Remote Sensing Indices for Spatial Monitoring of Agricultural Drought in South Asian Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Products
2.2.1. MODIS Products
2.2.2. TRMM Product
2.2.3. FLDAS Product and ESI Images
2.2.4. Land Cover Type Data
2.2.5. Annual Crop Production
2.3. Methods
2.3.1. Relationship between Drought Indices and Climate Variables
2.3.2. Relationship between Drought Indices and Crop Yield Anomaly
3. Results and Discussion
3.1. Drought Analysis Using Spatial Distribution Maps
3.2. Agricultural Drought Developments in Pakistan
3.3. Agricultural Drought Developments in India
3.4. Agricultural Drought Developments in Bangladesh
3.5. Agricultural Drought Developments in Afghanistan
3.6. Relationship between Drought Indices and Climate Variables
3.7. Temporal Distribution of Drought
3.8. Estimation of Agricultural Drought Severity by Drought Indices Using Boxplots
3.9. Temporal Crop Variability and Relationship between the Yield Anomaly Index and Drought Indices
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qu, C.; Hao, X.; Qu, J.J. Monitoring extreme agricultural drought over the Horn of Africa (HOA) using remote sensing measurements. Remote Sens. 2019, 11, 902. [Google Scholar] [CrossRef] [Green Version]
- Sarmah, S.; Jia, G.; Zhang, A. Satellite view of seasonal greenness trends and controls in South Asia. Environ. Res. Lett. 2018, 13, 034026. [Google Scholar] [CrossRef]
- Sivakumar, M.V.K.; Stefanski, R. Climate Change and Food Security in South Asia; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Ali, S.; Tong, D.; Xu, Z.T.; Henchiri, M.; Wilson, K.; Siqi, S.; Zhang, J. Characterization of drought monitoring events through MODIS- and TRMM-based DSI and TVDI over South Asia during 2001–2017. Environ. Sci. Pollut. Res. 2019, 26, 33568–33581. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Mu, Q.; Huang, J. Assessing the remotely sensed Drought Severity Index for agricultural drought monitoring and impact analysis in North China. Ecol. Indic. 2016, 63, 296–309. [Google Scholar] [CrossRef]
- Bennett, A.C.; Mcdowell, N.G.; Allen, C.D.; Anderson-Teixeira, K.J. Larger trees suffer most during drought in forests worldwide. Nat. Plants 2015, 1, 1–5. [Google Scholar] [CrossRef]
- Stabinsky, D. Defining Role of Agriculture in South Asia; Climate Action Network South Asia: Dhaka, Bangladesh, 2014; pp. 19–26. [Google Scholar]
- Funk, C.C.; Brown, M.E. Declining global per capita agricultural production and warming oceans threaten food security. Food Secur. 2009, 1, 271–289. [Google Scholar] [CrossRef]
- Dalezios, N.R.; Gobin, A.; Tarquis Alfonso, A.M.; Eslamian, S. Agricultural Drought Indices: Combining Crop, Climate, and Soil Factors. In Handbook of Drought and Water Scarcity, Principles of Drought and Water Scarcity; Eslamian, S., Eslamian, F., Eds.; CRC Press: New York, NY, USA, 2017; Volume 1, pp. 73–90. [Google Scholar]
- Tran, H.T.; Campbell, J.B.; Tran, T.D.; Tran, H.T. Monitoring drought vulnerability using multispectral indices observed from sequential remote sensing (Case Study: Tuy Phong, Binh Thuan, Vietnam). GISci. Remote Sens. 2017, 54, 167–184. [Google Scholar] [CrossRef] [Green Version]
- Holben, B.N.; Tucker, C.J.; Fan, C.J. Spectral assessment of soybean leaf area and lear biomass. Photogramm. Eng. Remote Sens. 1980, 46, 651–656. [Google Scholar]
- Kogan, F.N. Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bull. Am. Meteorol. Soc. 1995, 76, 655–668. [Google Scholar] [CrossRef] [Green Version]
