Evaluating Simulated RADARSAT Constellation Mission (RCM) Compact Polarimetry for Open-Water and Flooded-Vegetation Wetland Mapping
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.1.1. Saint John
2.1.2. Richelieu
2.1.3. Ottawa
2.2. Overview of Flood Extraction Process
2.3. RADARSAT-2 Sample Scenes
2.4. RCM Simulation and Preprocessing
2.5. Open-Water Analysis
2.5.1. Baseline RADARSAT-2 Product Generation
2.5.2. Baseline RCM Classification
2.5.3. Parameter Selection Process for Stepwise Classification
2.5.4. Determining Optimal Classification Parameters
2.5.5. Stepwise Open-Water Classification
2.5.6. Open-Water Classification Assessment
2.5.7. Assessing Processing Time
2.6. Flooded-Vegetation Analysis
2.6.1. Region Growing Using Thresholding
2.6.2. Flooded-Vegetation-Region-Growing Assessment
3. Results
3.1. Open-Water Analysis
3.1.1. Attribute Usage
3.1.2. Separability
3.1.3. Correlation
3.1.4. Final Parameter Rankings and Stepwise Open-Water Classification
3.1.5. Omission, Commission, and Overall Agreement
3.1.6. Processing Time
3.2. Flooded-Vegetation Analysis
3.2.1. Separability
3.2.2. Region Growing Using Thresholding
Flooded-Vegetation Thresholds
Accuracy Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Maltby, E.; Acreman, M.C. Ecosystem services of wetlands: Pathfinder for a new paradigm. Hydrol. Sci. J. 2011, 56, 1341–1359. [Google Scholar] [CrossRef]
- Keddy, P.A. Wetland Ecology: Principles and Conservation, 2nd ed.; Cambridge University Press: New York, NY, USA, 2010; ISBN 978-0521519403. [Google Scholar]
- Olthof, I. Mapping seasonal inundation frequency (1985–2016) along the St-John River, New Brunswick, Canada using the Landsat archive. Remote Sens. 2017, 9, 143. [Google Scholar] [CrossRef]
- Olthof, I.; Tolszczuk-Leclerc, S. Comparing landsat and RADARSAT for current and historical dynamic flood mapping. Remote Sens. 2018, 10, 780. [Google Scholar] [CrossRef] [Green Version]
- Brisco, B.; Short, N.; Van der Sanden, J.; Landry, R.; Raymond, D. A semi-automated tool for surface water mapping with RADARSAT-1. Can. J. Remote Sens. 2009, 35, 336–344. [Google Scholar] [CrossRef]
- Catry, T.; Li, Z.; Roux, E.; Herbreteau, V.; Gurgel, H.; Mangeas, M.; Seyler, F.; Dessay, N. Wetlands and Malaria in the Amazon: Guidelines for the Use of Synthetic Aperture Radar Remote-Sensing. Int. J. Environ. Res. Public Health 2018, 15, 468. [Google Scholar] [CrossRef] [Green Version]
- Kasischke, E.S.; Melack, J.M.; Craig Dobson, M. The use of imaging radars for ecological applications—A review. Remote Sens. Environ. 1997, 59, 141–156. [Google Scholar] [CrossRef]
- Lee, J.S.; Pottier, E. Polarimetric Radar Imaging: From Basics to Applications; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar] [CrossRef]
- Simpson, R.A.; Harmon, J.K.; Zisk, S.H.; Thompson, T.W.; Muhleman, D.O. Radar determination of Mars surface properties. In Mars; Kieffer, H.H., Jakosky, B.M., Snyder, C.W., Matthews, M.S., Eds.; University of Arizona Press: Tucson, AZ, USA, 1992; pp. 686–729. [Google Scholar]
- Baghdadi, N.; Bernier, M.; Gauthier, R.; Neeson, I. Evaluation of C-band SAR data for wetlands mapping. Int. J. Remote Sens. 2001, 22, 71–88. [Google Scholar] [CrossRef]
- Charbonneau, F.J.; Brisco, B.; Raney, R.K.; McNairn, H.; Liu, C.; Vachon, P.W.; Shang, J.; DeAbreu, R.; Champagne, C.; Merzouki, A.; et al. Compact polarimetry overview and applications assessment. Can. J. Remote Sens. 2010, 36 (Suppl. 2), S298–S315. [Google Scholar] [CrossRef]
- Bolanos, S.; Stiff, D.; Brisco, B.; Pietroniro, A. Operational surface water detection and monitoring using RADARSAT-2. Remote Sens. 2016, 8, 285. [Google Scholar] [CrossRef] [Green Version]
