abstract
:1. Introduction
2. Methods and Data
2.1. Land Cover Classification Methods
2.1.1. Matched Subspace Detection (MSD)
2.1.2. Adaptive Subspace Detection (ASD)
2.1.3. Reed-Xiaoli Detection (RXD)
2.1.4. Kernel MSD (KMSD)
2.1.5. Kernel ASD (KASD)
2.1.6. Kernel RXD (KRXD)
2.1.7. Sparse Representation (SR)
2.1.8. Joint Sparse Representation (JSR)
2.1.9. Support Vector Machine (SVM)
2.2. EMAP
2.3. Dataset Used
2.4. Evaluation Metrics
3. Land Cover Classification Results
3.1. Results
3.1.1. Results of Using Narrow Bands
3.1.2. Comparison with Khodadadzadeh et al.’s Results [23]
3.1.3. Comparison with Liao et al.’s Results
3.1.4. Wide RGB and NIR Bands
3.2. Discussion
3.2.1. Full Hyperspectral Data vs. Synthetic Bands
3.2.2. EMAP Based Augmentation vs. Deep Learning
3.3. Potential of Using Object Based Approaches
4. Conclusions and Future Directions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Lee, C.M.; Cable, M.L.; Hook, S.J.; Green, R.O.; Ustin, S.L.; Mandl, D.J.; Middleton, E.M. An introduction to the NASA Hyperspectral InfraRed Imager (HyspIRI) mission and preparatory activities. Remote. Sens. Environ. 2015, 167, 6–19. [Google Scholar] [CrossRef]
- AVIRIS. Available online: https://aviris.jpl.nasa.gov/aviris/index.html (accessed on 18 December 2019).
- Ayhan, B.; Kwan, C.; Jensen, J.O. Remote vapor detection and classification using hyperspectral images. In Proceedings of the Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XX, Bellingham, WA, USA, 25 July 2019. [Google Scholar]
- Harsanyi, J.C.; Chang, C.-I. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE Trans. Geosci. Remote. Sens. 1994, 32, 779–785. [Google Scholar] [CrossRef] [Green Version]
- Heinz, D.; Chang, C.-I. Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote. Sens. 2001, 39, 529–545. [Google Scholar] [CrossRef] [Green Version]
- Dao, M.; Kwan, C.; Ayhan, B.; Tran, T.D. Burn scar detection using cloudy MODIS images via low-rank and sparsity-based models. In Proceedings of the 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington, DC, USA, 7–9 December 2016; pp. 177–181. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Dennison, P.; Gitas, I.; Hulley, G.; Kalashnikova, O.; Katagis, T.; Kuai, L.; Meng, R.; Roberts, D.; Stavros, N. Hyperspectral remote sensing of fire: State-of-the-art and future perspectives. Remote. Sens. Environ. 2018, 216, 105–121. [Google Scholar] [CrossRef]
- Wang, W.; Li, S.; Qi, H.; Ayhan, B.; Kwan, C.; Vance, S. Identify anomaly componentbysparsity and low rank. In Proceedings of the 2015 7th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Tokyo, Japan, 2–5 June 2015; pp. 1–4. [Google Scholar] [CrossRef]
- Chang, C.-I. Hyperspectral Imaging; Springer: New York, NY, USA, 2003. [Google Scholar]
- Li, S.; Wang, W.; Qi, H.; Ayhan, B.; Kwan, C.; Vance, S. Low-rank tensor decomposition based anomaly detection for hyperspectral imagery. In Proceedings of the 2015 IEEE International Conference on Image Processing (ICIP), Quebec City, QC, Canada, 27–30 September 2015; pp. 4525–4529. [Google Scholar]
