A Downscaling–Merging Scheme for Improving Daily Spatial Precipitation Estimates Based on Random Forest and Cokriging
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Datasets
3. Methodology
3.1. Random Forest (RF)
- Precipitation is related to multiple features. Random forests can process high-dimensional data without feature selection.
- Overfitted phenomena do not easily occur, because the final estimation is made through the average prediction of the decision trees.
- The antijamming capability of the random forest algorithm can balance errors and improve accuracy for original datasets with possible outliers.
- The original training dataset is randomly sampled into N subsets by using the bootstrap method.
- For each sample subset, M features are randomly selected and used to split the nodes of the tree.
- A prediction is obtained from each bootstrap tree over N decision trees.
- Among N predictions, the final result is determined by an average.
3.2. Downscaling by RF
3.2.1. Downscaling the Satellite Precipitation at the Seasonal Scale
- The LSTDN is calculated by subtracting LSTnight from LSTday, and elevation, aspect, and slope data were further extracted from DEM data with ArcGIS software (Esri, Redlands CA, USA).
- A regression model between the 0.1° environmental variable and 0.1° GPM precipitation data is established by the RF algorithm.
- The high spatial resolution (0.01°) environmental variable is input into the model established in Step (2), and the 0.01° resolution downscale precipitation (GPM0.01°) is obtained.
- The 0.1° GPM precipitation (GPMe-0.1°) is estimated using the RF model. The residuals of the models (Res0.1°) are then calculated by subtracting the estimated GPM precipitation (GPMe-0.1°) from the original GPM data (GPMo-0.1°).
- Subsequently, the residuals of the models (Res0.1°) are spatially interpolated from 0.1° to 0.01° (Res0.01°) using the simple spline function.
- The corrected downscaled precipitation (GPMc-0.01°) is then obtained by adding the interpolated residual (Res0.01°) to GPM0.01° [49].
3.2.2. Disaggregation from Seasonal Precipitation to Daily Precipitation
3.3. Merging by Cokriging
3.4. Performance Evaluation Indices
3.4.1. Quantitative Indices
3.4.2. Qualitative Indices
4. Results and Discussion
4.1. Model Regression Performance Analysis
4.2. Performance of the Merged Precipitation
4.3. Evaluations
4.3.1. Evaluation on a Gridded Scale
4.3.2. Evaluation on the Basin Scale
4.4. Discussion
5. Conclusions
- The downscaling–merging scheme can efficiently generate high-resolution (0.01°) and high-quality daily precipitation datasets over a large scale.
- The RF downscaling model established on a seasonal scale can accurately reflect the correlation between GPM precipitation and environmental variables, and the regression relationship is relatively stable. The downscaling daily precipitation datasets not only preserved the original spatial distribution pattern of satellite precipitation data but also significantly improved their spatial details.
- The downscaling daily precipitation data based on the RF model improved the spatial resolution of the original GPM daily precipitation data and had almost the same accuracy as the original GPM daily precipitation data.
- After the merging process, the accuracy of Down_GPM was significantly improved, MAE and RMSE were reduced by 36.09% and 26.40% respectively, and the detection ability of precipitation events was also improved.