- Van der Sanden, J.J.; Geldsetzer, T. Compact polarimetry in support of lake ice breakup monitoring: Anticipating the RADARSAT Constellation Mission. Can. J. Remote Sens. 2015, 41, 440–457. [Google Scholar] [CrossRef]
- White, L.; Brisco, B.; Pregitzer, M.; Tedford, B.; Boychuk, L. RADARSAT-2 beam mode selection for surface water and flooded vegetation mapping. Can. J. Remote Sens. 2014, 40, 135–151. [Google Scholar] [CrossRef]
- Bourgeau-Chavez, L.L.; Kasischke, E.S.; Brunzell, S.M.; Mudd, J.P.; Smith, K.B.; Frick, A.L. Analysis of space-borne SAR data for wetland mapping in Virginia riparian ecosystems. Int. J. Remote Sens. 2001, 22, 3665–3687. [Google Scholar] [CrossRef]
- Hess, L.L.; Melack, J.M.; Filoso, S.; Wang, Y. Delineation of inundated area and vegetation along the Amazon floodplain with the SIR-C synthetic aperture radar. IEEE Trans. Geosci. Remote. Sens. 1995, 33, 896–904. [Google Scholar] [CrossRef] [Green Version]
- Raney, R.K. Hybrid-Polarity SAR Architecture. In Proceedings of the 2006 IEEE International Symposium on Geoscience and Remote Sensing, Denver, CO, USA, 31 July–4 August 2006; pp. 3846–3848. [Google Scholar] [CrossRef] [Green Version]
- Olthof, I.; Tolszczuk-Leclerc, S.; Lehrbass, B.; Shelat, Y.; Neufeld, V.; Decker, V. New flood mapping methods implemented during the 2017 spring flood activation in southern Quebec. Geomat. Can. 2018, 38, 16. [Google Scholar] [CrossRef]
- Canadian Wetland Inventory (CWI). Canadian Space Agency, Ducks Unlimited Canada, Environment Canada and North American Wetlands Conservation Council (Canada). 2020. Available online: https://maps.ducks.ca/cwi/ (accessed on 30 April 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 30 April 2020).
- Olthof, I.; Tolszczuk-Leclerc, S.; Lerhbass, B.; Shelat, Y.; Neufeld, V.; Decker, V. Flood mapping from multi-sensor Earth Observation data for near real-time infrastructure impact assessment: Lessons learned from the 2017 spring flood in eastern Canada. In Advances in Remote Sensing for Infrastructure Monitoring; Singhroy, V., Ed.; Springer: New York, NY, USA, in press.
- Canadian Space Agency (CSA). Technical Characteristics. Available online: https://www.asc-csa.gc.ca/eng/satellites/radarsat/technical-features/characteristics.asp (accessed on 14 May 2019).
- Kuhn, M.; Quinlan, R. C50: C5.0 Decision Trees and Rule-Based Models. R Package Version 0.1.2. 2018. Available online: https://CRAN.R-project.org/package=C50 (accessed on 30 April 2020).
- Quinlan, R. C4.5: Programs for Machine Learning; Morgan Kaufmann Publishers: San Mateo, CA, USA, 1993. [Google Scholar]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–436. [Google Scholar] [CrossRef]
- Latifovic, R.; Pouliot, D.; Olthof, I. Circa 2010 land cover of Canada: Local optimization of methodology and product development. Remote Sens. 2017, 9, 1098. [Google Scholar] [CrossRef] [Green Version]
- Massey, F.J. The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 1951, 46, 68–78. [Google Scholar] [CrossRef]
- Brisco, B.; Shelat, Y.; Murnaghan, K.; Montgomery, J.; Fuss, C.; Olthof, I.; Hopkinson, C.; Deschamps, A.; Poncos, V. Evaluation of C-band SAR for identification of flooded vegetation in emergency response products. Can. J. Remote Sens. 2019, 45, 73–87. [Google Scholar] [CrossRef]
- Mohammadimanesh, F.; Salehi, B.; Mahdianpari, M.; Brisco, B.; Gill, E. Full and simulated compact polarimetry SAR responses to canadian wetlands: Separability analysis and classification. Remote Sens. 2019, 11, 516. [Google Scholar] [CrossRef] [Green Version]
- Environment and Climate Change Canada (ECCC). Historical Hydrometric Data. Available online: https://wateroffice.ec.gc.ca/mainmenu/historical_data_index_e.html (accessed on 5 August 2019).