- Yang, Y.; Zhang, J.; Song, S.; Liu, D. Hyperspectral Anomaly Detection via Dictionary Construction-Based Low-Rank Representation and Adaptive Weighting. Remote. Sens. 2019, 11, 192. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Guo, R.; Wang, W.; Qi, H.; Ayhan, B.; Kwan, C.; Vance, S. Anomaly detection in hyperspectral images through spectral unmixing and low rank decomposition. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 1855–1858. [Google Scholar] [CrossRef]
- Li, F.; Zhang, L.; Zhang, X.; Chen, Y.; Jiang, D.; Zhao, G.; Zhang, Y. Structured Background Modeling for Hyperspectral Anomaly Detection. Sensors 2018, 18, 3137. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Qi, H.; Ayhan, B.; Kwan, C.; Kidd, R. DOES multispectral/hyperspectral pansharpening improve the performance of anomaly detection? In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 6130–6133. [Google Scholar] [CrossRef]
- Kwan, C.; Ayhan, B.; Chen, G.; Wang, J.; Ji, B.; Chang, C.-I. A novel approach for spectral unmixing, classification, and concentration estimation of chemical and biological agents. IEEE Trans. Geosci. Remote. Sens. 2006, 44, 409–419. [Google Scholar] [CrossRef]
- Dao, M.; Kwan, C.; Koperski, K.; Marchisio, G. A joint sparsity approach to tunnel activity monitoring using high resolution satellite images. In Proceedings of the 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New York, NY, USA, 19–21 October 2017; pp. 322–328. [Google Scholar] [CrossRef]
- Radke, R.; Andra, S.; Al-Kofahi, O.; Roysam, B. Image change detection algorithms: A systematic survey. IEEE Trans. Image Process. 2005, 14, 294–307. [Google Scholar] [CrossRef]
- Ilsever, M.; Ünsalan, C. Two-Dimensional Change Detection Methods; Springer Science and Business Media LLC: London, UK, 2012. [Google Scholar]
- Zhou, J.; Kwan, C.; Ayhan, B.; Eismann, M.T. A Novel Cluster Kernel RX Algorithm for Anomaly and Change Detection Using Hyperspectral Images. IEEE Trans. Geosci. Remote. Sens. 2016, 54, 6497–6504. [Google Scholar] [CrossRef]
- Bovolo, F.; Bruzzone, L. The Time Variable in Data Fusion: A Change Detection Perspective. IEEE Geosci. Remote. Sens. Mag. 2015, 3, 8–26. [Google Scholar] [CrossRef]
- Kwan, C.; Haberle, C.; Echavarren, A.; Ayhan, B.; Chou, B.; Budavari, B.; Dickenshied, S. Mars Surface Mineral Abundance Estimation Using THEMIS and TES Images. In Proceedings of the 2018 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 8–9 November 2018. [Google Scholar]
- CRISM. Available online: http://crism.jhuapl.edu/ (accessed on 18 December 2019).
- Khodadadzadeh, M.; Li, J.; Prasad, S.; Plaza, J. Fusion of Hyperspectral and LiDAR Remote Sensing Data Using Multiple Feature Learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2015, 8, 2971–2983. [Google Scholar] [CrossRef]
- Liao, W.; Pižurica, A.; Bellens, R.; Gautama, S.; Philips, W. Generalized Graph-Based Fusion of Hyperspectral and LiDAR Data Using Morphological Features. IEEE Geosci. Remote. Sens. Lett. 2014, 12, 552–556. [Google Scholar] [CrossRef]