Author Contributions
Funding
Conflicts of Interest
References
- Jesus, M.D.; Rinaldo, A.; Rodriguez-Iturbe, I. Point rainfall statistics for ecohydrological analyses derived from satellite integrated rainfall measurements. Water Resour. Res. 2015, 51, 2974–2985. [Google Scholar] [CrossRef] [Green Version]
- Long, Y.; Zhang, Y.; Ma, Q. A Merging Framework for Rainfall Estimation at High Spatiotemporal Resolution for Distributed Hydrological Modeling in a Data-Scarce Area. Remote Sens. 2016, 8, 599. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Gao, H.; Naz, B.S. Monitoring reservoir storage in South Asia from multisatellite remote sensing. Water Resour. Res. 2015, 50, 8927–8943. [Google Scholar] [CrossRef]
- Goodrich, D.C.; Faurès, J.M.; Woolhiser, D.A.; Lane, L.J.; Sorooshian, S. Measurement and analysis of small-scale con-vective storm rainfall variability. J. Hydrol. 1995, 173, 283–308. [Google Scholar] [CrossRef]
- Ahmad, S.; Kalra, A.; Stephen, H. Estimating soil moisture using remote sensing data: A machine learning approach. Adv. Water Resour. 2010, 33, 69–80. [Google Scholar] [CrossRef]
- Spracklen, D.V.; Arnold, S.R.; Taylor, C.M. Observations of increased tropical rainfall preceded by air passage over forests. Nature 2012, 489, 282–285. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liu, H.; Wang, X.; Zhang, N.; Sun, J. Numerical simulation of the impact of urban non-uniformity on precipitation. Adv. Atmos. Sci. 2016, 33, 783–793. [Google Scholar] [CrossRef]
- Syed, T.H.; Lakshmi, V.; Paleologos, E.; Lohmann, D.; Mitchell, K.; Famiglietti, J.S. Analysis of process controls in land surface hydrological cycle over the continental United States. J. Geophys. Res. Atmos. 2004, 109, D22105. [Google Scholar] [CrossRef] [Green Version]
- Gebregiorgis, A.S.; Hossain, F. Understanding the Dependence of Satellite Rainfall Uncertainty on Topography and Climate for Hydrologic Model Simulation. IEEE Trans. Geosci. Remote Sens. 2013, 51, 704–718. [Google Scholar] [CrossRef]
- Javanmard, S.; Yatagai, A.; Nodzu, M.I.; Bodaghjamali, J.; Kawamoto, H. Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM_3B42 over Iran. Adv. Geosci. 2010, 25, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Villarini, G.; Krajewski, W.F. Review of the Different Sources of Uncertainty in Single Polarization Radar-Based Estimates of Rainfall. Surv. Geophys. 2009, 31, 107–129. [Google Scholar] [CrossRef]
- Kummerow, C.; Simpson, J.; Thiele, O.; Barnes, W.; Chang, A.; Stocker, E.; Adler, R.F.; Hou, A.; Kakar, R.; Wentz, F.; et al. The status of the Tropical Rainfall Measuring Mission (TRMM) after two years in orbit. J. Appl. Meteorol. 2000, 39, 1965–1982. [Google Scholar] [CrossRef]
- Kubota, T.; Shige, S.; Hashizume, H.; Aonashi, K.; Takahashi, N.; Seto, S.; Hirose, M.; Takayabu, Y.N.; Ushio, T.; Nakagawa, K. Global Precipitation Map Using Satellite-Borne Microwave Radiometers by the GSMaP Project: Production and Validation. IEEE Trans. Geosci. Remote Sens. 2007, 45, 2259–2275. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Arkin, P.; Chang, A.; Ferraro, R.; Gruber, A.; Janowiak, J.; McNab, A.; Rudolf, B.; Schneider, U. The global precipitation climatology project (GPCP) combined precipitation dataset. Bull. Am. Meteorol. Soc. 1997, 78, 5–20. [Google Scholar] [CrossRef]
- Skofronick-Jackson, G.; Petersen, W.A.; Berg, W.; Kidd, C.; Stocker, E.F.; Kirschbaum, D.B.; Kakar, R.; Braun, S.A.; Huffman, G.J.; Iguchi, T.; et al. The Global Precipitation Measurement (GPM) mission for science and society. Bull. Am. Meteorol. Soc. 2017, 98, 1679–1695. [Google Scholar] [CrossRef]