- Bezdan, J.; Bezdan, A.; Blagojević, B.; Mesaroš, M.; Pejič, B.; Vraneševič, M.; Pavič, D.; Nikolič-Dorić, E. SPEI-based approach to agricultural drought monitoring in Vojvodina region. Water 2019, 11, 1481. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.G.; Gottschalck, J.; Hartman, A.; Miskus, D.; Tinker, R.; Artusa, A. Flash drought characteristics based on U.S. drought monitor. Atmosphere 2019, 10, 498. [Google Scholar] [CrossRef] [Green Version]
- Barriopedro, D.; Gouveia, C.M.; Trigo, R.M.; Wang, L. The 2009/10 drought in China: Possible causes and impacts on vegetation. J. Hydrometeorol. 2012, 13, 1251–1267. [Google Scholar] [CrossRef] [Green Version]
- West, H.; Quinn, N.; Horswell, M. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities. Remote Sens. Environ. 2019, 232, 111291. [Google Scholar]
- Thenkabail, A.; Lyon, P.; Huete, J.; Gitelson, A. Remote Sensing Estimation of Crop Biophysical Characteristics at Various Scales. Hyperspectr. Remote Sens. Veg. 2011, 329–358. [Google Scholar]
- Yoon, D.H.; Nam, W.H.; Lee, H.J.; Hong, E.M.; Feng, S.; Wardlow, B.D.; Tadesse, T.; Svoboda, M.D.; Hayes, M.J.; Kim, D.E. Agricultural drought assessment in East Asia using satellite-based indices. Remote Sens. 2020, 12, 444. [Google Scholar] [CrossRef] [Green Version]
- Otkin, J.A.; Anderson, M.C.; Hain, C.; Mladenova, I.E.; Basara, J.B.; Svoboda, M. Examining rapid onset drought development using the thermal infrared-based evaporative stress index. J. Hydrometeorol. 2013, 14, 1057–1074. [Google Scholar] [CrossRef]
- Anderson, M.C.; Hain, C.; Wardlow, B.; Pimstein, A.; Mecikalski, J.R.; Kustas, W.P. Evaluation of drought indices based on Thermal remote sensing of evapotranspiration over the continental United States. J. Clim. 2011, 24, 2025–2044. [Google Scholar] [CrossRef]
- Anderson, M.C.; Cammalleri, C.; Hain, C.R.; Otkin, J.; Zhan, X.; Kustas, W. Using a Diagnostic Soil-Plant-Atmosphere Model for Monitoring Drought at Field to Continental Scales. Procedia Environ. Sci. 2013, 19, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Anderson, M.C.; Zolin, C.A.; Sentelhas, P.C.; Hain, C.R.; Semmens, K.; Tugrul Yilmaz, M.; Gao, F.; Otkin, J.A.; Tetrault, R. The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts. Remote Sens. Environ. 2016, 174, 82–99. [Google Scholar] [CrossRef]
- Nguyen, H.; Wheeler, M.C.; Otkin, J.A.; Cowan, T.; Frost, A.; Stone, R. Using the evaporative stress index to monitor flash drought in Australia. Environ. Res. Lett. 2019, 14, 064016. [Google Scholar] [CrossRef] [Green Version]
- Dhawan, V. Water and Agriculture in India. Background Paper for the South Asia Expert Panel during the Global Forum for Food and Agriculture. 2017, Volume 28. Available online: https://www.oav.de/fileadmin/user_upload/5_Publikationen/5_Studien/170118_Study_Water_Agriculture_India.pdf (accessed on 20 May 2021).
- Minstry of Environment Government of Pakistan Land Use Atlas of Pakistan. Report. 2004, pp. 1–70. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/9393/-Land_Use_Atlas_of_Pakistan-2009Pakistan_LandUseAtlas_2009.pdf.pdf?sequence=3&isAllowed=y (accessed on 20 May 2021).
- The Structure of Health Factors among Community-dwelling Elderly People. Available online: https://www.ues.tmu.ac.jp/cus/archives/cn17/pdf/82-03.pdf (accessed on 20 May 2021).
- World Bank Islamic Republic of Afghanistan Agriculture Sector Review. Revitalizing Agriculture for Economic Growth, Job Creation and Food Security. 2014. Available online: https://openknowledge.worldbank.org/handle/10986/21733 (accessed on 20 May 2021).