- Kwan, C. Remote Sensing Performance Enhancement in Hyperspectral Images. Sensors 2018, 18, 3598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dao, M.; Kwan, C.; Bernabe, S.; Plaza, J.; Koperski, K. A Joint Sparsity Approach to Soil Detection Using Expanded Bands of WV-2 Images. IEEE Geosci. Remote. Sens. Lett. 2019, 16, 1869–1873. [Google Scholar] [CrossRef]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2018, 40, 834–848. [Google Scholar] [CrossRef]
- Badrinarayanan, V.; Badrinarayanan, V.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2481–2495. [Google Scholar] [CrossRef]
- Zhao, H.; Shi, J.; Qi, X.; Wang, X.; Jia, J. Pyramid Scene Parsing Network. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 6230–6239. [Google Scholar]
- Zhou, B.; Zhao, H.; Puig, X.; Fidler, S.; Barriuso, A.; Torralba, A. Scene Parsing through ADE20K Dataset. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017; pp. 5122–5130. [Google Scholar]
- Ayhan, B.; Kwan, C. Tree, Shrub, and Grass Classification Using Only RGB Images. Remote. Sens. 2020, 12, 1333. [Google Scholar] [CrossRef] [Green Version]
- Nasrabadi, N.M. Kernel-Based Spectral Matched Signal Detectors for Hyperspectral Target Detection. In Proceedings of the Computer Vision; Springer Science and Business Media LLC: London, UK, 2007; Volume 4815, pp. 67–76. [Google Scholar]
- Nguyen, D.; Kwan, C.; Ayhan, B. A comparative study of several supervised target detection algorithms for hyperspectral images. In Proceedings of the 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON), New York, NY, USA, 19–21 October 2017; pp. 192–196. [Google Scholar] [CrossRef]
- Kwon, H.; Nasrabadi, N. Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery. IEEE Trans. Geosci. Remote. Sens. 2005, 43, 388–397. [Google Scholar] [CrossRef]
- Burges, C.J. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Qian, T.; Li, X.; Ayhan, B.; Xu, R.; Kwan, C.; Griffin, T. Application of Support Vector Machines to Vapor Detection and Classification for Environmental Monitoring of Spacecraft; Springer Science and Business Media LLC: London, UK, 2006; Volume 3973, pp. 1216–1222. [Google Scholar]
- Bernabé, S.; Marpu, P.; Plaza, J.; Mura, M.D.; Benediktsson, J.A. Spectral–Spatial Classification of Multispectral Images Using Kernel Feature Space Representation. IEEE Geosci. Remote. Sens. Lett. 2014, 11, 288–292. [Google Scholar] [CrossRef]
- Bernabé, S.; Marpu, P.; Benediktsson, J.A. Spectral unmixing of multispectral satellite images with dimensionality expansion using morphological profiles. In Proceedings of the Satellite Data Compression, Communications, and Processing VIII, San Diego, CA, USA, 12–13 August 2012. [Google Scholar] [CrossRef]
- Mura, M.D.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Morphological Attribute Profiles for the Analysis of Very High Resolution Images. IEEE Trans. Geosci. Remote. Sens. 2010, 48, 3747–3762. [Google Scholar] [CrossRef]
- Mura, M.D.; Benediktsson, J.A.; Waske, B.; Bruzzone, L. Extended profiles with morphological attribute filters for the analysis of hyperspectral data. Int. J. Remote. Sens. 2010, 31, 5975–5991. [Google Scholar] [CrossRef]
- Sun, W.; Du, Q. Hyperspectral Band Selection: A Review. IEEE Geosci. Remote. Sens. Mag. 2019, 7, 118–139. [Google Scholar] [CrossRef]
- Spectral Responses of RGB and NIR Bands. Available online: https://www.spectraldevices.com/content/multispectral-imaging-technology (accessed on 27 April 2020).