- Sorooshian, S.; Aghakouchak, A.; Arkin, P.; Eylander, J.; Foufoula-Georgiou, E.; Harmon, R.; Hendrickx, J.; Imam, B.; Kuligowski, R.; Skahill, B. Advanced Concepts on Remote Sensing of Precipitation at Multiple Scales. Bull. Am. Meteorol. Soc. 2011, 92, 1353–1357. [Google Scholar] [CrossRef]
- Rummukainen, M. State-of-the-art with regional climate model. Wiley Interdiscip. Rev. Clim. Chang. 2010, 1, 82–96. [Google Scholar] [CrossRef]
- Immerzeel, W.W.; Rutten, M.M.; Droogers, P. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula. Remote Sens. Environ. 2009, 113, 362–370. [Google Scholar] [CrossRef]
- Jia, S.; Zhu, W.; Aifeng, L.; Yan, T. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China. Remote Sens. Environ. 2011, 115, 3069–3079. [Google Scholar] [CrossRef]
- Fang, J.; Du, J.; Xu, W.; Shi, P.; Li, M.; Ming, X. Spatial downscaling of TRMM precipitation data based on the orographical effect and meteorological conditions in a mountainous area. Adv. Water Resour. 2013, 61, 42–50. [Google Scholar] [CrossRef]
- Jing, W.; Yang, Y.; Yue, X.; Zhao, X. A Spatial Downscaling Algorithm for Satellite-Based Precipitation over the Tibetan Plateau Based on NDVI, DEM, and Land Surface Temperature. Remote Sens. 2016, 8, 655. [Google Scholar] [CrossRef] [Green Version]
- Zhan, C.; Jian, H.; Shi, H.; Liu, L.; Dong, Y. Spatial Downscaling of GPM Annual and Monthly Precipitation Using Regression-Based Algorithms in a Mountainous Area. Adv. Meteorol. 2018, 2018, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Fan, H.; He, D.; Chen, J. Integrating precipitation zoning with random forest regression for the spatial downscaling of satellite-based precipitation: A case study of the Lancang—Mekong River basin. Int. J. Clim. 2019, 39, 3947–3961. [Google Scholar] [CrossRef]
- Ma, Z.; He, K.; Tan, X.; Xu, J.; Fang, W.; He, Y.; Hong, Y. Comparisons of spatially downscaling TMPA and IMERG over the Tibetan Plateau. Remote Sens. 2018, 10, 1883. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; He, K.; Tan, X.; Liu, Y.; Lu, H.; Shi, Z. A new approach for obtaining precipitation estimates with a finer spatial resolution on a daily scale based on TMPA V7 data over the Tibetan Plateau. Int. J. Remote Sens. 2019, 40, 8465–8483. [Google Scholar] [CrossRef]
- Chen, F.; Gao, Y.; Wang, Y.; Qin, F.; Li, X. Downscaling satellite-derived daily precipitation products with an integrated framework. Int. J. Climatol. A J. R. Meteorol. Soc. 2019, 39, 1287–1304. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef] [Green Version]
- Katiraie-Boroujerdy, P.; Asanjan, A.A.; Hsu, K.; Sorooshian, S. Intercomparison of PERSIANN-CDR and TRMM-3B42V7 precipitation estimates at monthly and daily time scales. Atmos. Res. 2017, 193, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; Van Dijk, A.I.; McVicar, T.R.; Adler, R.F. MSWEP V2 global 3-hourly 0.1 precipitation: Methodology and quantitative assessment. Bull. Am. Meteorol. Soc. 2019, 100, 473–500. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Hsu, K.; Sorooshian, S.; Xu, X.; Braithwaite, D.; Zhang, Y.; Verbist, K.M. Merging high-resolution satellite-based precipitation fields and point-scale rain gauge measurements—A case study in Chile. J. Geophys. Res. Atmos. 2017, 122, 5267–5284. [Google Scholar] [CrossRef]