- Natural Resources Canada (NRCan). National Hydrographic Network. Available online: https://www.nrcan.gc.ca/science-and-data/science-and-research/earth-sciences/geography/topographic-information/geobase-surface-water-program-geeau/national-hydrographic-network/21361 (accessed on 25 April 2019).
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Raney, R.K.; Cahill, J.T.S.; Patterson, G.W.; Bussey, D.B.J. The m-chi decomposition of hybrid dual-polarimetric radar data with application to lunar craters. J. Geophys. Res. 2012, 117, E00H21. [Google Scholar] [CrossRef]
- Raney, R.K. Hybrid dual-polarization synthetic aperture radar. Remote Sens. 2019, 11, 1521. [Google Scholar] [CrossRef] [Green Version]
- Marechal, C.; Pottier, E.; Hubert-Moy, L.; Rapinel, S. One year wetland survey investigations from quad-pol RADARSAT-2 time-series SAR images. Can. J. Remote Sens. 2012, 38, 240–252. [Google Scholar] [CrossRef]
- Morio, J.; Réfrégier, P.; Goudail, F.; Dubois-Fernandez, P.; Dupuis, X. Application of information theory measures to polarimetric and interferometric SAR images. In Proceedings of the 5th International Conference on Physics in Signal Image Processing, Mulhouse, France, 31 January–2 February 2007. [Google Scholar]
- Nobre, A.D.; Cuartas, L.A.; Hodnett, M.; Renno, C.D.; Rodrigues, G.; Silveira, A.; Waterloo, M.; Saleska, S. Height above the nearest drainage—A hydrologically relevant new terrain model. J. Hydrol. 2011, 404, 13–29. [Google Scholar] [CrossRef] [Green Version]
- Hess, L.L.; Melack, J.M.; Simonett, D.S. Radar detection of flood beneath the forest canopy: A review. Int. J. Remote Sens. 1990, 11, 1313–1325. [Google Scholar] [CrossRef]
Region | Acquisition Date | Acquisition Start Time | Beam Mode | Pixel Resolution (m) [Rng × Az] | Average Incidence Angle (°) | Swath Width (km) [Rng × Az] | Flooded Vegetation Present |
---|---|---|---|---|---|---|---|
Ottawa | 02 April 2017 | 11:26:02 | Fine Quad Wide—FQ1W | 4.73 × 4.83 | 19.40 | 50 × 25 | No |
Ottawa | 26 April 2017 | 11:26:01 | Fine Quad Wide—FQ1W | 4.73 × 4.83 | 19.41 | 50 × 25 | Yes |
Ottawa | 30 April 2017 | 11:09:23 | Fine Quad Wide—FQ20W | 4.73 × 5.07 | 39.99 | 50 × 25 | Yes |
Ottawa | 20 May 2017 | 11:26:00 | Fine Quad Wide—FQ1W | 4.73 × 4.83 | 19.40 | 50 × 25 | Yes |
Ottawa | 24 May 2017 | 11:09:22 | Fine Quad Wide—FQ20W | 4.73 × 5.07 | 39.99 | 50 × 25 | No |
Richelieu | 11 April 2011 | 10:57:34 | Fine Quad—FQ22 | 4.73 × 5.49 | 41.79 | 25 × 25 | Yes |
Richelieu | 11 April 2011 | 10:57:37 | Fine Quad—FQ22 | 4.73 × 5.49 | 41.80 | 25 × 25 | Yes |