- Almazroui, M.; Saeed, S.; Saeed, F.; Islam, M.N.; Ismail, M. Projections of Precipitation and Temperature over the South Asian Countries in CMIP6. Earth Syst. Environ. 2020, 4, 297–320. [Google Scholar] [CrossRef]
- Mahto, S.S.; Mishra, V. Dominance of summer monsoon flash droughts in India. Environ. Res. Lett. 2020. Available online: https://ui.adsabs.harvard.edu/abs/2020ERL....15j4061M/abstract (accessed on 20 May 2021). [CrossRef]
- Savtchenko, A.; Ouzounov, D.; Ahmad, S.; Acker, J.; Leptoukh, G.; Koziana, J.; Nickless, D. Terra and Aqua MODIS products available from NASA GES DAAC. Adv. Space Res. 2004, 34, 710–714. [Google Scholar] [CrossRef]
- Braun, S.A.; Stocker, E.; Marius, J. Tropical Rainfall Measuring Mission. 2011, pp. 1–58. Available online: https://earthobservatory.nasa.gov/features/TRMM (accessed on 20 May 2021).
- NASA. JAXA Key TRMM Facts. Earth Sci. Ref. Handb. 2001, 243–254. Available online: https://ghrc.nsstc.nasa.gov/home/sites/default/files/trmm_fact_sheet_0.pdf (accessed on 20 May 2021).
- Jung, H.C.; Kang, D.H.; Kim, E.; Getirana, A.; Yoon, Y.; Kumar, S.; Peters-lidard, C.D.; Hwang, E.H. Towards a soil moisture drought monitoring system for South Korea. J. Hydrol. 2020, 589, 125176. [Google Scholar] [CrossRef]
- McNally, A.; Arsenault, K.; Kumar, S.; Shukla, S.; Peterson, P.; Wang, S.; Funk, C.; Peters-Lidard, C.D.; Verdin, J.P. A land data assimilation system for sub-Saharan Africa food and water security applications. Sci. Data 2017, 4, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Meroni, M.; Atzberger, C.; Vancutsem, C.; Gobron, N.; Baret, F.; Lacaze, R.; Eerens, H.; Leo, O. Evaluation of agreement between space remote sensing SPOT-VEGETATION fAPAR Time Series. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1951–1962. [Google Scholar] [CrossRef]
- Pérez-Hoyos, A.; Rembold, F.; Kerdiles, H.; Gallego, J. Comparison of global land cover datasets for cropland monitoring. Remote Sens. 2017, 9, 1118. [Google Scholar] [CrossRef] [Green Version]
- Agutu, N.O.; Awange, J.L.; Zerihun, A.; Ndehedehe, C.E.; Kuhn, M.; Fukuda, Y. Assessing multi-satellite remote sensing, reanalysis, and land surface models’ products in characterizing agricultural drought in East Africa. Remote Sens. Environ. 2017, 194, 287–302. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, F.; Bu, L.; Wang, Q.; Ali, M.A.; Bilal, M.; Shahzaman, M.; Qiu, Z. Multi-year comparison of CO2 concentration from NOAA carbon tracker reanalysis model with data from GOSAT and OCO-2 over Asia. Remote Sens. 2020, 12, 2498. [Google Scholar] [CrossRef]
- Mustafa, F.; Wang, H.; Bu, L.; Wang, Q.; Shahzaman, M.; Bilal, M.; Zhou, M.; Iqbal, R.; Aslam, R.W.; Ali, M.A.; et al. Validation of gosat and oco-2 against in situ aircraft measurements and comparison with carbontracker and geos-chem over Qinhuangdao, China. Remote Sens. 2021, 13, 899. [Google Scholar] [CrossRef]
- Kaspar, F.; Schulzweida, U.; Wetterdienst, D. “Climate Data Operators” As a User-Friendly Processing Tool for Cmsaf’S Satellite-Derived Climate Monitoring Products. In Proceedings of the Conference: EUMETSAT Meteorological Satellite Conference, Córdoba, Spain, 20–24 September 2010. [Google Scholar]
- Kogan, F.N. Global Drought Watch from Space. Bull. Am. Meteorol. Soc. 1997, 78, 621–636. [Google Scholar] [CrossRef]
- Brema, J.; Rahul, T.S.; Julius, J.J. Proceedings of International Conference on Remote Sensing for Disaster Management; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; ISBN 978-3-319-77275-2. [Google Scholar]
- Huete, A. Land Remote Sensing and Global Environmental Change: NASA’s Earth Observing System and the Science of ASTER and MODIS; Springer International Publishing: Berlin/Heidelberg, Germany, 2011; ISBN 9781441967480. [Google Scholar]
- Rowhani, P.; Linderman, M.; Lambin, E.F. Global interannual variability in terrestrial ecosystems: Sources and spatial distribution using MODIS-derived vegetation indices, social and biophysical factors. Int. J. Remote Sens. 2011, 32, 5393–5411. [Google Scholar] [CrossRef]
- Noormets, A. Phenology of ecosystem processes: Applications in global change research. Phenol. Ecosyst. Process. Appl. Glob. Chang. Res. 2009, 1–275. Available online: https://link.springer.com/book/10.1007%2F978-1-4419-0026-5 (accessed on 20 May 2021).