- Baez-Villanueva, O.M.; Zambrano-Bigiarini, M.; Beck, H.E.; McNamara, I.; Ribbe, L.; Nauditt, A.; Birkel, C.; Verbist, K.; Giraldo-Osorio, J.D.; Thinh, N.X. RF-MEP: A novel Random Forest method for merging gridded precipitation products and ground-based measurements. Remote Sens. Environ. 2020, 239, 111606. [Google Scholar] [CrossRef]
- Cheema, M.J.M.; Bastiaanssen, W.G.M. Local calibration of remotely sensed rainfall from the TRMM satellite for different periods and spatial scales in the Indus Basin. Int. J. Remote Sens. 2012, 33, 2603–2627. [Google Scholar] [CrossRef]
- Manz, B.; Buytaert, W.; Zulkafli, Z.; Lavado, W.; Willems, B.; Robles, L.A.; Rodr, I.; Guez-S, A.; Nchez, J. High-resolution satellite-gauge merged precipitation climatologies of the Tropical Andes. J. Geophys. Res. Atmos. 2016, 121, 1190–1207. [Google Scholar] [CrossRef] [Green Version]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2013, 95, 701–722. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theoretical Basis Doc. (ATBD) Vers. 2015, 4, 26. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J. Integrated Multi-satellitE Retrievals for GPM (IMERG) technical documentation. NASA/GSFC Code 2015, 612, 2019. [Google Scholar]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Cutler, A.; Cutler, D.R.; Stevens, J.R. Random forests. In Ensemble Machine Learning; Springer: Berlin/Heidelberg, Germany, 2012; pp. 157–175. [Google Scholar]
- Chaney, N.W.; Wood, E.F.; Mcbratney, A.B.; Hempel, J.W.; Nauman, T.W.; Brungard, C.W.; Odgers, N.P. POLARIS: A 30-meter probabilistic soil series map of the contiguous United States. Geoderma 2016, 274, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Zhao, T.; Yang, D.; Cai, X.; Cao, Y. Predict seasonal low flows in the upper Yangtze River using random forests model. J. Hydroelectr. Eng. 2012, 31, 18–24. [Google Scholar]
- He, X.; Zhao, T.; Yang, D. Prediction of monthly inflow to the Danjiangkou reservoir by distributed hydrological model and hydro-climatic teleconnections. J. Hydroelectr. Eng. 2013, 32, 4–9. [Google Scholar]
- Carlisle, D.M.; Falcone, J.; Wolock, D.M.; Meador, M.R.; Norrjs, R.H. Predicting the natural flow regime: Models for assessing hydrological alteration in streams. River Res. Appl. 2010, 26, 118–136. [Google Scholar] [CrossRef]
- Peters, J.; Baets, B.D.; Verhoest, N.; Samson, R.; Degroeve, S.; Becker, P.D.; Huybrechts, W. Random forests as a tool for ecohydrological distribution modelling. Ecol. Model. 2007, 207, 304–318. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by random forest. R News 2002, 2, 18–22. [Google Scholar]
- Ibarra-Berastegi, G.; Saénz, J.; Ezcurra, A.; Elías, A.; Diaz Argandoña, J.; Errasti, I. Downscaling of surface moisture flux and precipitation in the Ebro Valley (Spain) using analogues and analogues followed by random forests and multiple linear regression. Hydrol. Earth Syst. Sc. 2011, 15, 1895–1907. [Google Scholar] [CrossRef]
- Swami, A.; Jain, R. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2013, 12, 2825–2830. [Google Scholar]
- Chen, F.; Gao, Y.; Wang, Y.; Li, X. A downscaling-merging method for high-resolution daily precipitation estimation. J. Hydrol. 2020, 581, 124414. [Google Scholar] [CrossRef]
- Yuli, S.; Lei, S.; Zhen, X.; Yurong, L.; Myneni, R.B.; Sungho, C.; Lin, W.; Xiliang, N.; Cailian, L.; Fengkai, Y.; et al. Mapping Annual Precipitation across Mainland China in the Period 2001–2010 from TRMM3B43 Product Using Spatial Downscaling Approach. Remote Sens. 2015, 7, 5849–5878. [Google Scholar]