Richelieu | 18April 2011 | 10:53:24 | Fine Quad—FQ27 | 4.73 × 4.86 | 45.90 | 25 × 25 | Yes |
Richelieu | 18 April 2011 | 10:53:28 | Fine Quad—FQ27 | 4.73 × 4.86 | 45.90 | 25 × 25 | Yes |
Richelieu | 05 May 2011 | 10:57:14 | Standard Quad—SQ21 | 11.83 × 5.13 | 40.92 | 25 × 25 | Yes |
Richelieu | 05 May 2011 | 10:57:17 | Standard Quad—SQ21 | 11.83 × 5.13 | 40.92 | 25 × 25 | Yes |
Richelieu | 08 May 2011 | 22:30:30 | Standard Quad—SQ2 | 7.98 × 4.87 | 20.85 | 25 × 25 | Yes |
Richelieu | 08 May 2011 | 22:30:33 | Standard Quad—SQ2 | 7.98 × 4.87 | 20.85 | 25 × 25 | Yes |
Richelieu | 22 May 2011 | 11:01:32 | Fine Quad—FQ17 | 4.73 × 5.47 | 37.23 | 25 × 25 | Yes |
Richelieu | 22 May 2011 | 11:01:44 | Fine Quad—FQ17 | 4.73 × 5.47 | 37.23 | 25 × 25 | Yes |
Saint John | 04 July 2008 | 10:44:03 | Fine Quad—FQ8 | 4.73 × 4.78 | 27.85 | 25 × 25 | Yes |
Saint John | 19 May 2009 | 10:40:13 | Fine Quad—FQ11 | 4.73 × 5.59 | 31.14 | 25 × 25 | Yes |
Saint John | 27 April 2010 | 10:36:15 | Fine Quad—FQ16 | 4.73 × 5.16 | 36.27 | 25 × 25 | Yes |
Saint John | 21 May 2010 | 10:36:14 | Fine Quad—FQ16 | 4.73 × 5.16 | 36.27 | 25 × 25 | No |
Beam Mode | Resolution (m) | Noise Floor/Nominal NESZ (dB) | Swath Width (km) | Looks (Rng × Az) |
---|---|---|---|---|
5 m High Resolution | 5 | −19 | 30 | 1 × 1 |
16 m Medium Resolution | 16 | −25 | 30 | 1 × 4 |
30 m Medium Resolution | 30 | −24 | 125 | 2 × 2 |
Compact Polarimetric Parameter | Variable Name(s) | Equation |
---|---|---|
Alpha S angle | alphaS | |
Circular polarization ratio | circ | |
Conformity coefficient | conformity | |
Relative phase between RV and RH | delta | |
Degree of polarization | m | |
m-chi decomposition ▪ Even-bounce ▪ Volume ▪ Odd-bounce | mchiEven mchiVolume mchiOdd | |
m-delta decomposition ▪ Even-bounce ▪ Volume ▪ Odd-bounce | mdeltaEven mdeltaVolume mdeltaOdd | |
Correlation coefficient of RV and RH | rho/rhoAdjust | |
Intensity channels ▪ 4 channels | RH RV RR RL | |
Shannon entropy ▪ Intensity ▪ Polarimetric | SEi SEp | |
Stokes vector ▪ 4 elements | SV0 SV1 SV2 SV3 |
Ottawa | Richelieu | Saint John | Total | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | 5 m | 16 m | 30 m | 5 m | 16 m | 30 m | 5 m | 16 m | 30 m | |
mdeltaVolume | 22 | 22 | 22 | 22 | 22 | 22 | 20 | 19 | 20 | 191 |
RH | 18 | 19 | 20 | 21 | 21 | 21 | 22 | 22 | 21 | 185 |
RR | 21 | 21 | 21 | 18 | 19 | 18 | 18 | 21 | 22 | 179 |
SEi | 20 | 20 | 18 | 19 | 18 | 19 | 17 | 18 | 17 | 166 |
RL | 17 | 14 | 15 | 20 | 20 | 20 | 21 | 20 | 19 | 166 |
SEp | 19 | 18 | 19 | 15 | 16 | 17 | 15 | 13 | 15 | 147 |
SV0 | 16 | 17 | 16 | 17 | 12 | 14 | 19 | 16 | 16 | 143 |