- Debes, C.; Merentitis, A.; Heremans, R.; Hahn, J.; Frangiadakis, N.; Van Kasteren, T.; Liao, W.; Bellens, R.; Pižurica, A.; Gautama, S.; et al. Hyperspectral and LiDAR Data Fusion: Outcome of the 2013 GRSS Data Fusion Contest. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2014, 7, 2405–2418. [Google Scholar] [CrossRef]
- Lu, Y.; Perez, D.; Dao, M.; Kwan, C.; Li, J. Deep Learning with Synthetic Hyperspectral Images for Improved Soil Detection in Multispectral Imagery. In Proceedings of the 2018 9th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), New York, NY, USA, 8–9 November 2018; pp. 666–672. [Google Scholar]
- Deep-Learning-for-HSI-Classification. Available online: https://github.com/luozm/Deep-Learning-for-HSI-classification (accessed on 27 April 2020).
- Ma, L.; Li, M.; Ma, X.; Cheng, L.; Du, P.; Liu, Y. A review of supervised object-based land-cover image classification. ISPRS J. Photogramm. Remote. Sens. 2017, 130, 277–293. [Google Scholar] [CrossRef]
- Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote. Sens. 2010, 65, 2–16. [Google Scholar] [CrossRef] [Green Version]
Class | ||||
---|---|---|---|---|
Name | Number | Color Legend | Samples | |
Train | Test | |||
Healthy grass | 1 | 198 | 1053 | |
Stressed grass | 2 | 190 | 1064 | |
Synthetic grass | 3 | 192 | 505 | |
Tree | 4 | 188 | 1056 | |
Soil | 5 | 186 | 1056 | |
Water | 6 | 182 | 143 | |
Residential | 7 | 196 | 1072 | |
Commercial | 8 | 191 | 1053 | |
Road | 9 | 193 | 1059 | |
Highway | 10 | 191 | 1036 | |
Railway | 11 | 181 | 1054 | |
Parking lot 1 | 12 | 192 | 1041 | |
Parking lot 2 | 13 | 184 | 285 | |
Tennis court | 14 | 181 | 247 | |
Running track | 15 | 181 | 473 | |
1–15 | 2832 | 12197 |
Dataset Label | Short Label | Bands Present in the Corresponding Dataset |
---|---|---|
RGBNIR | DS-4 | RGB and the NIR bands (respectively bands # 60, # 30, # 22 and # 103 in the hyperspectral data). |
RGBNIR_LiDAR | DS-5 | RGB and the NIR bands; LiDAR data |
EMAP_RGBNIR | DS-44 | RGB and the NIR bands. 40 bands obtained by EMAP augmentation applied to RGB and the NIR bands. |
EMAP_RGBNIR_LiDAR | DS-55 | RGB and the NIR bands; LiDAR data; 50 bands obtained by EMAP augmentation applied to RGB, NIR and LiDAR. |
HYPER | DS-144 | Hyperspectral data set |
HYPER_LiDAR | DS-145 | Hyperspectral data set; LiDAR data |
OA | DS-4 | DS-5 | DS-44 | DS-55 | DS-144 | DS-145 |
---|---|---|---|---|---|---|
ASD | 4.28 | 0.07 | 27.89 | 56.92 | 37.37 | 38.38 |
MSD | 0.11 | 4.16 | 48.65 | 67.55 | 55.56 | 55.57 |
RXD | 28.93 | 38.87 | 46.09 | 33.29 | 42.69 | 42.71 |
KASD | 6.16 | 7.99 | 79.70 | 81.28 | 53.57 | 53.26 |
KMSD | 26.32 | 39.15 | 69.26 | 51.40 | 53.61 | 53.10 |
KRXD | 5.72 | 7.82 | 64.14 | 38.53 | 71.79 | 71.79 |
SR | 39.99 | 42.9 | 64.4 | 70.97 | 57.46 | 57.46 |
JSR | 59.83 | 70.81 | 80.77 | 86.86 | 72.57 | 59.04 |
SVM | 70.43 | 74.62 | 82.64 | 86.00 | 78.68 | 81.76 |
AA | DS-4 | DS-5 | DS-44 | DS-55 | DS-144 | DS-145 |
---|---|---|---|---|---|---|
ASD | 0.70 | 3.80 | 65.40 | 67.39 | 33.83 | 47.68 |
MSD | 0.34 | 2.42 | 56.39 | 72.68 | 59.45 | 58.71 |
RXD | 39.53 | 43.83 | 56.30 | 32.67 | 49.04 | 47.84 |