- Chen, S.; Xiong, L.; Ma, Q.; Kim, J.; Chen, J.; Xu, C. Improving daily spatial precipitation estimates by merging gauge observation with multiple satellite-based precipitation products based on the geographically weighted ridge regression method. J. Hydrol. 2020, 589, 125156. [Google Scholar] [CrossRef]
- Sun, X.; Mein, R.G.; Keenan, T.D.; Elliott, J.F. Flood estimation using radar and raingauge data. J. Hydrol. 2000, 239, 4–18. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, C.; Chen, H. Comparison and Analysis of Different Variogram Functions Models in Kriging Interpolation of Daily Rainfall. J. Water Resour. Res. 2016, 5, 469–477. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press on Demand: Oxford, UK, 1997. [Google Scholar]
- Kling, H.; Fuchs, M.; Paulin, M. Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. J. Hydrol. 2012, 424, 264–277. [Google Scholar] [CrossRef]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Wang, J.; Price, K.P.; Rich, P.M. Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. Int. J. Remote Sens. 2001, 22, 3827–3844. [Google Scholar] [CrossRef]
- Zhang, X.; Friedl, M.A.; Scha Af, C.B.; Strahler, A.H.; Zhong, L. Monitoring the response of vegetation phenology to precipitation in Africa by coupling MODIS and TRMM instruments. J. Geophys. Res. Atmos. 2005, 110, D12. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Gouveia, C.; Camarero, J.J.; Beguería, S.; Sanchez-Lorenzo, A. Response of vegetation to drought time-scales across global land biomes. Proc. Natl. Acad. Sci. USA 2012, 110, 52–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunsell, N.A. Characterization of land-surface precipitation feedback regimes with remote sensing. Remote Sens. Environ. 2006, 100, 200–211. [Google Scholar] [CrossRef]
- Ji, L.; Peters, A.J. Lag and Seasonality Considerations in Evaluating AVHRR NDVI Response to Precipitation. Photogramm. Eng. Remote Sens. 2005, 71, 1053–1061. [Google Scholar] [CrossRef]
- Wang, J.; Rich, P.M.; Price, K.P. Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA. Int. J. Remote Sens. 2003, 24, 2345–2364. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Shea, D.J. Relationships between precipitation and surface temperature. Geophys. Res. Lett. 2005, 32, 14. [Google Scholar] [CrossRef]
- Sokol, Z.; Bliznak, V. Areal distribution and precipitation–altitude relationship of heavy short-term precipitation in the Czech Republic in the warm part of the year. Atmos. Res. 2009, 94, 652–662. [Google Scholar] [CrossRef]
- Badas, M.G.; Deidda, R.; Piga, E. Orographic influences in rainfall downscaling. Adv. Geosci. 2005, 2, 285–292. [Google Scholar] [CrossRef] [Green Version]
- Wald, L. Some terms of reference in data fusion. IEEE Trans. Geosci. Remote 2002, 37, 1190–1193. [Google Scholar] [CrossRef] [Green Version]
- Chena, Y.; Huanga, J.; Sheng, D.S.; Mansaraya, L.R.; Wangh, X. A new downscaling-integration framework for high-resolution monthly precipitation estimates: Combining rain gauge observations, satellite-derived precipitation data and geographical ancillary data. Remote Sens. Environ. 2018, 214, 154–172. [Google Scholar] [CrossRef]
- Li, H.; Hong, Y.; Xie, P.; Gao, J.; Niu, Z.; Kirstetter, P.; Yong, B. Variational merged of hourly gauge-satellite precipitation in China: Preliminary results. J. Geophys. Res. Atmos. 2015, 120, 9897–9915. [Google Scholar] [CrossRef]
- Park, N.W.; Kyriakidis, P.; Hong, S. Geostatistical Integration of Coarse Resolution Satellite Precipitation Products and Rain Gauge Data to Map Precipitation at Fine Spatial Resolutions. Remote Sens. 2017, 9, 255. [Google Scholar] [CrossRef] [Green Version]
