Editorial for Special Issue “Remote Sensing of Precipitation: Part II”
1. Introduction
2. Overview of Contributions
3. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Aminyavari, S.; Saghafian, B.; Sharifi, E. Assessment of Precipitation Estimation from the NWP Models and Satellite Products for the Spring 2019 Severe Floods in Iran. Remote Sens. 2019, 11, 2741. [Google Scholar] [CrossRef] [Green Version]
- D’Adderio, L.P.; Puca, S.; Vulpiani, G.; Petracca, M.; Sanò, P.; Dietrich, S. RAINBOW: An Operational Oriented Combined IR-Algorithm. Remote Sens. 2020, 12, 2444. [Google Scholar] [CrossRef]
- Eldardiry, H.; Habib, E. Examining the Robustness of a Spatial Bootstrap Regional Approach for Radar-Based Hourly Precipitation Frequency Analysis. Remote Sens. 2020, 12, 3767. [Google Scholar] [CrossRef]
- Ghada, W.; Bech, J.; Estrella, N.; Hamann, A.; Menzel, A. Weather Types Affect Rain Microstructure: Implications for Estimating Rain Rate. Remote Sens. 2020, 12, 3572. [Google Scholar] [CrossRef]
- Giannaros, C.; Kotroni, V.; Lagouvardos, K.; Giannaros, T.M.; Pikridas, C. Assessing the Impact of GNSS ZTD Data Assimilation into the Wrf Modeling System during High-Impact Rainfall Events over Greece. Remote Sens. 2020, 12, 383. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.R.; Liu, P.Y.; Chang, Y.H.; Liu, C.Y. Evaluation and Application of Satellite Precipitation Products in Studying the Summer Precipitation Variations over Taiwan. Remote Sens. 2020, 12, 347. [Google Scholar] [CrossRef] [Green Version]
- Ji, L.; Chen, H.; Li, L.; Chen, B.; Xiao, X.; Chen, M.; Zhang, G. Raindrop Size Distributions and Rain Characteristics Observed by a PARSIVEL Disdrometer in Beijing, Northern China. Remote Sens. 2019, 11, 1479. [Google Scholar] [CrossRef] [Green Version]
- Krietemeyer, A.; van der Marel, H.; van de Giesen, N.; ten Veldhuis, M.C. High Quality Zenith Tropospheric Delay Estimation Using a Low-Cost Dual-Frequency Receiver and Relative Antenna Calibration. Remote Sens. 2020, 12, 1393. [Google Scholar] [CrossRef]
- Laverde-Barajas, M.; Corzo, G.A.; Poortinga, A.; Chishtie, F.; Meechaiya, C.; Jayasinghe, S.; Towashiraporn, P.; Markert, A.; Saah, D.; Son, L.H.; et al. St-Corabico: A Spatiotemporal Object-Based Bias Correction Method for Storm Prediction Detected by Satellite. Remote Sens. 2020, 12, 3538. [Google Scholar] [CrossRef]
- Le Coz, C.; Heemink, A.; Verlaan, M.; ten Veldhuis, M.C.; van de Giesen, N. Correcting Position Error in Precipitation Data Using Image Morphing. Remote Sens. 2019, 11, 2557. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Yong, B. A Preliminary Assessment of the Gauge-Adjusted near-Real-Time GSMaP Precipitation Estimate over Mainland China. Remote Sens. 2020, 12, 141. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Tang, G.; Wang, X.; Liu, Y.; Wei, M.; Zhang, Y. The Development of a Two-Step Merging and Downscaling Method for Satellite Precipitation Products. Remote Sens. 2020, 12, 398. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Chen, H.; Ni, G.; Chandrasekar, V.; Gou, Y.; Zhang, W. Microphysical and Polarimetric Radar Signatures of an Epic Flood Event in Southern China. Remote Sens. 2020, 12, 2772. [Google Scholar] [CrossRef]