RV | 12 | 15 | 11 | 13 | 15 | 13 | 16 | 17 | 18 | 130 |
SV2 | 10 | 11 | 10 | 14 | 14 | 15 | 14 | 14 | 13 | 115 |
SV1 | 11 | 9 | 9 | 16 | 17 | 16 | 11 | 12 | 10 | 111 |
conformity | 14 | 16 | 17 | 6 | 4 | 8 | 12 | 15 | 4 | 96 |
m | 13 | 12 | 12 | 12 | 13 | 12 | 7 | 5 | 9 | 95 |
rhoAdjust | 15 | 10 | 14 | 10 | 9 | 10 | 9 | 4 | 6 | 87 |
circ | 9 | 8 | 13 | 2 | 5 | 6 | 13 | 10 | 14 | 80 |
SV3 | 7 | 13 | 8 | 11 | 8 | 9 | 6 | 2 | 5 | 69 |
mchiEven | 8 | 7 | 7 | 8 | 11 | 11 | 2 | 8 | 3 | 65 |
mdeltaEven | 4 | 5 | 4 | 7 | 7 | 7 | 8 | 7 | 7 | 56 |
mdeltaOdd | 5 | 3 | 3 | 4 | 3 | 3 | 10 | 11 | 12 | 54 |
delta | 3 | 6 | 6 | 5 | 6 | 5 | 3 | 9 | 8 | 51 |
mchiOdd | 6 | 2 | 5 | 3 | 2 | 2 | 4 | 6 | 11 | 41 |
alphaS | 2 | 4 | 2 | 9 | 10 | 4 | 5 | 3 | 2 | 41 |
mchiVolume | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 9 |
Ottawa | Richelieu | Saint John | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | 5 m | 16 m | 30 m | 5 m | 16 m | 30 m | 5 m | 16 m | 30 m | Total |
mchiVolume | 25 | 25 | 25 | 33 | 33 | 33 | 14 | 14 | 13 | 215 |
mdeltaVolume | 25 | 25 | 25 | 33 | 33 | 33 | 14 | 14 | 13 | 215 |
RR | 24 | 24 | 24 | 33 | 33 | 33 | 13 | 14 | 13 | 211 |
RH | 12 | 12 | 12 | 26 | 26 | 26 | 14 | 14 | 14 | 156 |
SEi | 12 | 12 | 12 | 26 | 26 | 26 | 14 | 14 | 14 | 156 |
SV0 | 12 | 12 | 12 | 26 | 26 | 26 | 14 | 14 | 14 | 156 |
RL | 11 | 11 | 11 | 21 | 22 | 23 | 15 | 15 | 13 | 142 |
RV | 9 | 10 | 9 | 22 | 23 | 23 | 13 | 15 | 13 | 137 |
mchiEven | 12 | 14 | 14 | 19 | 22 | 23 | 1 | 1 | 1 | 107 |
mdeltaEven | 9 | 11 | 11 | 15 | 20 | 19 | 0 | 0 | 0 | 85 |
mchiOdd | 4 | 6 | 5 | 10 | 12 | 12 | 11 | 11 | 10 | 81 |
mdeltaOdd | 0 | 1 | 1 | 5 | 9 | 9 | 10 | 10 | 10 | 55 |
SV1 | 3 | 3 | 3 | 12 | 12 | 12 | 1 | 1 | 1 | 48 |
circ | 2 | 6 | 6 | 6 | 11 | 10 | 0 | 0 | 0 | 41 |
conformity | 2 | 6 | 6 | 6 | 11 | 10 | 0 | 0 | 0 | 41 |
SV3 | 1 | 1 | 1 | 4 | 4 | 4 | 8 | 9 | 8 | 40 |
alphaS | 1 | 3 | 3 | 5 | 8 | 8 | 0 | 0 | 0 | 28 |
SEp | 2 | 6 | 4 | 0 | 2 | 1 | 0 | 0 | 0 | 15 |
rhoAdjust | 1 | 2 | 3 | 0 | 3 | 2 | 0 | 0 | 0 | 11 |
delta | 0 | 0 | 1 | 2 | 3 | 4 | 0 | 0 | 0 | 10 |
m | 1 | 2 | 3 | 0 | 2 | 2 | 0 | 0 | 0 | 10 |
SV2 | 1 | 1 | 1 | 1 | 2 | 3 | 0 | 0 | 0 | 9 |
Ottawa (n = 5) | Richelieu (n = 10) | Saint John (n = 4) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | 5 m | 16 m | 30 m | 5 m | 16 m | 30 m | 5 m | 16 m | 30 m | Total |
SV1 | 5 | 5 | 5 | 10 | 10 | 10 | 4 | 4 | 4 | 57 |
SV2 | 5 | 5 | 5 | 10 | 10 | 10 | 4 | 4 | 4 | 57 |
delta | 5 | 5 | 5 | 10 | 9 | 10 | 4 | 4 | 4 | 56 |
m | 3 | 5 | 5 | 9 | 9 | 9 | 3 | 3 | 3 | 49 |
mdeltaEven | 4 | 4 | 4 | 6 | 8 | 8 | 4 | 4 | 4 | 46 |
SEp | 2 | 2 | 2 | 7 | 7 | 7 | 4 | 4 | 4 | 39 |