KASD | 6.16 | 6.80 | 83.51 | 81.43 | 50.29 | 60.92 |
KMSD | 41.34 | 48.98 | 68.23 | 58.22 | 65.89 | 56.06 |
KRXD | 6.49 | 6.65 | 78.63 | 53.17 | 75.85 | 76.21 |
SR | 44.24 | 46.86 | 69.82 | 74.58 | 61.72 | 61.72 |
JSR | 60.19 | 71.21 | 83.27 | 88.45 | 74.80 | 60.90 |
SVM | 70.74 | 73.12 | 85.61 | 86.48 | 81.16 | 81.04 |
Kappa | DS-4 | DS-5 | DS-44 | DS-55 | DS-144 | DS-145 |
---|---|---|---|---|---|---|
ASD | −0.02 | 0.01 | 0.21 | 0.53 | 0.33 | 0.38 |
MSD | −0.04 | −0.01 | 0.45 | 0.65 | 0.52 | 0.56 |
RXD | 0.23 | 0.34 | 0.42 | 0.28 | 0.38 | 0.38 |
KASD | −0.01 | 0.001 | 0.78 | 0.80 | 0.50 | 0.496 |
KMSD | 0.22 | 0.35 | 0.67 | 0.48 | 0.50 | 0.4912 |
KRXD | −0.01 | 0.01 | 0.62 | 0.33 | 0.70 | 0.70 |
SR | 0.358 | 0.390 | 0.615 | 0.685 | 0.541 | 0.541 |
JSR | 0.567 | 0.684 | 0.791 | 0.857 | 0.704 | 0.557 |
SVM | 0.704 | 0.750 | 0.812 | 0.859 | 0.765 | 0.864 |
ASD | MSD | RXD | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DS-4 | DS-5 | DS-44 | DS-55 | DS-144 | DS-145 | DS-4 | DS-5 | DS-44 | DS-55 | DS-144 | DS-145 | DS-4 | DS-5 | DS-44 | DS-55 | DS-144 | DS-145 | |
1-Healthy grass | 0.00 | 0.00 | 43.97 | 66.00 | 75.78 | 75.78 | 0.00 | 0.00 | 13.01 | 55.46 | 51.28 | 51.28 | 83.10 | 83.00 | 42.26 | 34.09 | 60.59 | 60.68 |
2-Stressed grass | 0.00 | 0.09 | 13.91 | 4.04 | 42.29 | 44.08 | 0.00 | 0.00 | 23.50 | 43.98 | 84.68 | 84.68 | 0.00 | 0.00 | 44.08 | 8.27 | 80.73 | 80.73 |
3-Synthetic grass | 0.00 | 0.00 | 11.09 | 99.41 | 100.0 | 100.0 | 0.00 | 98.81 | 100.0 | 100.0 | 100.0 | 100.0 | 99.01 | 98.81 | 100.0 | 100.0 | 82.18 | 82.18 |
4-Trees | 0.00 | 0.00 | 43.18 | 83.62 | 45.83 | 47.16 | 0.00 | 0.00 | 78.22 | 75.38 | 54.45 | 54.45 | 4.73 | 91.19 | 71.02 | 45.93 | 45.45 | 45.45 |
5-Soil | 0.00 | 0.19 | 21.40 | 27.75 | 27.75 | 25.57 | 0.00 | 0.00 | 80.40 | 92.80 | 98.30 | 98.30 | 98.77 | 98.20 | 87.88 | 58.05 | 99.62 | 99.62 |
6-Water | 0.00 | 0.00 | 0.00 | 91.61 | 89.51 | 89.51 | 0.00 | 0.00 | 65.73 | 79.72 | 82.52 | 82.52 | 56.64 | 56.64 | 67.83 | 78.32 | 71.33 | 71.33 |
7-Residential | 0.00 | 0.09 | 92.63 | 67.63 | 12.50 | 12.22 | 0.00 | 0.00 | 32.93 | 73.79 | 67.44 | 67.54 | 10.35 | 20.24 | 14.09 | 0.28 | 46.74 | 46.74 |
8-Commercial | 0.00 | 0.00 | 57.08 | 80.06 | 59.64 | 66.29 | 0.00 | 0.00 | 20.13 | 46.06 | 49.10 | 49.10 | 37.51 | 51.57 | 42.92 | 53.56 | 21.84 | 21.84 |
9-Road | 0.00 | 40.98 | 0.38 | 68.84 | 11.80 | 13.88 | 0.00 | 0.19 | 29.65 | 43.63 | 39.47 | 39.47 | 0.00 | 0.00 | 0.00 | 0.00 | 5.57 | 5.57 |
10-Highway | 0.00 | 44.02 | 6.37 | 44.31 | 5.60 | 6.66 | 0.00 | 0.00 | 41.60 | 68.15 | 41.70 | 41.70 | 0.00 | 0.00 | 45.17 | 1.35 | 9.07 | 9.07 |
11-Railway | 4.65 | 0.00 | 0.28 | 33.49 | 6.93 | 6.74 | 0.38 | 0.00 | 64.23 | 94.50 | 23.06 | 23.06 | 0.00 | 0.00 | 31.88 | 19.54 | 5.12 | 5.22 |
12-Parking lot 1 | 0.00 | 0.00 | 10.57 | 39.48 | 13.26 | 15.66 | 0.00 | 0.00 | 42.75 | 46.78 | 9.41 | 9.41 | 0.00 | 0.00 | 28.34 | 37.18 | 3.55 | 3.55 |
13-Parking lot 2 | 0.00 | 0.35 | 22.11 | 57.89 | 51.23 | 51.93 | 0.00 | 2.46 | 58.25 | 58.25 | 8.42 | 8.42 | 0.00 | 18.95 | 40.35 | 54.04 | 15.44 | 15.44 |
14-Tennis Court | 0.00 | 0.00 | 45.75 | 97.98 | 74.90 | 74.90 | 3.64 | 0.00 | 99.60 | 98.79 | 72.06 | 72.06 | 0.00 | 0.00 | 55.87 | 39.27 | 72.06 | 72.06 |