- Maghsood, F.F.; Hashemi, H.; Hosseini, S.H.; Berndtsson, R. Ground Validation of GPM IMERG Precipitation Products over Iran. Remote Sens. 2020, 12, 48. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, Z.; Li, X.; Chen, Y.; Nawaz, N.; Gull, R.; Elnashar, A. Spatio-Temporal Assessment of Global Precipitation Products over the Largest Agriculture Region in Pakistan. Remote Sens. 2020, 12, 3650. [Google Scholar] [CrossRef]
- Rahman, K.U.; Shang, S.; Shahid, M.; Wen, Y. Performance Assessment of SM2RAIN-CCI and SM2RAIN-ASCAT Precipitation Products over Pakistan. Remote Sens. 2019, 11, 2040. [Google Scholar] [CrossRef] [Green Version]
- Retalis, A.; Katsanos, D.; Tymvios, F.; Michaelides, S. Comparison of GPM Imerg and TRMM 3B43 Products over Cyprus. Remote Sens. 2020, 12, 3212. [Google Scholar] [CrossRef]
- Sharifi, E.; Eitzinger, J.; Dorigo, W. Performance of the State-of-the-Art Gridded Precipitation Products over Mountainous Terrain: A Regional Study over Austria. Remote Sens. 2019, 11, 2018. [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Chen, Y.; Zhou, X.; Yang, K.; Li, X.; Niu, X.; Hu, X.; Khadka, N. Evaluation of GPM-Era Satellite Precipitation Products on the Southern Slopes of the Central Himalayas against Rain Gauge Data. Remote Sens. 2020, 12, 1836. [Google Scholar] [CrossRef]
- Sokol, Z.; Minářová, J.; Fišer, O. Hydrometeor Distribution and Linear Depolarization Ratio in Thunderstorms. Remote Sens. 2020, 12, 2144. [Google Scholar] [CrossRef]
- Sun, S.; Shi, W.; Zhou, S.; Chai, R.; Chen, H.; Wang, G.; Zhou, Y.; Shen, H. Capacity of Satellite-Based and Reanalysis Precipitation Products in Detecting Long-Term Trends across Mainland China. Remote Sens. 2020, 12, 2902. [Google Scholar] [CrossRef]
- Ullah, S.; Zuo, Z.; Zhang, F.; Zheng, J.; Huang, S.; Lin, Y.; Iqbal, I.; Sun, Y.; Yang, M.; Yan, L. Gpm-Based Multitemporal Weighted Precipitation Analysis Using Gpm_imergdf Product and Aster Dem in Edbf Algorithm. Remote Sens. 2020, 12, 3162. [Google Scholar] [CrossRef]
- Xie, Z.; Yang, H.; Lv, H.; Hu, Q. Seasonal Characteristics of Disdrometer-Observed Raindrop Size Distributions and Their Applications on Radar Calibration and Erosion Mechanism in a Semi-Arid Area of China. Remote Sens. 2020, 12, 262. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Lu, Y.; Tan, M.L.; Li, X.; Wang, G.; He, R. Nine-Year Systematic Evaluation of the GPM and TRMM Precipitation Products in the Shuaishui River Basin in East-Central China. Remote Sens. 2020, 12, 1042. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Liu, D.; Zheng, S.; Liu, S.; Loáiciga, H.A.; Li, W. Regional Precipitation Model Based on Geographically and Temporally Weighted Regression Kriging. Remote Sens. 2020, 12, 2547. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michaelides, S. Editorial for Special Issue “Remote Sensing of Precipitation: Part II”. Remote Sens. 2021, 13, 136. https://doi.org/10.3390/rs13010136
Michaelides S. Editorial for Special Issue “Remote Sensing of Precipitation: Part II”. Remote Sensing. 2021; 13(1):136. https://doi.org/10.3390/rs13010136
Chicago/Turabian StyleMichaelides, Silas. 2021. "Editorial for Special Issue “Remote Sensing of Precipitation: Part II”" Remote Sensing 13, no. 1: 136. https://doi.org/10.3390/rs13010136
APA StyleMichaelides, S. (2021). Editorial for Special Issue “Remote Sensing of Precipitation: Part II”. Remote Sensing, 13(1), 136. https://doi.org/10.3390/rs13010136