RV | 2 | 4 | 3 | 6 | 4 | 6 | 1 | 1 | 1 | 28 |
mdeltaVolume | 4 | 3 | 3 | 5 | 1 | 1 | 2 | 2 | 2 | 23 |
SV3 | 2 | 2 | 2 | 2 | 4 | 4 | 0 | 0 | 0 | 16 |
SEi | 2 | 3 | 4 | 1 | 3 | 2 | 0 | 0 | 0 | 15 |
alphaS | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 15 |
mdeltaOdd | 3 | 2 | 3 | 0 | 0 | 0 | 1 | 1 | 1 | 11 |
mchiOdd | 0 | 0 | 0 | 1 | 3 | 2 | 0 | 0 | 0 | 6 |
rhoAdjust | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 4 |
mchiVolume | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 3 |
mchiEven | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 2 |
RL | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 2 |
circ | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
conformity | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
RH | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
RR | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
SV0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Parameter | Attribute Usage | Separability | Correlation | Normalized Points |
---|---|---|---|---|
mdeltaVolume | 1.00 | 1.00 | 0.40 | 2.40 |
RR | 0.94 | 0.98 | 0.00 | 1.92 |
SEi | 0.87 | 0.73 | 0.26 | 1.85 |
RV | 0.68 | 0.64 | 0.49 | 1.81 |
SV1 | 0.58 | 0.22 | 1.00 | 1.80 |
RH | 0.97 | 0.73 | 0.00 | 1.69 |
SV2 | 0.60 | 0.04 | 1.00 | 1.64 |
RL | 0.87 | 0.66 | 0.04 | 1.56 |
SEp | 0.77 | 0.07 | 0.68 | 1.52 |
mdeltaEven | 0.29 | 0.40 | 0.81 | 1.50 |
SV0 | 0.75 | 0.73 | 0.00 | 1.47 |
m | 0.50 | 0.05 | 0.86 | 1.40 |
delta | 0.27 | 0.05 | 0.98 | 1.30 |
mchiVolume | 0.05 | 1.00 | 0.05 | 1.10 |
mchiEven | 0.34 | 0.50 | 0.04 | 0.87 |
SV3 | 0.36 | 0.19 | 0.28 | 0.83 |
mdeltaOdd | 0.28 | 0.26 | 0.19 | 0.73 |
mchiOdd | 0.21 | 0.38 | 0.11 | 0.70 |
conformity | 0.50 | 0.19 | 0.00 | 0.69 |
circ | 0.42 | 0.19 | 0.00 | 0.61 |
alphaS | 0.21 | 0.13 | 0.26 | 0.61 |
rhoAdjust | 0.46 | 0.05 | 0.07 | 0.58 |
Lowest Omission | Lowest Commission | Highest Overall Agreement | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# Parameters → Beam Mode ↓ | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | |
Ottawa | 5 m | 0 | 1 | 1 | 2 | 1 | 0 | 0 | 3 | 1 | 1 | 0 | 0 | 2 | 2 | 1 |
16 m | 1 | 1 | 3 | 0 | 0 | 0 | 1 | 0 | 3 | 1 | 0 | 0 | 1 | 2 | 2 | |
30 m | 1 | 2 | 1 | 1 | 0 | 1 | 1 | 0 | 2 | 1 | 0 | 0 | 1 | 1 | 3 | |
% Scenes | 13.33 | 26.67 | 33.33 | 20.00 | 6.67 | 6.67 | 13.33 | 20.00 | 40.00 | 20.00 | 0.00 | 0.00 | 28.57 | 35.71 | 35.71 | |
Richelieu | 5 m | 5 | 1 | 1 | 3 | 0 | 0 | 2 | 1 | 1 | 6 | 0 | 0 | 1 | 4 | 5 |
16 m | 6 | 2 | 2 | 0 | 0 | 1 | 2 | 0 | 2 | 5 | 1 | 1 | 3 | 3 | 2 | |
30 m | 5 | 3 | 0 | 1 | 1 | 1 | 2 | 0 | 2 | 5 | 2 | 1 | 0 | 3 | 4 | |