15-Running Track | 100.0 | 0.00 | 21.14 | 99.15 | 87.32 | 84.78 | 0.00 | 0.00 | 90.70 | 96.19 | 98.73 | 98.73 | 100.0 | 100.0 | 100.0 | 100.0 | 98.10 | 98.10 |
KASD | KMSD | KRXD | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DS-4 | DS-5 | DS-44 | DS-55 | DS-144 | DS-145 | DS-4 | DS-5 | DS-44 | DS-55 | DS-144 | DS-145 | DS-4 | DS-5 | DS-44 | DS-55 | DS-144 | DS-145 | |
1-Healthy grass | 4.94 | 7.31 | 80.25 | 83.00 | 80.91 | 81.01 | 28.02 | 45.58 | 82.91 | 65.81 | 97.25 | 97.44 | 3.89 | 1.33 | 29.06 | 13.20 | 80.82 | 80.82 |
2-Stressed grass | 4.42 | 0.66 | 71.33 | 71.52 | 61.84 | 61.94 | 13.44 | 33.55 | 74.25 | 48.68 | 59.02 | 59.87 | 10.53 | 1.50 | 73.68 | 45.39 | 80.92 | 80.92 |
3-Synthetic grass | 1.39 | 3.17 | 99.60 | 100.0 | 99.41 | 99.60 | 55.64 | 89.31 | 100.0 | 89.70 | 78.81 | 79.01 | 2.18 | 0.00 | 87.13 | 0.00 | 99.80 | 99.80 |
4-Trees | 6.72 | 2.37 | 91.76 | 91.76 | 91.86 | 92.52 | 47.06 | 59.38 | 91.67 | 20.08 | 80.02 | 80.40 | 14.87 | 2.84 | 64.77 | 0.85 | 93.66 | 93.66 |
5-Soil | 4.36 | 0.95 | 98.96 | 96.69 | 72.63 | 72.73 | 21.31 | 38.64 | 73.39 | 65.34 | 82.95 | 82.86 | 3.69 | 2.75 | 87.78 | 74.34 | 97.92 | 97.92 |
6-Water | 15.38 | 3.50 | 95.80 | 97.20 | 100.0 | 100.0 | 42.66 | 68.53 | 94.41 | 93.01 | 79.02 | 81.12 | 6.29 | 5.59 | 53.15 | 0.00 | 95.10 | 95.10 |
7-Residential | 0.84 | 20.71 | 91.79 | 90.67 | 61.01 | 59.70 | 18.38 | 31.44 | 61.47 | 29.20 | 45.62 | 45.62 | 4.57 | 1.49 | 64.65 | 4.29 | 79.20 | 79.20 |
8-Commercial | 9.31 | 1.61 | 46.53 | 73.12 | 44.92 | 43.87 | 24.98 | 25.17 | 37.80 | 25.07 | 20.51 | 21.18 | 6.93 | 35.14 | 25.26 | 53.75 | 30.48 | 30.48 |
9-Road | 2.93 | 11.05 | 75.64 | 80.55 | 21.15 | 21.62 | 21.25 | 31.73 | 55.43 | 36.64 | 39.00 | 32.29 | 3.97 | 35.22 | 73.75 | 71.48 | 67.52 | 67.52 |
10-Highway | 13.90 | 2.03 | 66.70 | 45.46 | 11.39 | 12.07 | 16.22 | 21.53 | 61.10 | 66.22 | 29.05 | 29.83 | 7.34 | 0.39 | 55.02 | 36.20 | 43.73 | 43.73 |
11-Railway | 6.36 | 40.61 | 76.38 | 83.97 | 11.39 | 11.86 | 16.89 | 22.87 | 73.62 | 67.17 | 37.10 | 39.28 | 2.18 | 0.76 | 72.30 | 61.76 | 63.19 | 63.19 |
12-Parking lot 1 | 9.61 | 1.63 | 73.68 | 74.64 | 23.25 | 22.00 | 21.90 | 27.76 | 54.47 | 43.71 | 24.98 | 22.00 | 2.59 | 5.28 | 64.17 | 29.30 | 45.44 | 45.44 |
13-Parking lot 2 | 5.96 | 2.11 | 71.93 | 72.28 | 65.26 | 65.61 | 25.61 | 33.33 | 27.72 | 16.49 | 18.60 | 13.33 | 5.61 | 1.75 | 76.49 | 51.58 | 66.67 | 66.67 |
14-Tennis Court | 9.31 | 0.81 | 100.0 | 97.17 | 90.69 | 90.69 | 31.17 | 53.44 | 95.14 | 99.19 | 93.52 | 93.52 | 8.50 | 10.12 | 93.93 | 30.77 | 100.0 | 100.0 |
15-Running Track | 3.59 | 1.06 | 100.0 | 99.58 | 84.78 | 78.65 | 63.21 | 92.18 | 98.94 | 98.10 | 63.64 | 63.21 | 0.42 | 0.21 | 87.95 | 76.32 | 98.73 | 98.73 |
SR | JSR | SVM | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DS-4 | DS-5 | DS-44 | DS-55 | DS-144 | DS-145 | DS-4 | DS-5 | DS-44 | DS-55 | DS-144 | DS-145 | DS-4 | DS-5 | DS-44 | DS-55 | DS-144 | DS-145 | |
1-Healthy grass | 80.63 | 81.39 | 81.39 | 83.10 | 82.05 | 82.05 | 86.84 | 98.87 | 94.36 | 98.98 | 87.01 | 82.43 | 82.62 | 82.53 | 81.96 | 97.33 | 82.05 | 96.76 |