Image Products | Dataset | Resolution | Latency |
---|---|---|---|
Precipitation | GPM_3IMERGDF | Daily, 0.1° | 3.5 months |
NDVI 1 | MOD13A3 | Monthly, 1 km | 1 month |
LST 2 | MOD11A2 | 8-day, 1 km | 8 days |
DEM 3 | SRTM | -, 90 m | - |
Title | r 4 | Title | Bias | Title | MAE 5 | Title | RMSE 6 | Title | KGE 7 | Title |
---|---|---|---|---|---|---|---|---|---|---|
Value | IM 8 (%) | Value (%) | IM (%) | Value (mm) | IM (%) | Value (mm) | IM (%) | Value | IM (%) | |
Ori_GPM 1 | 0.64 | 0 | 15.51% | 0 | 2.32 | 0 | 6.17 | 0 | 0.56 | 0 |
Down_GPM 2 | 0.64 | 0 | 12.93% | −16.63% | 2.30 | −0.86% | 6.06 | −1.78% | 0.57 | 1.79% |
DM_CK 3 | 0.80 | 25.00% | 2.73% | −78.89% | 1.47 | −36.09% | 4.46 | −26.40% | 0.74 | 29.82% |
Event | Period | Season | No-Rain Fraction |
---|---|---|---|
No. | (-) | (-) | (%) |
1 | 22–25 June 2016 | Summer | 6.17 |
2 | 13–15 July 2016 | Summer | 4.32 |
3 | 24–28 September 2016 | Autumn | 9.88 |
4 | 2–3 May 2017 | Spring | 11.11 |
5 | 3–6 June 2017 | Summer | 3.09 |
6 | 23–27 September 2017 | Autumn | 3.70 |
7 | 5–7 October 2017 | Autumn | 3.09 |
r | Bias | MAE | RMSE | KGE | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Value | IM (%) | Value (%) | IM (%) | Value (mm) | IM (%) | Value (mm) | IM (%) | Value | IM (%) | |
Ori_GPM | 0.85 | 0 | 15.51% | 0 | 26.88 | 0 | 41.58 | 0 | 0.72 | 0 |
Down_GPM | 0.83 | −2.35% | 12.93% | −16.6% | 28.25 | 5.10% | 42.56 | 2.36% | 0.70 | −2.78% |
DM_CK | 0.87 | 2.35% | 2.73% | −82.40% | 21.52 | −19.94% | 36.37 | −12.53% | 0.74 | 5.71% |
r | MAE | RMSE | KGE | ||||||
---|---|---|---|---|---|---|---|---|---|
Value | IM (%) | Value (mm) | IM (%) | Value (mm) | IM (%) | Value (mm) | IM (%) | ||
Ori_GPM | 0.87 | 0 | 1.30 | 0 | 2.62 | 0 | 0.77 | 0 | |
BADP 1 | Down_GPM | 0.87 | 0 | 1.26 | −3.08% | 2.57 | −1.91% | 0.78 | −1.91% |
DM_CK | 0.999 | 14.83% | 0.09 | −93.08% | 0.25 | −90.46% | 0.97 | 25.97% | |
Ori_GPM | 0.98 | 0 | 12.54 | 0 | 16.98 | 0 | 0.84 | 0 | |
BAMP 2 | Down_GPM | 0.98 | 0 | 10.94 | −12.76% | 15.94 | −6.12% | 0.85 | 1.19% |
DM_CK | 0.999 | 1.94% | 1.99 | −84.13% | 3.11 | −81.68% | 0.97 | 15.48% |
POD 1 | FAR 2 | FBI 3 | CSI 4 | |
---|---|---|---|---|
Ori_GPM | 0.9217 | 0.1308 | 1.0604 | 0.8094 |
Down_GPM | 0.9219 | 0.1287 | 1.0580 | 0.8114 |
DM_CK | 1 | 0.0232 | 1.0238 | 0.9768 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Chen, H.; Tian, B.; Sheng, S.; Wang, J.; Kim, J.-S. A Downscaling–Merging Scheme for Improving Daily Spatial Precipitation Estimates Based on Random Forest and Cokriging. Remote Sens. 2021, 13, 2040. https://doi.org/10.3390/rs13112040
Yan X, Chen H, Tian B, Sheng S, Wang J, Kim J-S. A Downscaling–Merging Scheme for Improving Daily Spatial Precipitation Estimates Based on Random Forest and Cokriging. Remote Sensing. 2021; 13(11):2040. https://doi.org/10.3390/rs13112040
Chicago/Turabian StyleYan, Xin, Hua Chen, Bingru Tian, Sheng Sheng, Jinxing Wang, and Jong-Suk Kim. 2021. "A Downscaling–Merging Scheme for Improving Daily Spatial Precipitation Estimates Based on Random Forest and Cokriging" Remote Sensing 13, no. 11: 2040. https://doi.org/10.3390/rs13112040
APA StyleYan, X., Chen, H., Tian, B., Sheng, S., Wang, J., & Kim, J. -S. (2021). A Downscaling–Merging Scheme for Improving Daily Spatial Precipitation Estimates Based on Random Forest and Cokriging. Remote Sensing, 13(11), 2040. https://doi.org/10.3390/rs13112040