% Scenes | 53.33 | 20.00 | 10.00 | 13.33 | 3.33 | 6.67 | 20.00 | 3.33 | 16.67 | 53.33 | 10.00 | 6.67 | 13.33 | 33.33 | 36.67 | |
Saint John | 5 m | 3 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 3 | 1 |
16 m | 1 | 2 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 1 | 1 | 1 | 0 | 2 | 1 | |
30 m | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 1 | 0 | 1 | 0 | 2 | 1 | |
% Scenes | 58.33 | 25.00 | 0.00 | 16.67 | 0.00 | 0.00 | 0.00 | 41.67 | 16.67 | 41.67 | 7.69 | 15.38 | 0.00 | 53.85 | 23.08 |
Number of Input Parameters | |||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 22 | ||
Omission | Ottawa | 12.55 | 12.29 | 11.07 | 10.69 | 10.42 | 10.26 |
Richelieu | 4.03 | 6.30 | 4.76 | 4.66 | 4.61 | 5.35 | |
Saint John | 17.67 | 20.45 | 26.47 | 20.03 | 20.74 | 20.70 | |
Commission | Ottawa | 11.21 | 11.19 | 9.53 | 9.30 | 9.39 | 9.37 |
Richelieu | 5.19 | 4.14 | 4.06 | 3.98 | 3.93 | 3.92 | |
Saint John | 21.49 | 20.23 | 17.04 | 17.74 | 17.62 | 17.49 | |
Overall Agreement | Ottawa | 98.90 | 98.92 | 99.07 | 99.09 | 99.10 | 99.11 |
Richelieu | 98.78 | 98.76 | 98.85 | 98.86 | 98.90 | 98.89 | |
Saint John | 99.57 | 99.57 | 99.57 | 99.60 | 99.60 | 99.61 |
Ottawa | Richelieu | Saint John | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Parameter | 5 m | 16 m | 30 m | 5 m | 16 m | 30 m | 5 m | 16 m | 30 m | Total |
RH | 20 | 20 | 20 | 17 | 17 | 18 | 20 | 21 | 20 | 173 |
RR | 22 | 22 | 22 | 19 | 20 | 20 | 10 | 11 | 11 | 157 |
SEi | 17 | 18 | 18 | 15 | 15 | 16 | 19 | 19 | 19 | 156 |
SV0 | 17 | 18 | 18 | 15 | 15 | 16 | 19 | 19 | 19 | 156 |
mchiEven | 15 | 16 | 16 | 18 | 19 | 19 | 5 | 5 | 5 | 118 |
mdeltaEven | 13 | 13 | 13 | 17 | 17 | 18 | 3 | 4 | 4 | 102 |
SV1 | 15 | 15 | 15 | 14 | 14 | 15 | 1 | 1 | 1 | 91 |
mchiVolume | 10 | 12 | 12 | 8 | 10 | 11 | 8 | 8 | 7 | 86 |
mdeltaVolume | 10 | 12 | 12 | 8 | 10 | 11 | 8 | 8 | 7 | 86 |
RL | 8 | 9 | 10 | 5 | 5 | 6 | 11 | 11 | 10 | 75 |
alphaS | 5 | 6 | 6 | 9 | 10 | 11 | 6 | 6 | 6 | 65 |
circ | 2 | 2 | 2 | 7 | 9 | 10 | 9 | 9 | 9 | 59 |
conformity | 2 | 2 | 2 | 7 | 9 | 10 | 9 | 9 | 9 | 59 |
RV | 4 | 4 | 4 | 5 | 5 | 6 | 10 | 11 | 9 | 58 |
SV3 | 1 | 1 | 1 | 7 | 7 | 8 | 10 | 10 | 10 | 55 |
delta | 1 | 1 | 2 | 7 | 7 | 8 | 0 | 0 | 0 | 26 |
SV2 | 4 | 4 | 4 | 2 | 2 | 2 | 0 | 0 | 0 | 18 |
SEp | 2 | 2 | 2 | 0 | 2 | 1 | 2 | 2 | 2 | 15 |
m | 1 | 0 | 1 | 0 | 0 | 1 | 10 | 0 | 0 | 13 |
mchiOdd | 0 | 0 | 0 | 1 | 1 | 2 | 2 | 2 | 1 | 9 |
mdeltaOdd | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 4 |
rhoAdjust | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 3 |
Omission | Commission | ||||||||