2-Stressed grass | 7.61 | 14.00 | 53.57 | 54.42 | 78.29 | 78.29 | 99.34 | 98.76 | 89.16 | 97.71 | 99.33 | 83.18 | 83.08 | 82.24 | 81.30 | 99.89 | 82.61 | 97.55 |
3-Synthetic grass | 98.42 | 98.81 | 100.0 | 100.0 | 99.60 | 99.60 | 92.45 | 100.0 | 100.0 | 100.0 | 100.0 | 97.23 | 99.60 | 99.60 | 100.00 | 100.0 | 99.80 | 39.28 |
4-Trees | 66.95 | 66.67 | 71.69 | 90.34 | 82.01 | 82.01 | 76.94 | 84.36 | 94.51 | 99.27 | 75.69 | 79.73 | 98.58 | 99.24 | 89.39 | 99.49 | 92.80 | 97.40 |
5-Soil | 94.89 | 95.27 | 91.38 | 97.35 | 99.53 | 99.53 | 95.50 | 97.08 | 97.05 | 98.05 | 97.48 | 99.62 | 96.78 | 97.25 | 97.82 | 98.01 | 98.48 | 97.48 |
6-Water | 99.30 | 99.30 | 99.30 | 93.71 | 97.20 | 97.20 | 44.94 | 45.79 | 100.0 | 96.45 | 39.81 | 68.53 | 93.01 | 91.61 | 95.10 | 22.70 | 94.41 | 47.06 |
7-Residential | 53.64 | 55.97 | 71.83 | 93.10 | 71.55 | 71.55 | 59.52 | 45.67 | 56.94 | 74.31 | 81.22 | 51.49 | 82.18 | 83.21 | 89.55 | 69.20 | 76.31 | 89.93 |
8-Commercial | 0.47 | 0.47 | 18.04 | 38.84 | 16.24 | 16.24 | 50.46 | 50.16 | 72.69 | 69.62 | 65.14 | 11.40 | 18.23 | 52.23 | 42.26 | 85.14 | 44.82 | 83.62 |
9-Road | 21.06 | 35.03 | 16.53 | 80.83 | 15.49 | 15.49 | 48.21 | 69.87 | 65.54 | 94.97 | 0.00 | 36.45 | 55.90 | 73.09 | 77.62 | 92.09 | 72.80 | 85.97 |
10-Highway | 14.67 | 28.96 | 58.01 | 43.73 | 49.61 | 49.61 | 43.64 | 54.04 | 81.89 | 84.43 | 0.00 | 48.17 | 53.38 | 48.46 | 68.44 | 87.75 | 56.95 | 86.55 |
11-Railway | 4.36 | 3.98 | 94.88 | 94.12 | 26.57 | 26.57 | 44.92 | 66.94 | 83.41 | 69.62 | 70.35 | 30.55 | 56.45 | 77.99 | 92.79 | 75.69 | 78.37 | 77.91 |
12-Parking lot 1 | 9.13 | 3.27 | 46.30 | 1.63 | 13.64 | 13.64 | 37.91 | 63.61 | 84.71 | 85.93 | 66.32 | 38.04 | 50.62 | 32.37 | 85.21 | 91.00 | 73.49 | 77.48 |
13-Parking lot 2 | 0.70 | 13.33 | 45.96 | 49.12 | 23.16 | 23.16 | 5.53 | 23.20 | 49.12 | 74.75 | 12.25 | 17.19 | 33.33 | 37.54 | 74.39 | 82.29 | 67.02 | 49.40 |
14-Tennis Court | 11.74 | 6.48 | 98.38 | 98.38 | 70.85 | 70.85 | 50.12 | 69.74 | 79.68 | 94.27 | 65.78 | 71.26 | 98.38 | 100.00 | 100.00 | 96.86 | 100.00 | 89.17 |
15-Running Track | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 66.49 | 100.0 | 100.0 | 100.0 | 88.52 | 98.31 | 97.04 | 97.89 | 100.00 | 99.79 | 97.46 | 100.00 |
ET (min) | DS-4 | DS-5 | DS-44 | DS-55 | DS-144 | DS-145 |
---|---|---|---|---|---|---|
ASD | 0.71 | 0.73 | 0.87 | 1.00 | 2.48 | 2.21 |
MSD | 0.75 | 0.77 | 1.21 | 1.76 | 8.74 | 8.12 |
RXD | 0.30 | 0.31 | 0.37 | 0.45 | 0.94 | 1.02 |
KASD | 60.60 | 64.13 | 89.71 | 81.22 | 127.42 | 147.85 |
KMSD | 16.33 | 16.43 | 21.56 | 23.01 | 29.44 | 29.89 |
KRXD | 32.93 | 33.34 | 54.45 | 60.23 | 87.72 | 92.74 |
SR | 492.83 | 694.33 | 941.06 | 921.45 | 1037.99 | 1056.98 |
JSR | 629.23 | 891.71 | 2248.17 | 2198.56 | 2210.15 | 2310.42 |
SVM | 5.32 | 3.76 | 0.69 | 0.47 | 1.30 | 1.41 |
Reference | Dataset Adopted | Algorithm Adopted | Overall Accuracy |
---|---|---|---|
This paper | EMAP_RGBNIR (DS-44) | JSR | 80.77 |
EMAP_RGBNIR (DS-44) | SVM | 82.64 | |
EMAP_RGBNIR_LiDAR (DS-55) | JSR | 86.86 | |
EMAP_RGBNIR_LiDAR (DS-55) | SVM | 86.00 | |
[23] | Hyperspectral data; EMAP augmentation applied hyperspectral data (Xh+EMAP(Xh)) | MLRsub | 84.40 |