- Liou, Y.A.; Mulualem, G.M. Spatio-temporal assessment of drought in Ethiopia and the impact of recent intense droughts. Remote Sens. 2019, 11, 1828. [Google Scholar] [CrossRef] [Green Version]
- Koudahe, K.; Kayode, A.J.; Samson, A.O.; Adebola, A.A.; Djaman, K. Trend Analysis in Standardized Precipitation Index and Standardized Anomaly Index in the Context of Climate Change in Southern Togo. Atmos. Clim. Sci. 2017, 07, 401–423. [Google Scholar] [CrossRef] [Green Version]
- Kang, C.H.; Zhang, Y.; Wang, Z.; Liu, L.; Zhang, H.; Jo, Y. The driving force analysis of NDVI dynamics in the trans-boundary Tumen River Basin between 2000 and 2015. Sustainability 2017, 9, 2350. [Google Scholar] [CrossRef] [Green Version]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences, 2nd ed.; Academic Press: Cambridge, MA, USA, 2007; ISBN 9780127519661. [Google Scholar]
- Kamoutsis, A.; Matsoukis, A.; Chronopoulou-Sereli, A. Triticum Aestivum L. Phenological response to air temperature in Greece. Ital. J. Agrometeorol. 2010, 2, 51–55. [Google Scholar]
- Sur, K.; Lunagaria, M.M. Association between drought and agricultural productivity using remote sensing data: A case study of Gujarat state of India. J. Water Clim. Chang. 2020, 11, 189–202. [Google Scholar] [CrossRef]
- Arshad, M.; Ma, X.; Yin, J.; Ullah, W.; Ali, G.; Ullah, S.; Liu, M.; Shahzaman, M.; Ullah, I. Evaluation of GPM-IMERG and TRMM-3B42 precipitation products over Pakistan. Atmos. Res. 2020, 249, 105341. [Google Scholar] [CrossRef]
- Naz, F.; Dars, G.H.; Ansari, K.; Jamro, S.; Krakauer, N.Y. Drought trends in Balochistan. Water 2020, 12, 470. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, M.M. Drought management and prevention in Pakistan. Sci. Vis. 2001, 7, 117–131. [Google Scholar]
- Kambale, J. Climate Change Assessment of Long Term Spatio-Temporal. 2019. Available online: https://www.researchgate.net/publication/336459179_Assessment_of_long_term_Spatio-temporal_variability_and_Standardized_Anomaly_Index_of_rainfall_of_Northeastern_region_Karnataka_India (accessed on 20 May 2021).