---|---|---|---|---|---|---|---|---|---|
Scene Dates | RH | RR | SEi | SV0 | RH | RR | SEi | SV0 | |
Ottawa | 26 April 2017—112601 | 25.64 | 67.39 | 27.00 | 32.24 | 2.02 | 1.02 | 3.07 | 2.43 |
30 April 2017—110923 | 17.79 | 18.44 | 32.41 | 33.40 | 3.25 | 2.36 | 2.13 | 2.04 | |
20 May 2017—112600 | 68.49 | 100.00 | 72.25 | 98.57 | 0.77 | 0.51 | 1.04 | 0.81 | |
Richelieu | 11 April 2011—105734 | 12.67 | 14.14 | 33.43 | 35.63 | 14.59 | 8.80 | 9.10 | 8.45 |
11 April 2011—105737 | 16.29 | 17.89 | 37.49 | 40.63 | 15.98 | 12.06 | 11.12 | 10.88 | |
18 April 2011—105324 | 17.83 | 16.73 | 39.53 | 42.31 | 5.44 | 4.75 | 3.53 | 3.56 | |
18 April 2011—105328 | 16.52 | 16.09 | 39.94 | 47.66 | 6.75 | 5.70 | 4.63 | 4.53 | |
05 May 2011—105714 | 9.84 | 11.90 | 26.44 | 28.04 | 16.48 | 12.47 | 13.10 | 12.79 | |
05 May 2011—105717 | 5.61 | 6.42 | 17.33 | 18.84 | 11.89 | 8.36 | 7.74 | 7.70 | |
08 May 2011—223030 | 10.85 | 60.18 | 12.80 | 20.64 | 4.17 | 3.63 | 5.48 | 4.31 | |
08 May 2011—223033 | 11.69 | 41.08 | 13.97 | 24.32 | 2.42 | 2.00 | 3.88 | 3.15 | |
22 May 2011—110132 | 6.30 | 9.63 | 19.18 | 21.09 | 16.49 | 13.10 | 13.72 | 13.55 | |
22 May 2011—110144 | 35.00 | 45.38 | 71.50 | 73.38 | 2.15 | 1.40 | 1.23 | 1.21 | |
Saint John | 04 July 2008—104403 | 100.00 | 100.00 | 35.94 | 98.68 | 0.88 | 0.80 | 1.28 | 1.03 |
19 May 2009—104013 | 12.39 | 38.69 | 51.40 | 52.59 | 4.52 | 2.25 | 2.28 | 2.11 | |
27 April 2010—103615 | 16.72 | 52.24 | 85.82 | 86.05 | 0.31 | 0.23 | 0.16 | 0.16 | |
Average | 23.98 | 38.51 | 38.53 | 47.13 | 6.76 | 4.96 | 5.22 | 4.92 | |
# Lowest Cases | 13 | 2 | 1 | 0 | 0 | 7 | 3 | 7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olthof, I.; Rainville, T. Evaluating Simulated RADARSAT Constellation Mission (RCM) Compact Polarimetry for Open-Water and Flooded-Vegetation Wetland Mapping. Remote Sens. 2020, 12, 1476. https://doi.org/10.3390/rs12091476
Olthof I, Rainville T. Evaluating Simulated RADARSAT Constellation Mission (RCM) Compact Polarimetry for Open-Water and Flooded-Vegetation Wetland Mapping. Remote Sensing. 2020; 12(9):1476. https://doi.org/10.3390/rs12091476
Chicago/Turabian StyleOlthof, Ian, and Thomas Rainville. 2020. "Evaluating Simulated RADARSAT Constellation Mission (RCM) Compact Polarimetry for Open-Water and Flooded-Vegetation Wetland Mapping" Remote Sensing 12, no. 9: 1476. https://doi.org/10.3390/rs12091476
APA StyleOlthof, I., & Rainville, T. (2020). Evaluating Simulated RADARSAT Constellation Mission (RCM) Compact Polarimetry for Open-Water and Flooded-Vegetation Wetland Mapping. Remote Sensing, 12(9), 1476. https://doi.org/10.3390/rs12091476