Hyperspectral data; Additional bands from LiDAR data (Xh + AP(XL)) | MLRsub | 87.91 | |
Hyperspectral data; EMAP augmentation applied hyperspectral data; Additional bands from LiDAR data (Xh + AP(XL) + EMAP(Xh)) | MLRsub | 90.65 | |
[24] | Hyperspectral data | SVM | 80.72 |
Morphological Profile of hyperspectral and LiDAR data (MPSHSLi) | SVM | 86.39 | |
Generalized graph-based fusion features from hyperspectral and LiDAR data (GGF) | SVM | 94 |
Narrow Bands from HS Data | Wide RGB and NIR Bands Based on Spectral Response | |||||||
---|---|---|---|---|---|---|---|---|
DS-4 | DS-5 | DS-44 | DS-55 | DS-4 | DS-5 | DS-44 | DS-55 | |
OA (%) | 69.99 | 75.32 | 81.31 | 85.72 | 70.43 | 74.62 | 82.64 | 86.00 |
AA (%) | 70.97 | 73.48 | 84.37 | 87.36 | 70.74 | 73.12 | 85.61 | 86.48 |
0.677 | 0.733 | 0.799 | 0.846 | 0.704 | 0.750 | 0.812 | 0.859 | |
1-Healthy grass | 82.72 | 82.43 | 82.43 | 83.10 | 82.62 | 82.53 | 81.96 | 97.33 |
2-Stressed grass | 83.65 | 82.14 | 80.55 | 80.92 | 83.08 | 82.24 | 81.30 | 99.89 |
3-Synthetic grass | 99.60 | 99.60 | 100.00 | 100.00 | 99.60 | 99.60 | 100.00 | 100.00 |
4-Trees | 95.36 | 99.15 | 92.61 | 96.78 | 98.58 | 99.24 | 89.39 | 99.49 |
5-Soil | 96.97 | 97.35 | 98.86 | 97.73 | 96.78 | 97.25 | 97.82 | 98.01 |
6-Water | 93.01 | 95.10 | 95.10 | 95.10 | 93.01 | 91.61 | 95.10 | 22.70 |
7-Residential | 78.45 | 81.62 | 80.69 | 84.42 | 82.18 | 83.21 | 89.55 | 69.20 |
8-Commercial | 16.81 | 51.28 | 44.92 | 71.60 | 18.23 | 52.23 | 42.26 | 85.14 |
9-Road | 51.46 | 63.46 | 81.78 | 89.99 | 55.90 | 73.09 | 77.62 | 92.09 |
10-Highway | 54.15 | 48.75 | 65.06 | 65.35 | 53.38 | 48.46 | 68.44 | 87.75 |
11-Railway | 59.30 | 77.42 | 73.24 | 88.33 | 56.45 | 77.99 | 92.79 | 75.69 |
12-Parking lot 1 | 55.04 | 48.41 | 90.87 | 82.61 | 50.62 | 32.37 | 85.21 | 91.00 |
13-Parking lot 2 | 29.82 | 36.84 | 74.74 | 78.60 | 33.33 | 37.54 | 74.39 | 82.29 |
14-Tennis Court | 97.98 | 100.00 | 100.00 | 100.00 | 98.38 | 100.00 | 100.00 | 96.86 |
15-Running Track | 97.25 | 98.73 | 100.00 | 100.00 | 97.04 | 97.89 | 100.00 | 99.79 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwan, C.; Gribben, D.; Ayhan, B.; Bernabe, S.; Plaza, A.; Selva, M. Improving Land Cover Classification Using Extended Multi-Attribute Profiles (EMAP) Enhanced Color, Near Infrared, and LiDAR Data. Remote Sens. 2020, 12, 1392. https://doi.org/10.3390/rs12091392
Kwan C, Gribben D, Ayhan B, Bernabe S, Plaza A, Selva M. Improving Land Cover Classification Using Extended Multi-Attribute Profiles (EMAP) Enhanced Color, Near Infrared, and LiDAR Data. Remote Sensing. 2020; 12(9):1392. https://doi.org/10.3390/rs12091392
Chicago/Turabian StyleKwan, Chiman, David Gribben, Bulent Ayhan, Sergio Bernabe, Antonio Plaza, and Massimo Selva. 2020. "Improving Land Cover Classification Using Extended Multi-Attribute Profiles (EMAP) Enhanced Color, Near Infrared, and LiDAR Data" Remote Sensing 12, no. 9: 1392. https://doi.org/10.3390/rs12091392
APA StyleKwan, C., Gribben, D., Ayhan, B., Bernabe, S., Plaza, A., & Selva, M. (2020). Improving Land Cover Classification Using Extended Multi-Attribute Profiles (EMAP) Enhanced Color, Near Infrared, and LiDAR Data. Remote Sensing, 12(9), 1392. https://doi.org/10.3390/rs12091392