- Bhuiyan, C.; Singh, R.P.; Kogan, F.N. Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 289–302. [Google Scholar] [CrossRef]
- Ali, S.; Henchiri, M.; Yao, F.; Zhang, J. Analysis of vegetation dynamics, drought in relation with climate over South Asia from 1990 to 2011. Environ. Sci. Pollut. Res. 2019, 26, 11470–11481. [Google Scholar] [CrossRef] [PubMed]
- Development, I. Socio-Economic Impacts of Climate Change in Afghanistan A Report to the Department for International Development; Stockholm Environment Institute: Oxford, UK, 2009. [Google Scholar]
- Rousta, I.; Olafsson, H.; Moniruzzaman, M.; Zhang, H.; Liou, Y.A.; Mushore, T.D.; Gupta, A. Impacts of drought on vegetation assessed by vegetation indices and meteorological factors in Afghanistan. Remote Sens. 2020, 12, 2433. [Google Scholar] [CrossRef]
- Asoka, A.; Mishra, V. Prediction of vegetation anomalies to improve food security and water management in India. Geophys. Res. Lett. 2015, 42, 5290–5298. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Zhao, X.; Liang, S.; Zhou, T.; Huang, K.; Tang, B.; Zhao, W. Time-lag effects of global vegetation responses to climate change. Glob. Chang. Biol. 2015, 21, 3520–3531. [Google Scholar] [CrossRef]
- Wang, J.; Price, K.P.; Rich, P.M. Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains. Int. J. Remote Sens. 2001, 22, 3827–3844. [Google Scholar] [CrossRef]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Nanzad, L.; Zhang, J.; Tuvdendorj, B.; Nabil, M.; Zhang, S.; Bai, Y. NDVI anomaly for drought monitoring and its correlation with climate factors over Mongolia from 2000 to 2016. J. Arid Environ. 2019, 164, 69–77. [Google Scholar] [CrossRef]
- Measho, S.; Chen, B.; Trisurat, Y.; Pellikka, P.; Guo, L. Spatio-Temporal Analysis of Vegetation Dynamics as a Response to Climate Variability and Drought Patterns in the Semiarid Region, Eritrea. Remote Sens. 2019, 11, 724. [Google Scholar] [CrossRef] [Green Version]
- Chuai, X.W.; Huang, X.J.; Wang, W.J.; Bao, G. NDVI, temperature and precipitation changes and their relationships with different vegetation types during 1998-2007 in Inner Mongolia, China. Int. J. Climatol. 2013, 33, 1696–1706. [Google Scholar] [CrossRef]
- Li, X.; Waddington, S.R.; Dixon, J.; Joshi, A.K.; de Vicente, M.C. The relative importance of drought and other water-related constraints for major food crops in South Asian farming systems. Food Secur. 2011, 3, 19–33. [Google Scholar] [CrossRef]
- Ullah, I.; Ma, X.; Azam, K.; Syed, S.; Liu, M.; Arshad, M. Evaluating the Meteorological Drought Characteristics over Pakistan Using In Situ Observations and Reanalysis Products. 2021, pp. 1–23. Available online: https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.7063 (accessed on 20 May 2021).
- Potopová, V.; Boroneanţ, C.; Boincean, B.; Soukup, J. Impact of agricultural drought on main crop yields in the Republic of Moldova. Int. J. Climatol. 2016, 36, 2063–2082. [Google Scholar] [CrossRef] [Green Version]
- King, W.I.; King, W.I. Skewness. Elem. Stat. Method 2012, 100, 159–166. [Google Scholar]
- Peña-Gallardo, M.; Martín Vicente-Serrano, S.; Domínguez-Castro, F.; Beguería, S. The impact of drought on the productivity of two rainfed crops in Spain. Nat. Hazards Earth Syst. Sci. 2019, 19, 1215–1234. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahzaman, M.; Zhu, W.; Bilal, M.; Habtemicheal, B.A.; Mustafa, F.; Arshad, M.; Ullah, I.; Ishfaq, S.; Iqbal, R. Remote Sensing Indices for Spatial Monitoring of Agricultural Drought in South Asian Countries. Remote Sens. 2021, 13, 2059. https://doi.org/10.3390/rs13112059
Shahzaman M, Zhu W, Bilal M, Habtemicheal BA, Mustafa F, Arshad M, Ullah I, Ishfaq S, Iqbal R. Remote Sensing Indices for Spatial Monitoring of Agricultural Drought in South Asian Countries. Remote Sensing. 2021; 13(11):2059. https://doi.org/10.3390/rs13112059
Chicago/Turabian StyleShahzaman, Muhammad, Weijun Zhu, Muhammad Bilal, Birhanu Asmerom Habtemicheal, Farhan Mustafa, Muhammad Arshad, Irfan Ullah, Shazia Ishfaq, and Rashid Iqbal. 2021. "Remote Sensing Indices for Spatial Monitoring of Agricultural Drought in South Asian Countries" Remote Sensing 13, no. 11: 2059. https://doi.org/10.3390/rs13112059
APA StyleShahzaman, M., Zhu, W., Bilal, M., Habtemicheal, B. A., Mustafa, F., Arshad, M., Ullah, I., Ishfaq, S., & Iqbal, R. (2021). Remote Sensing Indices for Spatial Monitoring of Agricultural Drought in South Asian Countries. Remote Sensing, 13(11), 2059. https://doi.org/10.3390/rs13112059